<C
(&
o
O
M
o
C
(18}
L
=
o
Va)
=
@
+—
c
(5}
o
()}
=
(@}
o
0V
(@)
=
(=]
|
(=)
N
~
m
o
()}
£
L
e
1}
=
w
U
c
(¢0)
—
@
L
c
(@)
o
[V3)
—
()
o
o
(8]
>
()
o
(<F)
=
(g0}
(&)

\‘\ '\\\E —
etwork. Inspire.
\\ . Ny N
N VN = AN ' \\

- Www.G C‘onf;com

‘\\ ‘ W)
5 A B * o .
< ') \\ \ \ : L ‘\\‘

Game Developers
Conference”

March 9-13, 2010

Moscone Center

Technology

M 2@ Gareth Thomas, Codemasters
| __;\\\ Jon Story, AMD

Game Developers
Conference”
March 8-13, 2010

Agenda

= Porting to DirectX 11

= Tessellation Features

= DirectCompute HDAO

= Shadows using GatherCmp()

= Free Threaded Resource Loading
= Summary

Game Developers
Conference”

March 9-13, 2010

Moscone Center

San Francisco, CA

www.GDConf.com

DirectX Comparison Video

DiRT2_DirectX_Comparison.wmv

Game Developers
Conference”
March 9-13, 2010

www.GDConf .com

Porting to DirectX 11

d
M 8 © Render API already abstracted for

@ 9o multiple platforms:
= @ ﬁ& PC, Xbo>.<360, PS3, Wi
"> . Platform independent APIs for:
“ N\ N Buffers, Shaders, Textures,

» Render States, Drawing

W\ ‘ = Rendering layer automatically
AR handled:

Vertex Decls, Shader Constants,
Multisampled Render Targets

Getting Started

= Dynamically loaded DX11 DLL, so
we could live with a single EXE

Windows XP, Vista & Win7

= On start up we attempt creation of
a DX11 device

= If that fails then we fall back to a
DX9 device

= We actually kept our original DX9
device enumeration code - this
worked out fine

Game Developers
Conference”
March 9-13, 2010

www.GDConf .com

The Dumb Port ©

g 5 @ = Wanted to get 2D and static 3D
& objects on screen

= In place creation and destruction
of state objects

Very slow ® - but got quick visual
results

= Large constant buffer updates all
over the place

Again very slow ® — but got things
working

Game Developers
Conference”
March 9-13, 2010

www.GDConf .com

The State Manager

®
‘“a .8 @ Created a State Manager class
NS Hash map of state objects

5 @ ﬁ@ = Check all state objects for
-» existence with the manager

AN S Create and store as necessary
., = Only a handful of different state
objects ever created
DX11 divides state objects logically

Q = Only load time state object
creation, ~10% performance gain

Game Developers
Conference”
11111111111111

Moscone Center

as D3D11_USAGE_IMMUTABLE

= Initially this was missed

Caused a massive GPU frontend
bottleneck

Gave rise to ~30% gain in baseline
performance

March 9-13, 2010

Tackling the Constant
Buffer Problem

P
24 @ @ Unreferenced constants &
samplers are not optimized away

N Different to DX9
= Shader source was organised such

that multiple shader programs
e\ ' lived in one source file

. @ Therefore each shader would come
-+ with an enormous globals buffer
\ = This gave rise to _many_ large
constant buffer updates

Very slow indeed

Game Developers
Conference”
March 9-13, 2010

Constant Buffers -
Solution (1)

4 @ @ Sort constants by frequency of
update:
Per frame constants
= Lighting, Fog, HDR Multipliers, etc.

Render target constants
= Width, Height, etc.

Camera constants
= View, Projection, Eye, etc.
= This improved the situation

But still lots of constants getting
dragged into global buffer

Constant Buffers -
Solution (2)

3 3 ;!.% = Wrap shader source & constant
@R declarations with defines:

| \ VERTEX_SHADER, PIXEL_SHADER,

DOMAIN_SHADER, HULL_SHADER

= Pass appropriate define in when
compiling shaders off-line

= ~25% performance gain

= Solution is still not perfect — work
in progress on this problem...

ancisco, CA
wwwwwwwwwwwwww

Tessellated Animated
Crowd - The Problem (1)

= Crowd meshes skinned on CPU

= Used instancing to render ~100k
crowd models

= Difficult to up the fidelity of these
meshes without incurring a large
cost:

CPU skinning cost
Memory footprint & bandwidth

= We've wanted to improve quality
here for some time...

