


The Best of Both Worlds: 
Using UIKit with OpenGL

Noel Llopis
Snappy Touch

Twitter: @snappytouch



About Me
iPhone development full time for a year and 
a half. Flower Garden on the app store.

Interesting perspective coming from console game development



About Me
iPhone development full time for a year and 
a half. Flower Garden on the app store.

Many years in the games industry before 
that

Interesting perspective coming from console game development



Why mix the two?



Why mix the two?



Why mix the two?



Why mix the two?



Why UIKit?



You get all that great UI already made for you



You also get view controllers, and all the behaviors, transitions, and 
animations



And you also get Interface Builder!



Advantages of UIKit



Advantages of UIKit

Lots of saved time!



Advantages of UIKit

Lots of saved time!
Familiar interface behavior



Reasons NOT To Use UIKit

- Don’t be scare of objective C though. It’s a great language
- Those are some of the reasons more casual games use it



Reasons NOT To Use UIKit

 Objective C

- Don’t be scare of objective C though. It’s a great language
- Those are some of the reasons more casual games use it



Reasons NOT To Use UIKit

 Objective C
 Not portable (beyond iPhone/iPod 

Touch/iPad/MacOS)

- Don’t be scare of objective C though. It’s a great language
- Those are some of the reasons more casual games use it



Reasons NOT To Use UIKit

 Objective C
 Not portable (beyond iPhone/iPod 

Touch/iPad/MacOS)
 Not as much control over memory and 

performance.

- Don’t be scare of objective C though. It’s a great language
- Those are some of the reasons more casual games use it



Are games using both today?



Usually two categories



Hardcore games

OpenGL

Usually two categories



Hardcore games

OpenGL

Casual games

UIKit

Usually two categories



Hardcore games

OpenGL

Casual games

UIKit

Usually two categories



Hardcore games

OpenGL

Casual games

UIKit

Big opportunity

Usually two categories



You can truly get the best of both worlds



What We’re Going To See



What We’re Going To See

 0: OpenGL view



What We’re Going To See

 0: OpenGL view
 1: Non-fullscreen



What We’re Going To See

 0: OpenGL view
 1: Non-fullscreen
 2: UIKit elements



What We’re Going To See

 0: OpenGL view
 1: Non-fullscreen
 2: UIKit elements
 3: Animations



What We’re Going To See

 0: OpenGL view
 1: Non-fullscreen
 2: UIKit elements
 3: Animations
 4: Multiple OpenGL views



What We’re Going To See

 0: OpenGL view
 1: Non-fullscreen
 2: UIKit elements
 3: Animations
 4: Multiple OpenGL views
 5: Landscape orientation



What We’re Going To See

 0: OpenGL view
 1: Non-fullscreen
 2: UIKit elements
 3: Animations
 4: Multiple OpenGL views
 5: Landscape orientation
 6: Content OpenGL -> UIKit



What We’re Going To See

 0: OpenGL view
 1: Non-fullscreen
 2: UIKit elements
 3: Animations
 4: Multiple OpenGL views
 5: Landscape orientation
 6: Content OpenGL -> UIKit
 7: Content UIKit -> OpenGL



The Basics: Displaying 
OpenGL Graphics



The GL gravity sample from the dev site



UIView

The GL gravity sample from the dev site



That’s what does the magic and allows the rendering of OpenGL to be 
displayed in a view.



@interface GLGravityView : UIView
{
	 EAGLContext* context;
  ...
}

That’s what does the magic and allows the rendering of OpenGL to be 
displayed in a view.



@interface GLGravityView : UIView
{
	 EAGLContext* context;
  ...
}

+ (Class) layerClass
{
	 return [CAEAGLLayer class];
}

That’s what does the magic and allows the rendering of OpenGL to be 
displayed in a view.



@interface GLGravityView : UIView
{
	 EAGLContext* context;
  ...
}

+ (Class) layerClass
{
	 return [CAEAGLLayer class];
}

glBindRenderbufferOES(GL_RENDERBUFFER_OES,
                      bufferHandle);
[m_eaglContext renderbufferStorage: 
          GL_RENDERBUFFER_OES
               fromDrawable:drawable];

That’s what does the magic and allows the rendering of OpenGL to be 
displayed in a view.



UIView

But the point is that it’s just a view, so you can do most things you can 
do with a regular UIView. And that’s where the fun begins.



Case 1:
Not Fullscreen



As gamers we’re used to games taking up the whole screen
And that’s what most games do on the iPhone as well
But it doesn’t have to be that way



As gamers we’re used to games taking up the whole screen
And that’s what most games do on the iPhone as well
But it doesn’t have to be that way





OpenGL



OpenGL

UITabBar





Perfect performance



320 x 431

Perfect performance



320 x 431

Set correct 
projection 
matrix

Perfect performance



320 x 431

Set correct 
projection 
matrix

Set correct 
viewport

Perfect performance



Case 2:
Adding UIKit Elements 

On Top



Adding Subviews

I never saw any instability 



Adding Subviews

 Can use addSubview: to add any 
children to OpenGL view.

