


The Best of Both Worlds: 
Using UIKit with OpenGL

Noel Llopis
Snappy Touch

Twitter: @snappytouch



About Me
iPhone development full time for a year and 
a half. Flower Garden on the app store.

Interesting perspective coming from console game development



About Me
iPhone development full time for a year and 
a half. Flower Garden on the app store.

Many years in the games industry before 
that

Interesting perspective coming from console game development



Why mix the two?



Why mix the two?



Why mix the two?



Why mix the two?



Why UIKit?



You get all that great UI already made for you



You also get view controllers, and all the behaviors, transitions, and 
animations



And you also get Interface Builder!
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Familiar interface behavior
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Reasons NOT To Use UIKit

 Objective C
 Not portable (beyond iPhone/iPod 

Touch/iPad/MacOS)
 Not as much control over memory and 

performance.

- Don’t be scare of objective C though. It’s a great language
- Those are some of the reasons more casual games use it
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Hardcore games

OpenGL

Casual games

UIKit

Big opportunity

Usually two categories



You can truly get the best of both worlds
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What We’re Going To See

 0: OpenGL view
 1: Non-fullscreen
 2: UIKit elements
 3: Animations
 4: Multiple OpenGL views
 5: Landscape orientation
 6: Content OpenGL -> UIKit
 7: Content UIKit -> OpenGL



The Basics: Displaying 
OpenGL Graphics
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UIView

The GL gravity sample from the dev site



That’s what does the magic and allows the rendering of OpenGL to be 
displayed in a view.



@interface GLGravityView : UIView
{
	 EAGLContext* context;
  ...
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@interface GLGravityView : UIView
{
	 EAGLContext* context;
  ...
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+ (Class) layerClass
{
	 return [CAEAGLLayer class];
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That’s what does the magic and allows the rendering of OpenGL to be 
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@interface GLGravityView : UIView
{
	 EAGLContext* context;
  ...
}

+ (Class) layerClass
{
	 return [CAEAGLLayer class];
}

glBindRenderbufferOES(GL_RENDERBUFFER_OES,
                      bufferHandle);
[m_eaglContext renderbufferStorage: 
          GL_RENDERBUFFER_OES
               fromDrawable:drawable];

That’s what does the magic and allows the rendering of OpenGL to be 
displayed in a view.



UIView

But the point is that it’s just a view, so you can do most things you can 
do with a regular UIView. And that’s where the fun begins.



Case 1:
Not Fullscreen
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Perfect performance
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320 x 431

Set correct 
projection 
matrix

Set correct 
viewport

Perfect performance



Case 2:
Adding UIKit Elements 

On Top
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Adding Subviews

 Can use addSubview: to add any 
children to OpenGL view.

 There used to be some vague warnings 
in the 2.x SDK docs about not doing 
that for “performance and instability” 
issues.

I never saw any instability 
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The problem is that the UIKit is designed to be mostly static with 
animations in responses to events.
Scene needs to be composed every time
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Performance Issues

 Things were particularly bad when 
driving main loop with NSTimer (don’t 
do it!)

 Using CADisplayLink (3.1 or higher) 
seems to help a lot.

 If you display a very complex set of 
UIViews on top, disable update and 
rendering of OpenGL.

Maybe because it can coordinate better the refresh of the screen with 
UIKit?
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Recommendations

 Avoid really complex hierarchies on top 
of OpenGL

 Avoid large, transparent UIKit objects
 Avoid objects that change very 

frequently (every frame)
 Perfect for buttons, labels, solid views



Case 3:
Animating an OpenGL 

view
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Animations

 Do it like any other view! :-)

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.3];
[UIView setAnimationDelegate:self];
[UIView setAnimationDidStopSelector:@selector
(tabControllerDidDisappear)];
	 oldView.center = pt;
	 [m_plantCareViewController view].center = 
careCenter;	
[UIView commitAnimations];

This one’s easy!
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start animating the game.
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Animations

 Animating a full OpenGL view seems to 
add a significant performance hit.

 If you can, disable update and render 
of OpenGL view until animation is 
complete.

So you can still animate it transitioning to the game, and then you can 
start animating the game.



Case 4: 
Multiple OpenGL Views

This is where it gets interesting
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Why Multiple OpenGL 
Views?
 A lot of the time you can reuse a single 

OpenGL view. Especially if you’re just 
doing full screen.

 But sometimes you need more than 
one: flower and bouquet screens, or 
main game and character 
customization screens.

 Sometimes you may even need to 
show them at the same time 
(transition or in same screen)

You can lay the views out in IB for convenience



Multiple OpenGL Views



Multiple OpenGL Views

 Multiple ways:



Multiple OpenGL Views

 Multiple ways:
 One OpenGL context per view 

(prevents sharing of resources)



Multiple OpenGL Views

 Multiple ways:
 One OpenGL context per view 

(prevents sharing of resources)
 One render target per view (that’s 

what I did)
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Multiple Render Targets

 Multiple render targets is extremely 
useful to render images offscreen 

 Associate each OpenGL view with a 
new render target using that view as 
storage.

glBindFramebufferOES(GL_FRAMEBUFFER_OES, 
buffer.m_frameBufferHandle);	
glBindRenderbufferOES(GL_RENDERBUFFER_OES, 
buffer.m_colorBufferHandle);
SetViewport(Rect(0, buffer.m_height, 0, 
buffer.m_width));	

For many uses: env maps, screenshots, advanced processing, etc
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each view



Multiple Render Targets

 Switch to each target as you render 
each view

 Or on viewWillAppear: if you’re only 
switching between them.



Case 5:
Landscape Orientation

This one can be a bit tricky
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Landscape

 You could treat the OpenGL view like 
any other and rotate it...