(a9
garimm®
> -4
a -

Tessellated Animated
Crowd - The Problem (2)

d
“ao® @ Current high LOD mesh uses
@ ‘_ék\\ around 800 triangles

L0 '& = Silhoutte is pretty angular

= Normal maps used to gain better
lighting

Toggle full screen
Toggle REF (F3)
Change device (F2)

Nesh:
nussE— Vv
. Virefrane

F:! Textured
. Tessellation

F'] Adaptive
~
Tess Factor : §

&1
|

5:3 Displacement
Disp Scale : 0.086

il
|

f:] Normal Map

Toggle full screen
Toggle REF (F3)
Change device (F2)

Nesh:
- User v
b 1 Virefrane
b 1 Textured
l <. . Tessellation
L i:] Adaptive
Tess Factor : §

o
|

. Displacenent

/ Disp Scale : 0.086
; L

R |
%ﬁ ':] Noraal Map

Game Developers
Conference”
March 9-13, 2010

Tessellated Animated
Crowd - The Solution (1)

. ‘a4 ® @ Used PN-Triangles technique to
@ 94 smooth out base mesh using the

existing data set

2 Curved PN-Triangles by Alex Vlachos, Jorg Peters,
i Chas Boyd, and Jason L. Mitchell

S \ i August 09 DirectX SDK Sample: PNTriangles11
“ % = No new artwork required!

x = CPU skinning, memory footprint &
bandwidth unchanged

= Silhouettes much improved at
tessellation factor 5

Toggle full screen
Toggle REF (F3)
Change device (F2)

Nesh:
- User v
b 1 Virefrane
b 1 Textured
l <. . Tessellation
L i:] Adaptive
Tess Factor : §

o
|

. Displacenent

/ Disp Scale : 0.086
; L

R |
%ﬁ ':] Noraal Map

Toggle full screen
Toggle REF (F3)
Change device (F2)

Nesh:
—fEe— Y
F:; Virefrane

b 1 Textured

E:! Tessellation
F:] Adaptive

Tess Factor : §

&
|

. Displacenent
Disp Scale : 0.086
A7

|
F:! Norsal Map

Toggle full screen
Toggle REF (F3)
Change device (F2)

. Virefrane

m Textured
m Tessellation

F'! Adaptive
~
Tess Factor : §

&1
|

. Displaceaent
Disp Scale : 0.086

i)
|

m Normal Map

Game Developers
Conference”
March 9-13, 2010

Tessellated Animated
Crowd - The Solution (2)

3 MR ;!.% = Used the normal maps as
@ 9. displacement maps

s Lio) ﬁ& = Some artwork involved to ensure

- A no cracks in the displaced meshes
Wrapped texture coords cause this

« Able to bring out nice details in
hair and clothing

= Good use of the extra triangles
generated

Toggle full screen
Toggle REF (F3)
Change device (F2)

Nesh:
—fEe— Y
F:; Virefrane

b 1 Textured

E:! Tessellation
F:] Adaptive

Tess Factor : §

&
|

. Displacenent
Disp Scale : 0.086
A7

|
F:! Norsal Map

@,

Toggle full screen
Toggle REF (F3)
Change device (F2)

Nesh:
nuseE— v
F:; Virefrane

F:! Textured
;:3 Tessellation

F:] Adaptive
Tess Factor : §

&
|

E:! Displacenent

Disp Scale : 0.086

i)
|

F:! Norsal Map

Toggle full screen
Toggle REF (F3)
Change device (F2)

. Virefrane

f:] Textured
f:] Tessellation

F'! Adaptive
~
Tess Factor : §

&1
|

E:! Displaceaent
Disp Scale : 0.086

i)
|

f:! Normal Map

/

—

‘Tﬂﬁgla fﬁl{_anrnan

Toggle Ifixiii

Change device (F2)

Hesh:
seEn v
F:] Vireframe

F:] Textured

. Tessellation
F:] ddaptive

Tess Factor : §

]
|

. Displacenent
Disp Scale : 0.097
F

|
F:] Hormal Map

Nesh:

mser s v
E:! Virefrane

E:] Textured
E:! Tessellation

f:! Adaptive
Tess Factor : §

&
|

. Displacement
Disp Scale : 0.097

AT
|

523 Normal Map

Nesh:

mser o v
E:! Virefrane

f'] Textured

.