I never saw any instability 



Adding Subviews

 Can use addSubview: to add any 
children to OpenGL view.

 There used to be some vague warnings 
in the 2.x SDK docs about not doing 
that for “performance and instability” 
issues.

I never saw any instability 



addSubview anywhere
The problem is that the UIKit is designed to be mostly static with 
animations in responses to events.
Scene needs to be composed every time



addSubview anywhere
The problem is that the UIKit is designed to be mostly static with 
animations in responses to events.
Scene needs to be composed every time



Hello

addSubview anywhere
The problem is that the UIKit is designed to be mostly static with 
animations in responses to events.
Scene needs to be composed every time



Performance Issues

Maybe because it can coordinate better the refresh of the screen with 
UIKit?



Performance Issues

 Things were particularly bad when 
driving main loop with NSTimer (don’t 
do it!)

Maybe because it can coordinate better the refresh of the screen with 
UIKit?



Performance Issues

 Things were particularly bad when 
driving main loop with NSTimer (don’t 
do it!)

 Using CADisplayLink (3.1 or higher) 
seems to help a lot.

Maybe because it can coordinate better the refresh of the screen with 
UIKit?



Performance Issues

 Things were particularly bad when 
driving main loop with NSTimer (don’t 
do it!)

 Using CADisplayLink (3.1 or higher) 
seems to help a lot.

 If you display a very complex set of 
UIViews on top, disable update and 
rendering of OpenGL.

Maybe because it can coordinate better the refresh of the screen with 
UIKit?



Recommendations



Recommendations

 Avoid really complex hierarchies on top 
of OpenGL



Recommendations

 Avoid really complex hierarchies on top 
of OpenGL

 Avoid large, transparent UIKit objects



Recommendations

 Avoid really complex hierarchies on top 
of OpenGL

 Avoid large, transparent UIKit objects
 Avoid objects that change very 

frequently (every frame)



Recommendations

 Avoid really complex hierarchies on top 
of OpenGL

 Avoid large, transparent UIKit objects
 Avoid objects that change very 

frequently (every frame)
 Perfect for buttons, labels, solid views



Case 3:
Animating an OpenGL 

view



Animations

This one’s easy!



Animations

 Do it like any other view! :-)

This one’s easy!



Animations

 Do it like any other view! :-)

This one’s easy!



Animations

 Do it like any other view! :-)

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.3];
[UIView setAnimationDelegate:self];
[UIView setAnimationDidStopSelector:@selector
(tabControllerDidDisappear)];
	 oldView.center = pt;
	 [m_plantCareViewController view].center = 
careCenter;	
[UIView commitAnimations];

This one’s easy!



Animations

So you can still animate it transitioning to the game, and then you can 
start animating the game.



Animations

 Animating a full OpenGL view seems to 
add a significant performance hit.

So you can still animate it transitioning to the game, and then you can 
start animating the game.



Animations

 Animating a full OpenGL view seems to 
add a significant performance hit.

 If you can, disable update and render 
of OpenGL view until animation is 
complete.

So you can still animate it transitioning to the game, and then you can 
start animating the game.



Case 4: 
Multiple OpenGL Views

This is where it gets interesting



Why Multiple OpenGL 
Views?

You can lay the views out in IB for convenience



Why Multiple OpenGL 
Views?
 A lot of the time you can reuse a single 

OpenGL view. Especially if you’re just 
doing full screen.

You can lay the views out in IB for convenience



Why Multiple OpenGL 
Views?
 A lot of the time you can reuse a single 

OpenGL view. Especially if you’re just 
doing full screen.

 But sometimes you need more than 
one: flower and bouquet screens, or 
main game and character 
customization screens.

You can lay the views out in IB for convenience



Why Multiple OpenGL 
Views?
 A lot of the time you can reuse a single 

OpenGL view. Especially if you’re just 
doing full screen.

 But sometimes you need more than 
one: flower and bouquet screens, or 
main game and character 
customization screens.

 Sometimes you may even need to 
show them at the same time 
(transition or in same screen)

You can lay the views out in IB for convenience



Multiple OpenGL Views



Multiple OpenGL Views

 Multiple ways:



Multiple OpenGL Views

 Multiple ways:
 One OpenGL context per view 

(prevents sharing of resources)



Multiple OpenGL Views

 Multiple ways:
 One OpenGL context per view 

(prevents sharing of resources)
 One render target per view (that’s 

what I did)



Multiple Render Targets

For many uses: env maps, screenshots, advanced processing, etc



Multiple Render Targets

 Multiple render targets is extremely 
useful to render images offscreen 

For many uses: env maps, screenshots, advanced processing, etc



Multiple Render Targets

 Multiple render targets is extremely 
useful to render images offscreen 

 Associate each OpenGL view with a 
new render target using that view as 
storage.

