

QA’s 10 Commandments:
What?! Only 10?

 A review of QA’s best practices and
an examination of potential
additions.

 Chuck McFadden

 Sony Computer Entertainment
America

This lecture is NOT:

 An in-depth examination of SCEA’s
QA practices or of PlayStation
Home.

 A review of console submission
requirements.

 An hour long.

The origin of the 10.

Use the Scientific Method.

 Observe and describe.

 Formulate a hypothesis.

 Experiment.

 Draw a conclusion.

 This Commandment separates the
good testers from the bad.

Playing vs.Testing.

 Know the difference! Spend most
of your time testing.

 Check your ego at the door: Test
“losing” conditions as much as the
“win” conditions.

Be Flexible.

 QA testers/teams are used for a
variety of tasks outside of
traditional “testing.” Encourage
this.

 As a game nears completion,
continually evaluate QA’s bugs and
reprioritize as necessary.

 Recommendation: Use a
prioritization scheme.

Find and Report Bugs as
Early as Possible.

 Review the “save flow” when it’s a
simple design on paper.

 Look at early UI text to spot
incorrect usage of platform naming
conventions.

 See if a tester can “find the fun” in
an early build/prototype.

Think like a Hacker.

 Be creative in finding problems.
Look beyond the surface.

 Examples: Exiting a room through a
door, window, ceiling, or wall.

 Don’t simply test how the game is
“supposed” to be played.

1 . . . 10

Think like a Hacker (cont.)

 1-10 might be tested thusly:

 Test the #1, then the #2, then #3,
and so on until 10.

 What happens when you test #0?

 Or #-1?

 Or #1,002?

 Or #0.356?

Put in as much effort with your
Regression as with the initial
tests.

 Also known as “Halo testing.”

 Check for new bugs that are a
result of the fixed bug.

 Risk is always associated with any
bug fix.

Don’t let QA members test
designs they’ve championed.

 QA testers are only human.

 When a tester’s design input
becomes an in-game reality,
he/she cannot be allowed to test
it.

Don’t write sloppy bugs!

 What is a tester’s most valuable
weapon?

 Awesum gamr skillz?

 Effective communication?

 Spell and grammar check
everything.

 Ensure “steps to repeat” are
clearly and concisely written.

 Any developer who follows the steps
should be able to repeat the bug.

Test everything.*

 Never assume any feature is bug-
free.

 Use test plans to help you test
every feature in every
(reasonable) way.

 Good enough isn’t.

 * Perhaps not such an important
rule any longer. More later.

Assume all bugs can be
consistently reproduced.

 It’s not a question of whether it’s
reproducible, rather an ROI
question.

 Scientific Method helps a lot here.

 If the tester doesn’t have enough
time to consistently reproduce,
make sure the bug details a
percentage.

But, wait! There’s more!

 Possible additions:

 Automate tests.

 User testing.

 The End is the Beginning.

 * Test Everything.

Automate Tests

 Identify tedious QA tasks that can
be handled automatically.

 Hire a QA tools programmer.

 Encourage the dev team to devote
some time to the task.

 Key point: Automated tests are
only helpful if they’re planned for
in advance.

User Testing

 It’s not QA testing!

 But it’s equally important.

 Don’t sour the user tests with your
preconceptions.

 Learn to interpret “usability”
feedback.

 What users want isn’t always what
they need.

The End is the Beginning.

 Increasingly, games see post-
release updates.

 Should your test strategies
change?

 Leverage modern business practices
and technology to streamline your
work.

*Test Everything.

 Food for thought:

 Now that post-release development is
common, is this commandment
necessary?

 Is “good enough,” good enough?

Thank You!

 Questions?

 Comments?

 Performance Art?