5'1 Tessellation
.

F:! Adaptive
Tess Factor : §

A&
|

E:! Displaceaent
Disp Scale : 0.097
i

f:] Normal Map

Nesh:

nuseE— v
I Virefrane

b1 Textured

) Tessellation
b 1 Adaptive

Tess Factor : §

A1
|

. Displaceaent

Disp Scale : 0.097
A

—
|

E:! Normal Map

Change device |

Nesh:
nuseE— v
I Virefrane

b1 Textured

b 4 Tessellation
b 1 Adaptive

Tess Factor : §

A
|

. Displaceaent

Disp Scale : 0.097
A

E:] Normal Map

Change device |

Nesh:
nuseE— v
I Virefrane

b1 Textured

b | Tessellation
b 1 Adaptive

Tess Factor : §

A1
|

E:! Displaceaent

Disp Scale : 0.097
A

—
|

E:! Normal Map

Game Developers
Conference”
March 9-13, 2010

Tessellated Animated
Crowd - The Solution (2)

3 3 j @ @ For adaptive tessellation factors
@ 9 we used two metrics:
” = 1) Patch size in screen space, because
this worked even for camera zooms
2) Distance from camera
= We switched tessellation off for
meshes rendered below the top
LOD

Game Developers
Conference”
March 9-13, 2010

www.GDConf .com

Tessellated Cloth (1)

= CPU based physics simulation
Lots of flags and border cloth material
~35 vertices in base flag mesh

= Also used a scrolling normal map
for high frequency wind ripples

= Used PN-Triangles + Displacement
Mapping

= Smoothed out the low detail mesh
and added ripple details

11111111111111

Tessellated Cloth (2)

Q
3 Toe @ = Adding real geometry also meant
G improved self shadowing

= We employed the same adaptive
tessellation algorithm as used for
the crowd

\
.v
\
ll
' X
) o
\
o W \
b7
e
g
/
'/ =
\\
N
(|
/

'ki !

placement

1S
7

.
/

7

gles +

PN-Trian

ements

b SO

Game Developers
Conference”
March 9-13, 2010

www.GDConf .com

Tessellated Water (1)

®
‘“ao®@ @« Wake simulated on CPU

RN = Normals uploaded to a texture
5\,

ﬂﬁ = Combined with scrolling ripple
AL A texture

= In DX9 we only rendered 2
triangles and used per-pixel
lighting

= Worked quite well - but for many

view positions the illusion was
broken

Game Developers
Conference”
March 9-13, 2010

Tessellated Water (2)

%) @ = In DX11 we used the DS to
SRS displace the water surface

Sampled from the normals texture
Typically a 512 x 512 map

TR \\i = Resulted in @ more physically
> accurate surface

Displacement Mapping: OFF

Displacement Mapping: ON

¢

- T

W -

A S Em @

P KK B> & -

Game Developers
Conference”
March 9-13, 2010

www.GDConf .com

DirectCompute HDAO

t.x 9 !B = HDAO adds dynamic high quality
| AO over and above our pre-baked
solution

= HDAO is very texture heavy

« Refer to this link for an
explanation on how it works:
http://developer.amd.com/gpu_assets/
= We used the CS to accelerate this
technique...

http://developer.amd.com/gpu_assets/

02:4442 1 Mohammed Ben Sulayes

+00:03.20 2 Kent Kaufmaon
+00:03.62 3 WillKing

+00:04.12 4 Jayde Taylor

024442 1 Mohommed Ben Sulaye:

+00:03.20 2 Kent Kaufmom
+00:03.62 3 Will King

+00:04.12 4 Jayde Taylor

Game Developers

Conference®

March 9-13, 2010
Moscone Center

Sanf-ranclsco, CA

Post Processing the PS
Way...