UIWindow

UIView

UIViewOpenGL 
view

Most games are in landscape!
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Landscape

 But Apple recommends against it (for 
performance reasons).

 Instead, create the OpenGL view in 
landscape mode and set rotate your 
projection matrix. 

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glRotatef(-90, 0, 0, 1);
glOrthof(0, 480, 0, 320, 0, 1);
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Landscape and Hierarchy
 Since you’ll use other views, you’ll 

want to leave those rotated as usual.
 And put OpenGL view at the root.

UIWindow

UIView

UIView

O
penG

L 
view
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OpenGL -> UIKit

 Whenever you want to use something 
you rendered in OpenGL

 For example, to save a screenshot to 
disk.

 Or to update an image element on a 
button or UIView
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 The easy part is getting the pixels 
back: glReadPixels

	 glReadPixels(0,0,RenderTargetWidth, 
RenderTargetHeight, GL_RGBA, 
GL_UNSIGNED_BYTE, imageBuffer);



OpenGL -> UIKit

The gist of it is: use correct color space and flip the image
Source code on my web site
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OpenGL -> UIKit

 The hard part is stuffing that into a 
UIImage!

	 const float RowSize = RenderTargetWidth*4;

	 CGDataProviderRef ref = CGDataProviderCreateWithData(NULL, imageBuffer, RenderTargetSize, NULL);
	 CGImageRef iref = CGImageCreate(RenderTargetWidth, RenderTargetHeight, 8, 32, RowSize, 
	 	 	 	 	 	 	 	 CGColorSpaceCreateDeviceRGB(), 
	 	 	 	 	 	 	 	 kCGImageAlphaLast | kCGBitmapByteOrderDefault, ref, 
	 	 	 	 	 	 	 	 NULL, true, kCGRenderingIntentDefault);

	 uint8_t* contextBuffer = (uint8_t*)m_resources->m_scratch.Allocate(RenderTargetSize);
	 memset(contextBuffer, 0, RenderTargetSize);
	 CGContextRef context = CGBitmapContextCreate(contextBuffer, RenderTargetWidth, RenderTargetHeight, 8, RowSize, 
	 	 	 	 	 	 	 	 	 CGImageGetColorSpace(iref), 
	 	 	 	 	 	 	 	 	 kCGImageAlphaPremultipliedFirst | kCGBitmapByteOrder32Big);
	 CGContextTranslateCTM(context, 0.0, RenderTargetHeight);
	 CGContextScaleCTM(context, 1.0, -1.0);
	 CGContextDrawImage(context, CGRectMake(0.0, 0.0, RenderTargetWidth, RenderTargetHeight), iref);	
	 CGImageRef outputRef = CGBitmapContextCreateImage(context);

	 UIImage* image = [[UIImage alloc] initWithCGImage:outputRef];

	 CGImageRelease(outputRef);
	 CGContextRelease(context);
	 CGImageRelease(iref);
	 CGDataProviderRelease(ref);

The gist of it is: use correct color space and flip the image
Source code on my web site



OpenGL ->UIKit



OpenGL ->UIKit

 glReadPixels is slow 



OpenGL ->UIKit

 glReadPixels is slow 
 You need to create 2 temp buffers with 

the image data (in addition to the final 
UIImage). That adds up to quite a bit.



OpenGL ->UIKit

 glReadPixels is slow 
 You need to create 2 temp buffers with 

the image data (in addition to the final 
UIImage). That adds up to quite a bit.

 You can use this to take higher-than-
normal resolution screenshots.
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UIKit -> OpenGL

 Need to do that whenever you want to 
create a texture with the contents you 
created in UIKit.

 Font rendering
 Fancy Quartz2D bitmap creation/

composition
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UIKit -> OpenGL

 Once you have a UIImage, do inverse 
conversion and set texture data.

 You can write to non 32-bit textures 
too.

You may be loading textures this way already (Apple samples do that)



UIKit -> OpenGL

void TextureUtils::PrintToTexture(Texture& texture, const Rect& destRect, NSString* txt, UIFont* font, SequentialAllocator& 
scratch)
{
	 int width, height;
	 texture.GetDimensions(width, height);

	 CGColorSpaceRef	 colorSpace = CGColorSpaceCreateDeviceGray();
	 int sizeInBytes = height*width;
	 void* data = scratch.Allocate(sizeInBytes);
	 memset(data, 0, sizeInBytes);
	 CGContextRef context = CGBitmapContextCreate(data, width, height, 8, width, colorSpace, kCGImageAlphaNone);
	 CGColorSpaceRelease(colorSpace);
	 CGContextSetGrayFillColor(context, 1.0f, 1.0f);
	 CGContextTranslateCTM(context, 0.0, height);
	 CGContextScaleCTM(context, 1.0, -1.0);
	 UIGraphicsPushContext(context);

	 	 [txt drawInRect:CGRectMake(destRect.left, destRect.bottom, destRect.Width(), destRect.Height()) 
	 	 	 	 	 withFont:font lineBreakMode:UILineBreakModeWordWrap alignment:UITextAlignmentLeft];

	 UIGraphicsPopContext();

	 texture.SetData(data, sizeInBytes);
	
	 CGContextRelease(context);
	 scratch.Reset();
}

Code to print text directly on a texture



Putting It All Together
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Conclusions

 Very powerful to mix the two.
 Saves lots of time and you get access 

to great tools.
 Learn and appreciate Interface Builder 

(I turned it into a level editor for my 
latest project!)



Questions?

Slides and sample code on my web 
site

Noel Llopis
Blog: http://gamesfromwithin.com
Email: noel@snappytouch.com
Twitter: @snappytouch

http://gamesfromwithin.com
http://gamesfromwithin.com

