
Computing Distance

Erin Catto

Blizzard Entertainment

Convex polygons

Closest points

Overlap

Goal

 Compute the distance between convex
polygons

Keep in mind

 2D

 Code not optimized

Approach

simple complex

Geometry

If all else fails …

DEMO!

Outline

1. Point to line segment

2. Point to triangle

3. Point to convex polygon

4. Convex polygon to convex polygon

Concepts

1. Voronoi regions

2. Barycentric coordinates

3. GJK distance algorithm

4. Minkowski difference

Point to Line Segment
Section 1

A line segment

A B

Query point

Q

A B

Closest point

Q

PA B

Projection: region A

Q

A B

Projection: region AB

Q

A B

Projection: region B

Q

A B

Voronoi regions

A B

region A region AB region B

Barycentric coordinates

G(u,v)=uA+vB

u+v=1

A G B

Fractional lengths

G(u,v)=uA+vB

u+v=1

A G B

u=0.5v=0.5

Fractional lengths

G(u,v)=uA+vB

u+v=1

A G B

u=0.75v=0.25

Fractional lengths

G(u,v)=uA+vB

u+v=1

AG B

u=1.25

v=-0.25

Unit vector

A B

B-A
=

B-A
n

n

(u,v) from G

A G B
uv

 B-G n
u=

B-A

 G-A n
v=

B-A



(u,v) from Q

 B-Q n
u=

B-A



A G B
uv

 Q-A n
v=

B-A



Q

Voronoi region from (u,v)

A G B

u > 0 and v > 0 region AB

u > 0v > 0

Voronoi region from (u,v)

AG B

v <= 0 region A

u > 0

v < 0

Voronoi region from (u,v)

A GB

u <= 0 region B

u < 0

v > 0

Closet point algorithm

input: A, B, Q

compute u and v

if (u <= 0)

P = B

else if (v <= 0)

P = A

else

P = u*A + v*B

Aside: center of mass

COM

mass A = mass B

B

A

Aside: center of mass

mass A > mass B

B

A
COM

Aside: center of mass

mass A < mass B

B

A

COM

Aside: center of mass

massA massB
COM A B

massA massB massA massB
 

 

massA>0

massB>0

Point to Triangle
Section 2

Triangle

A

B

C

Closest feature: vertex

A

P=B

C

Q

Closest feature: edge

A

C

Q

B

P

Closest feature: interior

A

C

B

P=Q

Voronoi regions

A

B

C

Region AB

Region CA

Region BC

Region ABC

Region A

Region B

Region C

3 line segments

A

B

C

 AB ABu ,v

 CA CAu ,v

 BC BCu ,v

Q

Vertex regions

A

B

C

AB

BC

u 0

v 0





CA

AB

u 0

v 0





BC

CA

u 0

v 0





Using line segment uv’s

Edge regions

A

B

C

AB

AB

u 0

v 0

?





Line segment uv’s are
not sufficient

Interior region

A

B

C

?

Line segment uv’s don’t
help at all

Triangle barycentric coordinates

Q uA vB wC  

1wvu 

A

C

B

Q

Linear algebra solution

x x x x

y y y y

A B C u Q

A B C v = Q

1 1 1 w 1

     
     
     
          

Fractional areas

A

B

CC

Q

The barycenctric coordinates are
the fractional areas

B

A

C

Q

w

u Area(BCQ)

C

v

u

v Area(CAQ)

w Area(ABQ)

Barycentric coordinates

CC

A

B

w 0

v 0

u 1
Q

Barycentric coordinates

area(QBC)
u

area(ABC)


area(QCA)
v

area(ABC)


area(QAB)
w

area(ABC)


Barycentric coordinates are
fractional

line segment : fractional length

triangles : fractional area

tetrahedrons : fractional volume

Computing Area

A

C

B

 
1

signed area= cross B-A,C-A
2

Q outside the triangle

C

Q

C

A

B

P outside the triangle

C

0v 

0w 

v+w>1

C

A

B

Q

P outside the triangle

C

0u

C

A

B

Q

Voronoi versus Barycentric

 Voronoi regions != barycentric coordinate
regions

 The barycentric regions are still useful

Barycentric regions of a triangle

A

B

C

Interior

A

B

C 0w0,v0,u 

Q

Negative u

A

B

C

0u

Q

Negative v

A

B

C 0v 

Q

Negative w

A

B

C

0w 

Q

The uv regions are not exclusive

A

B

C

Q

P

Finding the Voronoi region

 Use the barycentric coordinates to identify
the Voronoi region

 Coordinates for the 3 line segments and the
triangle

 Regions must be considered in the correct
order

First: vertex regions

A

B

C

AB

BC

u 0

v 0





AB

CA

v 0

u 0





BC

CA

u 0

v 0





Second: edge regions

A

B

C

AB

AB

u 0

v 0

?