= Ahe EreabsirGaoih s odee
Wrﬁmlmmlthen sampled

San Francisco, CA

Overlapping Tiles (1)

@ = Use the LDS to drastically reduce
the texture sampling cost

= Divide the screen up in to tiles for
thread groups to process

nX Groups

»\\

nY Groups

uuuuuu
)

Game Developers
Conference”

March 9-13, 2010
Moscone Center
San Francisco, CA

www.GDConf.com

Overlapping Tiles (2)

= Kernel size determines level of
overlap nX Groups

) e e e HEEEEEEEN
uTexelbin = 56; HEEEEEEE
uTexelOverlap = 12;

uTexelDimAfterOverlap = uTexelDim - (2 * uTexelOverlap);
// Compute thread groups from screen res

iGroupsX = ceil(fScreenWidth / uTexelDimAfterOverlap);
iGroupsY = ceil(fScreenHeight / uTexelDimAfterOverlap);
// Dispatch thread groups

pd3dImmediateContext->Dispatch(iGroupsX, iGroupsY, 1);

Game Developers
Conference”

March 9-13, 2010

Moscone Center

San Francisco, CA

www.GDConf.com

Overlapping Tiles (3)

Texel sampling area,
written to LDS

ALU PP compute
area,
LDS reads/writes

Game Developers
®

Conference

March 9-13, 2010

Moscone Center

San Francisco, CA

www.GDConf.com

Overlapping Tiles (4)

// Outline code...

// CS result texture
RWTexture2D<float> g ResultTexture : register(ul);

// LDS
groupshared float g LDS[TEXELS Y] [TEXELS X];

[numthreads (THREADS X, THREADS Y, 1)]
void CS PPEffect (uint3 Gid : SV _GroupID, uint3 GTid : SV _GroupThreadID)

{
// Sample texel area based on group thread ID - store in LDS

g LDS[GTid.y] [GTid.x] = fSample;

// Enforce barrier to ensure all threads have written their
// samples to the LDS
GroupMemoryBarrierWithGroupSync () ;

// Perform PP ALU on LDS data and write data out
g ResultTexture[u2ScreenPos.xy] = ComputePPEffect();

Game Developers
Conference®

March 9-13, 2010

Moscone Center

San Francisco, CA

www.GDConf.com

HDAO Performance

HDAO CS vs. PS: 1280x1024x1

Pixel Shader
Compute Shader

Depth + Normals

@ Windows 7 64-bit, AMD Phenom II 3.0 GHz, 2 GB RAM, ATi
HD5870, Catalyst 10.2

Game Developers
Conference”
March 9-13, 2010

Shadows using
GatherCmp()

®
‘4.8 @ DX9 renderer implemented several
AN solutions:
5 L0 ﬁl: Fetch 4 (older AMD HW)
o A A PCF sampling
= Cascaded shadow maps using D16
surfaces

» DX11 lookups performed using
GatherCmp() instruction

Simpler to implement
Only one solution ©

Game Developers
Conference”
aaaaaaaaaaaaaa

0 Center

Free Threaded Resource
Loading (1)

thread
= Resources placed in a queue

= In DX9 mode resources are
created on the main thread

Render Create Render Create

Game Developers
Conference”
aaaaaaaaaaaaaa

oscone Center

Free Threaded Resource
Loading (2)

created on the loading thread
= Simpler and faster implementation

= Noticeably faster loading times,
~50% faster

Render Render Render Render

Loading / Creation

Game Developers
Conference”
March 9-13, 2010

www.GDConf .com

d
‘A
@ {i

N

Summary

= A naive port to DX11 will not be
fast

= Tessellation greatly improves
image quality and saves memory

= DirectCompute can significantly
Improve post processing
performance

= Use free threaded resource loading
to reduce loading times

@ DirectX 11 Rocks!

Game Developers
Conference”’
Ma rch9 -13,2010

Moscone Center
San Francisco, CA

www.GDConf.com

Questions?

jon.story@amd.com
gareth.thomas@codemasters.com

\Learn; e ork Inspire)

* “"‘»\ \

§ \

\\

mailto:Jon.story@amd.com
mailto:gareth.thomas@codemasters.com

