March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Go With The Flow: Fluid and Particle Physics in PixelJunk Shooter

Jaymin Kessler Q-Games Technology Team jaymin+gdc@q-games.com

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Shooter overview

- Game designed around mixing of various solids, liquids, and gasses
 - Magma meets water, cools, and forms rock
 - !ce meets magma and melts
 - Magnetic liquid meets water to form a toxic gas, just like in real life
 - Lasers melt ice and rock into water and magma
 - Other cool effects like explosion chain reactions, and water turbulence

March 9-13, 2010 Moscone Center San Francisco, CA

www.GDConf.com

Video (for those who haven't played it yet)

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

earn. Network. Inspire.

Video (for those who haven't played it yet)

www.GDConf.com

Overview

- SPU based fluid simulation
 - Parallel particle sim algorithms
 - Game design built around mixing of different fluids
 - Universal collision detection mechanism
 - Particle flow rendering
- Collision detection by distance field
 - Real-time SPU and GPU algorithms
- Level editing via stage editor
 - Topographical design via templates
 - Particle placement

Episode 1 Fluid Simulation

Moscone Center San Francisco, CA www.GDConf.com

Existing fluid simulation algorithms

- Smoothed particle hydrodynamics
 - Divide the fluid into particles, where each has a smoothing length
 - Particle properties are smoothed over smoothing length by a kernel function
 - Particles affected by other particles close by
 - SPH formulation derived by spatially discretizing Navier-Stokes equations
 - Used in astrophysics!

Game Developer Conference® March 9-13, 2010 Moscone Center

www.GDConf.com

earn. Network. Inspire

What we actually used

- Goal: practical application in-game
 - Ease of implementation
 - Rapid control response
 - Physical accuracy
 - Cater to the strengths of the SPUs
 - No SIGGRAPH framerates
- Fluid system developed for Shooter
 - 2D particle collision simulation
 - 32,768 particles running @ 60fps on 5 SPUs (could have done way more if needed;))

Moscone Center San Francisco, CA www.GDConf.com

Verlet integration

- The good
 - 4th order accurate (Euler is 1st)
 - Greater stability than Euler
 - Time-reversibility
- The bad
 - Bad handling of varying time steps
 - Needs 2 steps to start, start conditions are crucial
- Time-corrected verlet helps

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

earn. Network. Inspire

The version we used

- Applied to elemental particle sim
- location p(t) as a function of time t against velocity v(t) and ext force F(t)
- For mass m and sim interval Δt

$$p(t+\Delta t) = p(t) + v(t)\Delta t + F(t)\Delta t^2 / 2m$$
$$v(t) = (p(t) - p(t-\Delta t)) / \Delta t$$

$$p(t-\Delta t) \qquad p(t+\Delta t) \qquad p(t+\Delta t) \qquad F(t)$$

Game Developers Conference® March 9-13, 2010 Moscone Center

www.GDConf.com

earn. Network. Inspire

Incompressibility of liquid

- Liquids don't compress or expand to fill volumes, but...
- In our model, mass and gravity can compress lower particles
- Don't worry! We have a fix

Moscone Center San Francisco, CA www.GDConf.com

Maintaining the incompressibility of liquid

- Must maintain constant distance between particles
- Particles have an adjustable radius bias
- Each frame:
 - Calculate the desired radius bias
 - Based on max ingression of surrounding particles
 - Lerp from current bias to desired bias
 - Two different rates for expanding and contracting
 - Contraction ~4x faster than expansion

March 9-13, 2010 Moscone Center San Francisco, CA

www.GDConf.com

Maintaining the incompressibility of liquid

March 9-13, 2010
Moscone Center
San Francisco, CA
www.GDConf.com

Keeping particles apart

- Add repulsive force in the space between colliding particles
- Force of repulsion proportional to the number of colliding particles
- Increasing number of particles creates fluid-like behavior

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Keeping particles apart

- Simple-ish computation model
 - All particles perfectly spherical, but with varying radius size
 - Helped with ease of implementation

Game Developer: Conference® March 9-13, 2010 Moscone Center San Francisco, CA

www.GDConf.com

Not all particles created equal

- Different particle combinations have different force of repulsion values
- Different chemical reactions simulated when fluids mix
- Oifferent mass
- Some have rigid bodies, others don't
- Particle types propagate heat differently
 - i.e. magma cools to form a rock-like solid

Moscone Center San Francisco, CA www.GDConf.com

Heat propagation

- Each particle carried thermal data
- When particles collide, heat is propagated
 - Warmer particle to cooler one
 - Same algorithm we use for force of repulsion
 - Particle types have different thermal transfer values

Game Developers

www.GDConf.com

One other (mis)use of the particle system

- In-game collision detection
- Characters, missiles, etc. are surrounded by special dummy particles (interactors)
 - Some benefits include
 - No need to write lots of different collision detection systems
 - Depending on the location of the interactor particle, pretty much any collision can be simply detected and tracked

Game Developers Conference® March 9-13, 2010 Moscone Center San Francisco. CA

www.GDConf.com

SPURS jobchain (in words)

