

DiRT2 DirectX 11
Technology

Gareth Thomas, Codemasters

Jon Story, AMD

Agenda

 DirectX Comparison Video

 Porting to DirectX 11

 Tessellation Features

 DirectCompute HDAO

 Shadows using GatherCmp()

 Free Threaded Resource Loading

 Summary

DirectX Comparison Video

DiRT2_DirectX_Comparison.wmv

Porting to DirectX 11

 Render API already abstracted for
multiple platforms:

 PC, Xbox360, PS3, Wii

 Platform independent APIs for:

 Buffers, Shaders, Textures,

 Render States, Drawing

 Rendering layer automatically
handled:

Vertex Decls, Shader Constants,

Multisampled Render Targets

Getting Started

 Dynamically loaded DX11 DLL, so
we could live with a single EXE

 Windows XP, Vista & Win7

 On start up we attempt creation of
a DX11 device

 If that fails then we fall back to a
DX9 device

 We actually kept our original DX9
device enumeration code – this
worked out fine

The Dumb Port 

 Wanted to get 2D and static 3D
objects on screen

 In place creation and destruction
of state objects

 Very slow  – but got quick visual

results

 Large constant buffer updates all
over the place

 Again very slow  – but got things

working

The State Manager

 Created a State Manager class

 Hash map of state objects

 Check all state objects for
existence with the manager

 Create and store as necessary

 Only a handful of different state
objects ever created

 DX11 divides state objects logically

 Only load time state object
creation, ~10% performance gain

Immutable Objects

 Static VBs & IBs must be flagged
as D3D11_USAGE_IMMUTABLE

 Initially this was missed

 Caused a massive GPU frontend
bottleneck

 Gave rise to ~30% gain in baseline
performance

Tackling the Constant
Buffer Problem

 Unreferenced constants &
samplers are not optimized away
 Different to DX9

 Shader source was organised such
that multiple shader programs
lived in one source file

 Therefore each shader would come
with an enormous globals buffer

 This gave rise to _many_ large
constant buffer updates
 Very slow indeed

Constant Buffers –
Solution (1)

 Sort constants by frequency of
update:
 Per frame constants

 Lighting, Fog, HDR Multipliers, etc.

 Render target constants
Width, Height, etc.

 Camera constants
 View, Projection, Eye, etc.

 This improved the situation
 But still lots of constants getting

dragged into global buffer

Constant Buffers –
Solution (2)

 Wrap shader source & constant
declarations with defines:

 VERTEX_SHADER, PIXEL_SHADER,
DOMAIN_SHADER, HULL_SHADER

 Pass appropriate define in when
compiling shaders off-line

 ~25% performance gain

 Solution is still not perfect – work
in progress on this problem...

Tessellated Animated
Crowd – The Problem (1)

 Crowd meshes skinned on CPU

 Used instancing to render ~100k
crowd models

 Difficult to up the fidelity of these
meshes without incurring a large
cost:

 CPU skinning cost

 Memory footprint & bandwidth

 We’ve wanted to improve quality
here for some time...

Tessellated Animated
Crowd – The Problem (2)

 Current high LOD mesh uses
around 800 triangles

 Silhoutte is pretty angular

 Normal maps used to gain better
lighting

Original Mesh

Original Mesh

Tessellated Animated
Crowd – The Solution (1)

 Used PN-Triangles technique to
smooth out base mesh using the
existing data set
 Curved PN-Triangles by Alex Vlachos, Jörg Peters,

Chas Boyd, and Jason L. Mitchell

 August 09 DirectX SDK Sample: PNTriangles11

 No new artwork required!

 CPU skinning, memory footprint &
bandwidth unchanged

 Silhouettes much improved at
tessellation factor 5

Original Mesh

PN-Triangles

PN-Triangles

Tessellated Animated
Crowd – The Solution (2)

 Used the normal maps as
displacement maps

 Some artwork involved to ensure
no cracks in the displaced meshes

 Wrapped texture coords cause this

 Able to bring out nice details in
hair and clothing

 Good use of the extra triangles
generated

PN-Triangles

PN-Triangles + Displacements

PN-Triangles + Displacements

Original Mesh

PN-Triangles

PN-Triangles + Displacements

Original Mesh

PN-Triangles

PN-Triangles + Displacements

Tessellated Animated
Crowd – The Solution (2)

 For adaptive tessellation factors
we used two metrics:

 1) Patch size in screen space, because
this worked even for camera zooms
2) Distance from camera

 We switched tessellation off for
meshes rendered below the top
LOD

Tessellated Cloth (1)

 CPU based physics simulation

 Lots of flags and border cloth material

 ~35 vertices in base flag mesh

 Also used a scrolling normal map
for high frequency wind ripples

 Used PN-Triangles + Displacement
Mapping

 Smoothed out the low detail mesh
and added ripple details

Tessellated Cloth (2)