Second: edge regions solved

A

B

C

AB

AB

ABC

u 0

v 0

w 0







Third: interior region

A

B

C

ABC

ABC

ABC

u > 0

v > 0

w > 0

Closest point

 Find the Voronoi region for point Q

 Use the barycentric coordinates to compute
the closest point Q

Example 1

A

B

C

Q

Example 1

A

B

C

uAB <= 0

Q

Example 1

A

B

C

uAB <= 0 and vBC <= 0

Q

Example 1

A

P=B

C Conclusion:
P = B

Q

Example 2

A

B

C

Q

Example 2

A

B

C

Q is not in any vertex region

Q

Example 2

A

B

C

uAB > 0

Q

Example 2

A

B

C
uAB > 0 and vAB > 0

Q

Example 2

A

B

C
uAB > 0 and vAB > 0
and wABC <= 0

Q

Example 2

A

B

C

Conclusion:
P = uAB*A + vAB*B

P

Q

Implementation

input: A, B, C, Q

compute uAB, vAB, uBC, vBC, uCA, vCA

compute uABC, vABC, wABC

// Test vertex regions

…

// Test edge regions

…

// Else interior region

…

Testing the vertex regions

// Region A

if (vAB <= 0 && uCA <= 0)

P = A

return

// Similar tests for Region B and C

Testing the edge regions

// Region AB

if (uAB > 0 && vAB > 0 && wABC <= 0)

P = uAB * A + vAB * B

return

// Similar for Regions BC and CA

Testing the interior region

// Region ABC

assert(uABC > 0 && vABC > 0 && wABC > 0)

P = Q

return

Point to Convex Polygon
Section 3

Convex polygon

A

B

C

D
E

Polygon structure

struct Polygon
{
Vec2* points;
int count;

};

Convex polygon: closest point

Q

A

B

C

D
E

Query point Q

Convex polygon: closest point

P

Closest point Q

A

B

C

D
E

Q

How do we compute P?

What do we know?

Closest point to point

Closest point to line segment

Closest point to triangle

Simplex

0-simplex 1-simplex 2-simplex

Idea: inscribe a simplex

A

B

C

D
E

Q

Idea: closest point on simplex

A

B

P = C

D
E

Q

Idea: evolve the simplex

A

B

C

D
E

Q

Simplex vertex

struct SimplexVertex
{

Vec2 point;
int index;
float u;

};

Simplex

struct Simplex
{
SimplexVertex vertexA;
SimplexVertex vertexB;
SimplexVertex vertexC;
int count;

};

We are onto a winner!

The GJK distance algorithm

 Computes the closest point on a convex
polygon

 Invented by Gilbert, Johnson, and Keerthi

The GJK distance algorithm

 Inscribed simplexes

 Simplex evolution

Starting simplex

Start with arbitrary
vertex. Pick E.

This is our starting
simplex.

A

B

C

D
E

Q

Closest point on simplex

P is the closest
point.

A

B

C

D

Q

P=E

Search vector

Draw a vector
from P to Q.

Call this vector d.

d

A

B

C

D
P=E

Q

Find the support point

Find the vertex on
polygon furthest in
direction d.

This is the support
point.d

A

B

C

D

Q

P=E

Support point code

int Support(const Polygon& poly, const Vec2& d)
{
int index = 0;
float maxValue = Dot(d, poly.points[index]);
for (int i = 1; i < poly.count; ++i)
{
float value = Dot(d, poly.points[i]);
if (value > maxValue)
{
index = i;
maxValue = value;

}
}
return index;

}

Support point found

C is the support
point.

d

A

B

C

D
E

Q

Evolve the simplex

Create a line
segment CE.

We now have a
1-simplex.

A

B

C

D
E

Q

Repeat the process

Find closest point
P on CE.

A

B

C

D
E

P

Q

New search direction

Build d as a line
pointing from P to
Q.

A

B

C

D
E

d P

Q

New support point

D is the support
point.

A

B

C

D
E

d

Q

Evolve the simplex

Create triangle CDE.

This is a
2-simplex.A

B

C

D
E

Q

Closest point

Compute closest
point on CDE to Q.

A

B

C

D
E

P

Q

E is worthless

Closest point is on
CD.

E does not
contribute.

A

B

C

D
E

P

Q

Reduced simplex

We dropped E,
so we now have
a 1-simplex.

A

B

C

D
E

P

Q

Termination

Compute support
point in direction d.

We find either C or
D. Since this is a
repeat, we are
done.

Q

A

B

C

D
E

P

d

GJK algorithm

Input: polygon and point Q

pick arbitrary initial simplex S

loop

compute closest point P on S

cull non-contributing vertices from S

build vector d pointing from P to Q

compute support point in direction d

add support point to S

end

DEMO!!!