- Yes, we really used SPURS
- SPU jobchain:
 - 1)Collision detection and repulsive force calc
 - 2) Force unification (for multi-cell particles)
 - 3)Particle update (verlet)
 - 4) Particle deletion, only 1 SPU used
 - 5)Grid calc for the next frame
- PPU processing:
 - Particle generation
 - Jobchain building

Game Developers Conference® March 9-13, 2010 Moscone Center

www.GDConf.com

earn. Network. Inspire

SPURS jobchain (in words)

- Yes, we really used SPURS
- SPU jobchain:
 - 1)Collision detection and repulsive force calc

- 2) Force unification (for multi-cell particles)
- 3)Particle update (verlet)
- 4) Particle deletion, only 1 SPU used
- 5) Grid calc for the next frame
- PPU processing:
 - Particle generation
 - Jobchain building

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Collision job

- Collision detection between every particle in a cell
- Several cells pooled together to make one job
- Jobs are divided to help with load balancing
- Output
 - Particle number
 - Force of repulsion

 job11

 job12

 job13

Moscone Center San Francisco, CA www.GDConf.com

Force unification job

- If a particle is processed in more than one cell, we have to unify the results
- Output: Unified force of repulsion, acceleration, and other info by particle number

Output for job11 thru job14 {(particle no.; power of repulsion)} Particle numbers can be duplicated job23 $\#0 \sim \#9999$ $\#0 \sim \#9999$ $\#0 \sim \#9999$

Game Developers Conference® March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

earn. Network. Inspire

Update job

- This is the BIG one (in terms of code size)
- Particle physics calculations, including verlet integration
- PPU notification of interesting events Like abrupt changes in fluid direction, triggering effects
- Output

Updated particle data

Particle deletion info

Various other flags

March 9-13, 2010
Moscone Center
San Francisco, CA
www.GDConf.com

Learn. Network. Inspire

Particle delete job

- Only run on one SPU
- Very few particles deleted, around 10 per frame
- Take valid particles off the end, and overwrite deleted particles as we find

www.GDConf.com

earn. Network. Inspire

Particle grid division

- Used to parallelize workload
- ⑤ $O(n^2/k)$ for $k \approx 1232$ cells, or a 44x28 grid (better than $O(n^2)$)
- Multiple cells per job
- But what if a particle is on the border between two cells?

Moscone Center San Francisco, CA www.GDConf.com

Learn, Network, Inspire.

Particle grid division

- Particles are processed (hit test) with every cell they touch
- In the next phase, we unify all forces acting on a particle
- After merge, the particle belongs to the upper left most cell it touches

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

SPURS jobchain (in pictures)

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

earn. Network. Inspire.

SPURS jobchain (in-profiler) ~9000 particles

Game Developers Conference® March 9-13, 2010 Moscone Center

San Francisco, CA
www.GDConf.com

Painfully obvious optimizations

- Heavy use of SoA
 - big win even when converting to and from in the same job
- Avoid scalars (especially multiple writes) like the plague
 - Or don't read/write the same buffer in the same loop
- As branch-free as possible
- Software pipelining and unrolling
 - But less LS left for particles
- Favor intrinsics over asm :(
 - Dylan's inline asm site
 - Possible through compiler communication

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Christer's© algorithm

Episode 2 Rendering

Game Developers Conference® March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Fluid rendering

- Render particles in a vertex array
 - 4 Three basic particle types: solid, liquid, and gas
 - Each is rendered to a different offscreen buffer
 - A vertex array is required for each particle type
- Upper particle limit is approx 30,000
 - 4 three different vertex arrays for three particle types with 30,000 particles each is a waste
 - One vertex array can be used for all three types

www.GDConf.com

Fluid rendering

- Vertex array built on the SPUs
 - ♣ 1~5 SPUs used depending on the num particles
 - Lists built in LS and DMA'd to main memory
- The vertex array is 64 sectors
 - Each sector contains one particle type
 - Max 512 particles per sector
 - Atomic DMA to coordinate shared list updates

Moscone Center San Francisco, CA www.GDConf.com

Fluid rendering

- Grouped particles rendered as a smooth flowing fluid
- Existing example: marching square/cube
 - Related particles depicted as a polygon mesh
 - The grid has to be fine, or liquid movement isn't smooth
- Currently patented
 - Not by us

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

earn. Network. Inspire

Fluid rendering

- Render particles to a low-res offscreen buffer with a luminance texture.
- Blur the offscreen buffer
- Scale up with bi-linear filter
- Use the resulting brightness to color the liquid

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Cohesiveness

- Free falling liquid causes particle distances to increase
 - Liquid mass loses cohesiveness
 - Opposite problem as compression
- Solution: don't fully clear the buffer
 - Image lag effect maintains cohesiveness, even in motion

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

earn. Network. Inspire

Water surface AA

- When rendering liquid to offscreen buffer, use a smooth step function
- Two thresholds used for water surface and for tinting