For many uses: env maps, screenshots, advanced processing, etc



Multiple Render Targets

 Multiple render targets is extremely 
useful to render images offscreen 

 Associate each OpenGL view with a 
new render target using that view as 
storage.

glBindFramebufferOES(GL_FRAMEBUFFER_OES, 
buffer.m_frameBufferHandle);	
glBindRenderbufferOES(GL_RENDERBUFFER_OES, 
buffer.m_colorBufferHandle);
SetViewport(Rect(0, buffer.m_height, 0, 
buffer.m_width));	

For many uses: env maps, screenshots, advanced processing, etc



Multiple Render Targets



Multiple Render Targets

 Switch to each target as you render 
each view



Multiple Render Targets

 Switch to each target as you render 
each view

 Or on viewWillAppear: if you’re only 
switching between them.



Case 5:
Landscape Orientation

This one can be a bit tricky



Landscape

Most games are in landscape!



Landscape

 You could treat the OpenGL view like 
any other and rotate it...

Most games are in landscape!



Landscape

 You could treat the OpenGL view like 
any other and rotate it...

UIWindow

UIView

UIViewOpenGL 
view

Most games are in landscape!



Landscape



Landscape

 But Apple recommends against it (for 
performance reasons).



Landscape

 But Apple recommends against it (for 
performance reasons).

 Instead, create the OpenGL view in 
landscape mode and set rotate your 
projection matrix. 



Landscape

 But Apple recommends against it (for 
performance reasons).

 Instead, create the OpenGL view in 
landscape mode and set rotate your 
projection matrix. 

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glRotatef(-90, 0, 0, 1);
glOrthof(0, 480, 0, 320, 0, 1);



Landscape and Hierarchy



Landscape and Hierarchy
 Since you’ll use other views, you’ll 

want to leave those rotated as usual.



Landscape and Hierarchy
 Since you’ll use other views, you’ll 

want to leave those rotated as usual.
 And put OpenGL view at the root.



Landscape and Hierarchy
 Since you’ll use other views, you’ll 

want to leave those rotated as usual.
 And put OpenGL view at the root.

UIWindow

UIView

UIView

O
penG

L 
view



Case 6:
Rendering From OpenGL 

To UIKit



OpenGL -> UIKit



OpenGL -> UIKit

 Whenever you want to use something 
you rendered in OpenGL



OpenGL -> UIKit

 Whenever you want to use something 
you rendered in OpenGL

 For example, to save a screenshot to 
disk.



OpenGL -> UIKit

 Whenever you want to use something 
you rendered in OpenGL

 For example, to save a screenshot to 
disk.

 Or to update an image element on a 
button or UIView



OpenGL -> UIKit

Flower Garden does it in two places



OpenGL -> UIKit

Flower Garden does it in two places



OpenGL -> UIKit

Flower Garden does it in two places



OpenGL -> UIKit



OpenGL -> UIKit

 The easy part is getting the pixels 
back: glReadPixels



OpenGL -> UIKit

 The easy part is getting the pixels 
back: glReadPixels

	 glReadPixels(0,0,RenderTargetWidth, 
RenderTargetHeight, GL_RGBA, 
GL_UNSIGNED_BYTE, imageBuffer);



OpenGL -> UIKit

The gist of it is: use correct color space and flip the image
Source code on my web site



OpenGL -> UIKit

 The hard part is stuffing that into a 
UIImage!

The gist of it is: use correct color space and flip the image
Source code on my web site



OpenGL -> UIKit

 The hard part is stuffing that into a 
UIImage!

	 const float RowSize = RenderTargetWidth*4;

	 CGDataProviderRef ref = CGDataProviderCreateWithData(NULL, imageBuffer, RenderTargetSize, NULL);
	 CGImageRef iref = CGImageCreate(RenderTargetWidth, RenderTargetHeight, 8, 32, RowSize, 
	 	 	 	 	 	 	 	 CGColorSpaceCreateDeviceRGB(), 
	 	 	 	 	 	 	 	 kCGImageAlphaLast | kCGBitmapByteOrderDefault, ref, 
	 	 	 	 	 	 	 	 NULL, true, kCGRenderingIntentDefault);

	 uint8_t* contextBuffer = (uint8_t*)m_resources->m_scratch.Allocate(RenderTargetSize);
	 memset(contextBuffer, 0, RenderTargetSize);
	 CGContextRef context = CGBitmapContextCreate(contextBuffer, RenderTargetWidth, RenderTargetHeight, 8, RowSize, 
	 	 	 	 	 	 	 	 	 CGImageGetColorSpace(iref), 
	 	 	 	 	 	 	 	 	 kCGImageAlphaPremultipliedFirst | kCGBitmapByteOrder32Big);
	 CGContextTranslateCTM(context, 0.0, RenderTargetHeight);
	 CGContextScaleCTM(context, 1.0, -1.0);
	 CGContextDrawImage(context, CGRectMake(0.0, 0.0, RenderTargetWidth, RenderTargetHeight), iref);	
	 CGImageRef outputRef = CGBitmapContextCreateImage(context);

