
Building the Server
Software for Eliminate

Introduction

 Stephen Detwiler
 Director of Engineering, ngmoco:)

  James Marr
 Lead Engineer R&D, ngmoco:)

Introduction

 Build the definitive FPS for iPhone
  in only 5 months

 Multiplayer deathmatch
 wifi and 3g

  Free to play

 With three engineers

Outline

 Gameplay
  Lobby
 Matchmaking
  Load Testing
  Live Tuning
 Deployment
 Monitoring

Server Architecture

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Gameplay

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Topic 1 of 7

Gameplay: Requirements

  3G requirement drives decision
 ~100kbps, 150ms latency

 Aggressive bandwidth optimization
  Prediction to hide latency
 UDP

Gameplay: Options

 Are there any opensource options?
 Shipping to clients, so no GPL

 Are there any commercial options?

  Yes, Quake 3

 Dialup from 1999 looks a lot like
3G from 2009

Gameplay: Q3 Cost

 Source code
  plus full rights
 minus any technical support
 = $10k

 Same cost as a man month

Gameplay: Q3 Benefits

 Graphics
 BSP + portals
 Dynamic lights, static lightmaps
 Keyframe animation

  Tools
 Custom map editor (Radiant)
 3DS Max model animation exporters

  Lots of information online about
how to extend the engine

Gameplay: Moving On

  Purchased solution for “mundane”
gameplay networking

 Able to focus on rest of experience

Lobby

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Topic 2 of 7

Lobby: Requirements

 Handles everything outside of
realtime gameplay
  Inventory and commerce
 Proxy to Plus+ services
 Chat
 Matchmaking requests
 Party management

 Support 10K+ concurrent users

Lobby: Approach

 Rejected: Periodic HTTP polling
 Easy to scale

 Lots of HTTP front ends
 Big database backend

 Latency will be high in many cases
 TCP socket setup over 3G is slow

  Sometimes over 2 seconds!

 Hard to tell when users go away
 Must have timeout thresholds

Lobby: Approach

 Chosen: Persistent TCP socket
 Only one initial TCP setup
 User is gone when socket closes
 Much lower message delivery latency
 Can push messages
 Harder to scale

 One socket per user

Lobby: Implementation

  This will take more than 5 months
to build.
 What can we use off the shelf?

  Yes, XMPP

Lobby: XMPP

  Jabber/IM/Google Talk
 Proven to be scalable

  TCP with XML payloads
 Can also route custom messages
 Many off the shelf implementations

  jabberd, jabberd 2.x, ejabberd , etc.

Lobby: Evaluating

  jabberd and jabberd 2.x
 C/C++ codebase
 Not actively supported
 Early testing showed it did not scale
well past 1000 users

 Implementation difficult to extend

Lobby: Evaluating

  ejabberd
 Highly scalable

 Load tested to 30K concurrent users

 Extendable
 Active community

 But written in erlang

Lobby: Erlang

{Priority, RepackGameServers, IsGameServer} =
case FromSession#ng_session.is_admin of
true ->

 case lists:filter(fun({"isGameServer", _IsGS}) -> true;
 (_) -> false end, OriginalAttributes) of
 [{_, IsGS}] -> {"0", "0", IsGS};
 _ -> {"0", "0", "1"}
 end;

false ->
 AnyEnergy = does_any_player_have_energy(Players),
 case AnyEnergy of
 true -> {"1", "0", "0"};
 _ -> {"0", "1", "0”}
 end

end,

Lobby: Erlang

  Functional language
 Crazy syntax
 Distributed message passing built

into language
 Data persistence occurs in

database

Lobby: Plus+ Integration

 Users log into XMPP using Oauth
credentials from Plus+

  Plus+ Friends and Followers
populate user’s XMPP roster

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Pl
us

+

Lobby: Scaling

  ejabberd clusters well
 Almost for free using erlang

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Pl
us

+

Lobby: Inventory &
Purchasing
 All persistent data stored in Plus+
 XMPP validates and caches data
 XMPP nodes can start and stop at

anytime
iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Pl
us

+

Matchmaking

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Servers

Game Servers

Geographically Distributed

Lobby

Topic 3 of 7

Matchmaking: Goals

 Console quality matchmaking

 Dirt simple user experience
 Press a button
 Play against fun opponents

Matchmaking: Options

 Are there commercial options?
 Microsoft? Infinity Ward? Blizzard?

 Are there opensource alternatives?