Numerical Issues

 Search direction

 Termination

 Poorly formed polygons

A bad direction

Q

A

B

C

D
E

P

d can be built from
PQ.

Due to round-off:

dot(Q-P, C-E) != 0

d

A real example in single precision

Line Segment

A = [0.021119118, 79.584320]

B = [0.020964622, -31.515678]

Query Point

Q = [0.0 0.0]

Barycentric Coordinates

(u, v) = (0.28366947, 0.71633047)

Search Direction

d = Q – P = [-0.021008447, 0.0]

dot(d, B – A) = 3.2457051e-006

Small errors matter

numerical directionexact direction

correct
support

wrong
support

An accurate search direction

A

B

C

D
E

d

Directly compute a
vector
perpendicular to
CE.

d = cross(C-E,z)

Where z is normal
to the plane.

Q

Fixing the sign

A

B

C

D
E

d

Flip the sign of d so
that:

dot(d, Q – C) > 0

Perk: no divides
Q

Termination conditions

}

Case 1: repeated support point

A

B

C

D
E

d

P

Q

Case 2: containment

We find a 2-simplex
and all vertices
contribute.

A

B

C

D
E

P=Q

Case 3a: vertex overlap

We will compute
d=Q-P as zero.

So we terminate if
d=0.

A

B

C

EP=Q=D

Case 3b: edge overlap

d will have an
arbitrary sign.

A

B

E

P=Q

C

D

d

Case 3b: d points left

If we search left, we
get a duplicate
support point.
In this case we
terminate.

A

B

E

P=Q

C

D

d

Case 3b: d points right

If we search right,
we get a new
support point (A).

A

B

E

C

D

d

Q=P

Case 3b: d points right

But then we get
back the same P,
and then the same
d.

Soon, we detect a
repeated support
point or detect
containment.

A

B

E

C

D

d

P=Q

Case 4: interior edge

d will have an
arbitrary sign.

A

B

E

P=Q

C

D

d

Case 4: interior edge

Similar to Case 3b

A

B

E

P=Q

C

D

d

Termination in 3D

 May require new/different conditions

 Check for distance progression

Non-convex polygon

Vertex B is non-
convex

A

E

C

D

B

Non-convex polygon

B is never a
support point

AB

E

C

D

Collinear vertices

B, C, and D are
collinear

A

E

B

D

C

Collinear vertices

2-simplex BCD

A

E

B

D

CQ

Collinear vertices

area(BCD) = 0

A

E

B

D

CQ

Convex Polygon to Convex Polygon
Section 4

X Y

Closest point between convex
polygons

What do we know?

GJK

What do we need to know?

???

Idea

 Convert polygon to polygon into point to
polygon

 Use GJK to solve point to polygon

Minkowski difference

YX Y-X Z

Definition

 j i i jZ = y - x : x X, y Y 

Building the Minkowski difference

Input: polygon X and Y

array points

for all xi in X

for all yj in Y

points.push_back(yj – xi)

end

end

polygon Z = ConvexHull(points)

Example point cloud

YX Y-X

Compute Yi – Xj for i = 1 to 4 and j = 1 to 3

Building the convex hull

Compute the convex hull by shrink wrapping the points.

Building the convex hull

Compute the convex hull by shrink wrapping the points.

Building the convex hull

Compute the convex hull by shrink wrapping the points.

Building the convex hull

Compute the convex hull by shrink wrapping the points.

Building the convex hull

Compute the convex hull by shrink wrapping the points.

Building the convex hull

Compute the convex hull by shrink wrapping the points.

Building the convex hull

Compute the convex hull by shrink wrapping the points.

Building the convex hull

Compute the convex hull by shrink wrapping the points.

Building the convex hull

Compute the convex hull by shrink wrapping the points.

Z

The final polygon

Z

Property 1: distances are equal

YX

distance(X,Y) == distance(O, Y-X)

O

Property 2: support points

support(Z, d) = support(Y, d) – support(X, -d)

ZYX O

dd-d

Convex Hull?

Modifying GJK

 Change the support function

 Simplex vertices hold two indices

Closest point on polygons

 Use the barycentric coordinates to compute
the closest points on X and Y

 See the demo code for details

DEMO!!!

Download: box2d.org

Further reading

 Collision Detection in Interactive 3D
Environments, Gino van den Bergen, 2004

 Real-Time Collision Detection, Christer
Ericson, 2005

 Implementing GJK:
http://mollyrocket.com/849, Casey Muratori.

http://mollyrocket.com/849

Box2D

 An open source 2D physics engine

 http://www.box2d.org

 Written in C++

http://www.box2d.org/