	 UIImage* image = [[UIImage alloc] initWithCGImage:outputRef];

	 CGImageRelease(outputRef);
	 CGContextRelease(context);
	 CGImageRelease(iref);
	 CGDataProviderRelease(ref);

The gist of it is: use correct color space and flip the image
Source code on my web site



OpenGL ->UIKit



OpenGL ->UIKit

 glReadPixels is slow 



OpenGL ->UIKit

 glReadPixels is slow 
 You need to create 2 temp buffers with 

the image data (in addition to the final 
UIImage). That adds up to quite a bit.



OpenGL ->UIKit

 glReadPixels is slow 
 You need to create 2 temp buffers with 

the image data (in addition to the final 
UIImage). That adds up to quite a bit.

 You can use this to take higher-than-
normal resolution screenshots.



Case 7:
Rendering From UIKit to 

OpenGL



UIKit -> OpenGL



UIKit -> OpenGL

 Need to do that whenever you want to 
create a texture with the contents you 
created in UIKit.



UIKit -> OpenGL

 Need to do that whenever you want to 
create a texture with the contents you 
created in UIKit.

 Font rendering



UIKit -> OpenGL

 Need to do that whenever you want to 
create a texture with the contents you 
created in UIKit.

 Font rendering
 Fancy Quartz2D bitmap creation/

composition



UIKit -> OpenGL

You may be loading textures this way already (Apple samples do that)



UIKit -> OpenGL

 Once you have a UIImage, do inverse 
conversion and set texture data.

You may be loading textures this way already (Apple samples do that)



UIKit -> OpenGL

 Once you have a UIImage, do inverse 
conversion and set texture data.

 You can write to non 32-bit textures 
too.

You may be loading textures this way already (Apple samples do that)



UIKit -> OpenGL

void TextureUtils::PrintToTexture(Texture& texture, const Rect& destRect, NSString* txt, UIFont* font, SequentialAllocator& 
scratch)
{
	 int width, height;
	 texture.GetDimensions(width, height);

	 CGColorSpaceRef	 colorSpace = CGColorSpaceCreateDeviceGray();
	 int sizeInBytes = height*width;
	 void* data = scratch.Allocate(sizeInBytes);
	 memset(data, 0, sizeInBytes);
	 CGContextRef context = CGBitmapContextCreate(data, width, height, 8, width, colorSpace, kCGImageAlphaNone);
	 CGColorSpaceRelease(colorSpace);
	 CGContextSetGrayFillColor(context, 1.0f, 1.0f);
	 CGContextTranslateCTM(context, 0.0, height);
	 CGContextScaleCTM(context, 1.0, -1.0);
	 UIGraphicsPushContext(context);

	 	 [txt drawInRect:CGRectMake(destRect.left, destRect.bottom, destRect.Width(), destRect.Height()) 
	 	 	 	 	 withFont:font lineBreakMode:UILineBreakModeWordWrap alignment:UITextAlignmentLeft];

	 UIGraphicsPopContext();

	 texture.SetData(data, sizeInBytes);
	
	 CGContextRelease(context);
	 scratch.Reset();
}

Code to print text directly on a texture



Putting It All Together



- OpenGL view non full screen - Multiple OpenGL views (other screens)
- UIKit elements on top - OpenGL -> UIKit (send bouquet)
- UIKit -> OpenGL text from text field to texture



- OpenGL view non full screen - Multiple OpenGL views (other screens)
- UIKit elements on top - OpenGL -> UIKit (send bouquet)
- UIKit -> OpenGL text from text field to texture



Conclusions



Conclusions



Conclusions

 Very powerful to mix the two.



Conclusions

 Very powerful to mix the two.
 Saves lots of time and you get access 

to great tools.



Conclusions

 Very powerful to mix the two.
 Saves lots of time and you get access 

to great tools.
 Learn and appreciate Interface Builder 

(I turned it into a level editor for my 
latest project!)



Questions?

Slides and sample code on my web 
site

Noel Llopis
Blog: http://gamesfromwithin.com
Email: noel@snappytouch.com
Twitter: @snappytouch

http://gamesfromwithin.com
http://gamesfromwithin.com