 No. We’re building our own

Matchmaking: Overview

 Matchmaking server
 Receives requests from Lobby server
 Finds a good grouping of players
 Launches game server instance
  Inform clients through Lobby server

Matchmaking: Instances

 Quake 3 dedicated server is one
process per concurrent game

 Game manager on each server
 Talks to matchmaking server
 Launches instances on-demand
 Reports max instance capacity

Matchmaking: Approach

 Rejected: SQL DB
 All state stored in DB
 Query DB, process results, repeat
 Easy to cluster, provide redundancy

 High data latency
 Complicated

Matchmaking: Approach

 Accepted: In Memory
 All players kept in memory
 Higher performance
 Fast to implement

 Won’t cluster, one box must do it all
 Server crashes lose some data

Matchmaking: Qualities

  Each player has qualities
 Estimated skill
 Character level
 Desired party size
 Ping times to datacenters
 Time waiting in matchmaking

  Find others with similar qualities
 Start with narrow tolerances
 Over time, if can’t find a match, dilate

tolerances for qualities

Matchmaking: Qualities

0

750

1500

2250

3000

0 3 6 9 12 15

S
k
il
l
d

if
fe

re
n

ce
 t

o
le

ra
n

ce

Seconds in matchmaking

0

1

2

3

4

5

0 3 6 9 12 15

M
in

im
u

m
 p

a
rt

y
si

ze

Seconds in matchmaking

Matchmaking: Algorithm

 Sort players by one quality
 We choose Estimated Skill

  For each player:
 Find other candidate players by

iterating forward and backwards until
outside of skill tolerance

 Evaluate other quality tolerances for
each candidate

 Form match if enough candidates pass

Skill

Matchmaking: Algorithm

Name: Me
Skill: 1000
Level: 15
Loc: SFO

Name: A
Skill: 200
Level: 2
Ping: 100ms

Name: D
Skill: 1700
Level: 14
Ping: 80ms

Name: E
Skill: 2200
Level: 21
Ping: 160ms

Name: B
Skill: 750
Level: 13
Ping: 125ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Skill

Matchmaking: Algorithm

Name: Me
Skill: 1000
Level: 15
Loc: SFO

Name: A
Skill: 200
Level: 2
Ping: 100ms

Name: D
Skill: 1700
Level: 14
Ping: 80ms

Name: E
Skill: 2200
Level: 21
Ping: 160ms

Time: 1 second
Skill Tolerance: 500
Level Tolerance: 2

Name: B
Skill: 750
Level: 13
Ping: 125ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Candidate Players

Skill

Matchmaking: Algorithm

Name: Me
Skill: 1000
Level: 15
Loc: SFO

Name: D
Skill: 1700
Level: 14
Ping: 80ms

Name: E
Skill: 2200
Level: 21
Ping: 160ms

Time: 2 seconds
Skill Tolerance: 1000
Level Tolerance: 4

Name: B
Skill: 750
Level: 13
Ping: 125ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Candidate Players

Name: A
Skill: 200
Level: 2
Ping: 100ms

Name: A
Skill: 200
Level: 2
Ping: 100ms

Skill

Matchmaking: Algorithm

Name: Me
Skill: 1000
Level: 15
Loc: SFO

Name: D
Skill: 1700
Level: 14
Ping: 80ms

Name: E
Skill: 2200
Level: 21
Ping: 160ms

Time: 3 seconds
Skill Tolerance: 1500
Level Tolerance: 6

Name: B
Skill: 750
Level: 13
Ping: 125ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Name: C
Skill: 1300
Level: 17
Ping: 370ms

Candidate Players

Name: A
Skill: 200
Level: 2
Ping: 100ms

Name: A
Skill: 200
Level: 2
Ping: 100ms

Matchmaking: Algorithm

Name: Me
Skill: 1000
Level: 15
Loc: SFO

Name: D
Skill: 1700
Level: 14
Ping: 80ms

Name: E
Skill: 2200
Level: 21
Ping: 160ms

Name: B
Skill: 750
Level: 13
Ping: 125ms

Matchmaking: Skill

  Players start with skill of zero
 After match, update skill estimate

based on previous skill estimate
and match outcome

 Veteran beating noob
 veteran += little
 noob -= little

 Noob beating veteran
 noob += big
 veteran -= big

Matchmaking: Skill

 Math loosely based on Halo 2
 Early values are positive sum game
 Middle values are zero sum game
 Late values are negative sum game

-100%

0%

100%

0 2500 5000 7500 10000

S
k
il
l
P

o
in

ts
 A

d
d

e
d

 /

R
e
m

o
ve

d
 f

ro
m

 S
ys

te
m

Player Skill

Matchmaking: Speed

 Need < 10% wait / play ratio
 Status quo

 ~ 10+ minutes per match
 ~ 1+ minutes to find opponents

  Eliminate
 ~ 3 minutes per match
 ~ 15 seconds to find opponents

Matchmaking: Capacity

 Can’t cluster, must be confident
one box can handle load

 Algorithm is worst case θ(n2),
expected θ(n)

  From unit testing, one box can
handle 50k players / second
 <10% of player time in matchmaking,

so supports 500k concurrent users

Matchmaking: Faults

  Two matchmaking servers
 Primary, backup

 Clients refresh match request
every 4 seconds

 System switches to backup if
primary stops responding

 Backup doesn’t know how long
players had been in matchmaking

Matchmaking: Wrinkle

  Initially, character level was
ignored by matchmaking
 Thinking: estimated skill =
 actual skill + character level

 HUGE outcry from users
  Incorporated character level in 2.0

Load Testing

iPhone

Matchmaking

A
dm

in
is

tr
at

io
n

Game Servers

Geographically Distributed

Lobby

Topic 4 of 7

Load Testing: Why

 Not enough hardware at launch
 Users won’t come back

 Spend all of your money hardware
 You don’t make a sequel

Load Testing: How

 Build tools to generate load for
each component
 Measure CPU, memory and bandwidth

 Build model to estimate
requirements at different usage
levels
 DAUs, Concurrent Users, Session

Length

 Re-test often

Load Testing: XMPP

 Simulate player XMPP actions
 Login, chat, inventory, etc.