SPU update job detects sudden changes in liquid speed and direction, and notifies the PPU to add foam effects

www.GDConf.com

Depicting movement

- Create a flow pattern to show movement
 - Each particle gets a fixed random UV value [0..1]
 - UV value converts to RG value
 - Use a different color where RG is 0.5f, 0.5f

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

earn. Network. Inspire

Refraction

- From water and from magma heat
- Ping-pong between offscreen buffers (tex feedback processing)
- Degree and direction depends on particles fixed UV

Episode 3 Distance Transform

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Distance field

- How does it work?
 - Binary input image
 - Walls are white
 - Space is black
 - Output image
 - Wall core is bright
 - Wall boundary is 0.5f
 - Gets darker as you move away from wall
 - ② 2 distance transforms: static and dynamic
- Sample uses
 - Wall collision detection
 - Making enlarged fonts look better

March 9-13, 2010 Moscone Center San Francisco, CA

www.GDConf.com

Learn. Network. Inspire.

Distance transform

Game Developers Conference® March 9-13, 2010 Moscone Center

Moscone Center San Francisco, CA www.GDConf.com

Using distance transform for wall collision

- Look up character's pos in the distance field
 - \bullet > 0.5f \Rightarrow collision
 - $\leq 0.5f \Rightarrow \text{no collision}$
- Moving away from a collision
 - Get 4 distance field values near collision
 - Look at gradient to move away from the wall

Game Developers

March 9-13, 2010 Moscone Center San Francisco, CA

www.GDConf.com

Using distance transform for wall collision

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Using distance transform for wall collision

- When detecting collision with the ground
 - The force of repulsion is applied in line with the collision surface
 - Proportional to the collision force

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Distance transform in-game

Game Developers Conference® March 9-13, 2010 Moscone Center

San Francisco, CA

www.GDConf.com

Distance transform algorithms

- O(n²) Chamfer distance
 - Used with Manhattan distance
 - 4 1ms for 256x256 on one SPU
 - Also had a 512x512 version
- Dead reckoning
 - A little more accurate
- Jump flooding
 - Implementable on GPU
 - 6ms *GASP*
- Parallel versions exist, but...

Moscone Center San Francisco, CA www.GDConf.com

earn. Network. Inspire.

Chamfer distance algorithm

- Two passes (forward and back)
- Propagate distance to closest wall
 - Forward pass looks at upper and left neighbors
 - Backwards pass looks at lower and right neighbors
 - The larger the window, the more accurate
 - We went with a 3x3 window

Game Developers Conference[®]

March 9-13, 2010 Moscone Center San Francisco, CA

www.GDConf.com

Chamfer distance algorithm (unsigned)

Game Developers Conference® March 9-13, 2010 Moscone Center San Francisco, CA

www.GDConf.com

Jump flooding

- Unlike DRA and CDA*, parallel processing is possible
- Works on GPU
- Log₂(n) passes
- O(n² log₂(n)) calculation
- Rough idea
 - Compute an approximation to the Voronoi diagram of a given set of seeds in a 2D grid

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Jump flooding in action

In every pass, the distance is cut in half. These images show all 8 passes on the GPU

Game Developers

www.GDConf.com

Platform comparison

- ♣ PS3
 - CDA: 1ms for 256x256 on one SPU
- ♣ PC
 - Jump flooding: 8 passes required
 - 5~6ms was too much time, so we split it up and did 4 passes per frame
- SPU vs GPU
 - SPU: more complex processing possible
 - GPU: awkward to program, and is already so busy with rendering

Episode 4 Editor

San Francisco, CA

www.GDConf.com

earn. Network. Inspire

Editor overview

- Functions
 - Wall editing
 - Based on templates
 - Had procedural generation, but didn't use it
 - Placing items, characters, etc.
 - Turning things on and off
 - Wall, rock, fluid, enemies, gimmicks, items, survivors, verlet update, particles
 - Fluid editor
 - Flow simulation
 - Execution/cancellation
 - Various debugging visualizations

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

Editor overview

Moscone Center San Francisco, CA www.GDConf.com

earn. Network. Inspire

Topographical design

- Different patterns for different things
 - Different sized rocks, walls, ice, snow
- Each stage had unified design concepts
- Designers still have to hand-draw their levels
 - One of the reasons it would be hard to release a level editor on PS3

March 9-13, 2010 Moscone Center San Francisco, CA www.GDConf.com

earn. Network. Inspire

Pattern templates

- Designers create patterns for wall decorations
- The level creator uses the templates to design the walls
- Templates broken into several parts
- Using randomized loops and reverses, joints are automatically made seamless
- Vector format for nice scaling

Game Developer Conference® March 9-13, 2010 Moscone Center

www.GDConf.com

earn. Network. Inspire

Conclusion

- Fluid simulation system
- 32,768+ fluid particles @ 5SPU, 60FPS
 - Heat transmission, constant distance maintenance, etc
- Universal collision detection system
- Real-time distance field
- CDA, 256×256, Manhattan@1SPU, 1ms
 - Used for collision detection
 - Also abused for ??? in Shooter 2
- Note to self: if time left over, have that "only on PS3" discussion I promised everyone on Twitter