 Adding real geometry also meant
improved self shadowing

 We employed the same adaptive
tessellation algorithm as used for
the crowd

Original Mesh

Original Mesh

PN-Triangles + Displacements

PN-Triangles + Displacements

Tessellated Water (1)

 Wake simulated on CPU

 Normals uploaded to a texture

 Combined with scrolling ripple
texture

 In DX9 we only rendered 2
triangles and used per-pixel
lighting

 Worked quite well – but for many
view positions the illusion was
broken

Tessellated Water (2)

 In DX11 we used the DS to
displace the water surface

 Sampled from the normals texture

 Typically a 512 x 512 map

 Resulted in a more physically
accurate surface

Displacement Mapped Surface

Displacement Mapping: OFF

Displacement Mapping: ON

DirectCompute HDAO

 HDAO adds dynamic high quality
AO over and above our pre-baked
solution

 HDAO is very texture heavy

 Refer to this link for an
explanation on how it works:
 http://developer.amd.com/gpu_assets/

 We used the CS to accelerate this
technique...

http://developer.amd.com/gpu_assets/

HDAO: OFF

HDAO: ON

Post Processing the PS
Way...

 There can be a great deal of over
sampling

 The area the samples cover is the
kernel size

 A whole bunch of texels around
the central pixel are then sampled

 The pixel shader is executed once
for each screen pixel

Overlapping Tiles (1)

 Use the LDS to drastically reduce
the texture sampling cost

 Divide the screen up in to tiles for
thread groups to process

nX Groups

n
Y

G
r
o
u
p
s

Overlapping Tiles (2)

 Kernel size determines level of
overlap nX Groups

n
Y

G
r
o
u
p
s

// Region stored in LDS

uTexelDim = 56;

uTexelOverlap = 12;

uTexelDimAfterOverlap = uTexelDim – (2 * uTexelOverlap);

// Compute thread groups from screen res

iGroupsX = ceil(fScreenWidth / uTexelDimAfterOverlap);

iGroupsY = ceil(fScreenHeight / uTexelDimAfterOverlap);

// Dispatch thread groups

pd3dImmediateContext->Dispatch(iGroupsX, iGroupsY, 1);

Overlapping Tiles (3)

ALU PP compute
area,

LDS reads/writes

kernel size

Texel sampling area,
written to LDS

Overlapping Tiles (4)

// Outline code...

// CS result texture

RWTexture2D<float> g_ResultTexture : register(u0);

// LDS

groupshared float g_LDS[TEXELS_Y][TEXELS_X];

[numthreads(THREADS_X, THREADS_Y, 1)]

void CS_PPEffect(uint3 Gid : SV_GroupID, uint3 GTid : SV_GroupThreadID)

{

// Sample texel area based on group thread ID – store in LDS

g_LDS[GTid.y][GTid.x] = fSample;

// Enforce barrier to ensure all threads have written their

// samples to the LDS

GroupMemoryBarrierWithGroupSync();

// Perform PP ALU on LDS data and write data out

g_ResultTexture[u2ScreenPos.xy] = ComputePPEffect();

}

HDAO Performance

 Windows 7 64-bit, AMD Phenom II 3.0 GHz, 2 GB RAM, ATi
HD5870, Catalyst 10.2

354

128

466 461

0

50

100

150

200

250

300

350

400

450

500

Depth Depth + Normals

F
P

S
HDAO CS vs. PS: 1280x1024x1

Pixel Shader

Compute Shader

3.6x1.3x

Shadows using
GatherCmp()

 DX9 renderer implemented several
solutions:

 Fetch 4 (older AMD HW)

 PCF sampling

 Cascaded shadow maps using D16
surfaces

 DX11 lookups performed using
GatherCmp() instruction

 Simpler to implement

 Only one solution 

Free Threaded Resource
Loading (1)

 DiRT2 uses a background loading
thread

 Resources placed in a queue

 In DX9 mode resources are
created on the main thread

Render Create Render

Loading

Create

Free Threaded Resource
Loading (2)

 In DX11 mode resources are
created on the loading thread

 Simpler and faster implementation

 Noticeably faster loading times,
~50% faster

Render Render Render

Loading / Creation

Render

Summary

 A naive port to DX11 will not be
fast

 Tessellation greatly improves
image quality and saves memory

 DirectCompute can significantly
improve post processing
performance

 Use free threaded resource loading
to reduce loading times

 DirectX 11 Rocks!

Questions?

jon.story@amd.com

gareth.thomas@codemasters.com

mailto:Jon.story@amd.com
mailto:gareth.thomas@codemasters.com