 Reuse actual XMPP client code
 Repurposed game manager

hardware
 Ran up to 30K users

Load Testing:
Matchmaking
 Unit test code easily matched 50k

players / second on a laptop

Load Testing: Game
Managers Take 1
 Needed to run actual game to

generate realistic load
 Only ran on iPhone

 Built headless version for OS X
 Not enough resources available to

stress even one game manager

Load Testing: Game
Managers Take 2
 Measured server load per single

game instance
 Created tool to generate matching

cpu load
 Continued spawning until OS

scheduler fell apart
 Reasonable results but not great

 Learned more when we went live

Live Tuning

iPhone

Matchmaking

Servers

Game Servers

Geographically Distributed

Lobby

Li
ve

 T
un

in
g

Topic 5 of 7

Live Tuning: Overview

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength
  Items for sale and price in store
 Regulating stat frequency

Live Tuning: Plists

 Configuration stored in plist
 Client downloads latest version to

drive UI, modify gameplay
 Servers consume latest version to

configure behavior, validate purchases

Live Tuning: Problem

  Initial implementation did not scale
 XML plist used to make erlang parsing

easier
 Served as base64 encoded XMPP

message

Live Tuning: Problem

  80KB plist at launch
 Quickly grew past 200KB
 Bandwidth usage spikes when

change published
 400+Mbps during update

0

100

200

300

400

500

Peak

Average

Live Tuning: Fix

  Eliminate 1.1 added more tuning
 plist exceeds 400KB
New version announced via XMPP
Downloaded over gzipped HTTP
 Bandwidth usage now about 120Mbps

0

100

200

300

400

500

Peak

Average

Deployment

iPhone

Matchmaking

Game Servers

Geographically Distributed

Lobby

D
ep

lo
ym

en
t

Topic 6 of 7

Deployment: Overview

  Eliminate uses lots of servers
 4 XMPP
 2 Matchmaking
 8 Game Managers
 2 Management

  Production, Staging and
Development deployments

 How do we deploy and manage?

Deployment: Release
Management
 Servers run Ubuntu 9.04 64 bit
 Components deployed with apt-get

 Versioned releases
 Software dependency tracking
 Robust upgrade path

  24 packages for Eliminate

Deployment: Release
Management
 Control script knows about all

machines in the cluster
Full system upgrades in under 1 minute
  $	
 ./control.py	
 upgrade	

Can upgrade subsystems easily
	
 $	
 ./control.py	
 upgrade	
 –c	
 livefire-­‐matchmaking	

Deployment: Geography

 XMPP, matchmaking and
management servers at ngmoco:)

 Geographically distributed game
managers

sfo
ams ord

iad nrt

Deployment: Scaling

 We run hardware to meet our
expected daily user load
 But concurrent user spikes occur

 Promotions
 New content creates renewed interest

Disable energy timer Content updates 1.1 release

Deployment: Scaling

 XMPP deployment can handle 20k
concurrent users
 Can add new capacity in 60 minutes if

required

 Matchmaking overbuilt so it never
has to scale

 Match 50K requests/second

Deployment: Scaling

 Amazon EC2 is our safety valve for
game managers

 New game managers in 5 minutes
 High-CPU Extra Large (c1.xlarge)

  EC2 Regions:
 US-East
 EU-West

Deployment: Scaling

 Why not use EC2 for everything?
 Compute time is cheap
 Bandwidth is not

EC2

Co-locate

Monitoring

iPhone

Matchmaking

M
on

it
or

in
g

Servers

Game Servers

Geographically Distributed

Lobby

Topic 7 of 7

Monitoring: Tools

 Need to track health of the system
  nagios

 Hardware health checks
 Text messages on component failure

 munin
 Visually graphs trends over time
 Bandwidth
 CPU
 Memory

Monitoring: Custom Tools

 Custom munin plugins
 Players online
 People waiting to get in a game
 Estimated wait time
 Active games

 Great for long term trends
 Not good for immediate feedback

Conclusion

  It took eight months
 Turns out this is hard

 What we learned that you should
know
 Reuse systems when possible
 Do load testing early and often
 Design a system that can scale

We’re Hiring ;)

 Did this sound fun?
 We’re looking for exceptional

engineers

Thank You

Questions?

