
Procedural Audio for Video Games:

Are we there yet ?

Nicolas Fournel – Principal Audio Programmer

Sony Computer Entertainment Europe

Overview

• What is procedural audio ?

• How can we implement it in games ?

• Pre-production

• Design

• Implementation

• Quality Assurance

What is Procedural Audio ?

First, a couple of definitions…

Procedural

refers to the process that computes a particular function

Procedural content generation

generating content by computing functions

Procedural techniques in other domains

Landscape generation

• Fractals (terrain)

• L-systems (plants)

• Perlin noise (clouds)

Procedural techniques in other domains

Texture generation

• Perlin noise

• Voronoi diagrams

Procedural techniques in other domains

City creation (e.g. CityEngine)

Procedural techniques in other domains

• Demo scene: 64 Kb / 4Kb / 1 Kb intros

• .kkrieger: 3D first person shooter in 96K from Farbrausch

Procedural content in games

A few examples:

• Sentinel

• Elite

• DEFCON

• Spore

• Love

Present in some form or another in a lot of games

What does that teach us ?

Procedural content generation is used:

• due to memory constraints or other technology limitations

• when there is too much content to create

• when we need variations of the same asset

• when the asset changes depending on the game context

What does that teach us ?

• Data is created at run-time

• Is based on a set of rules

• Is controllable by the game engine

Defining Procedural Audio

For sound effects:

• Real-time sound synthesis

• With exposed control parameters

• Examples of existing systems:
• Staccato Systems: racing and footsteps

• WWISE SoundSeed (Impact and Wind / Whoosh)

• AudioGaming

Defining Procedural Audio

For dialogue:

• real-time speech synthesis

e.g. Phonetic Arts, SPASM

• voice manipulation systems

e.g. gender change, mood etc…

Defining Procedural Audio

For music:

• Interactive music /
adaptive music

• Algorithmic composition

SSEYO Koan, Direct Music

Early forms of Procedural Audio

The very first games were already using PA !

• Texas Instrument SN76489
3 square oscillators + white noise
(BBC Micro, ColecoVision, Mega drive & Sega Genesis)

• General Instrument AY-3-8910
(Intellivision, Vectrex, MSX, Atari ST, Oric 1)

• MOS SID (Commodore 64)
3 oscillators with 4 waveforms + filter + 3 ADSR + 3 ring
modulators etc…

• Yamaha OPL2 / OPL3 (Sound Blaster) : FM synthesis

Pre-Production

When to use PA ?

Good candidates:

• Repetitive (e.g. footstep, impacts)

• Large memory footprint (e.g. wind, ocean waves)

• Require a lot of control (e.g. car engine, creature vocalizations)

• Highly dependent on the game physics (e.g. rolling ball, sounds driven by
motion controller)

• Just too many of them to be designed (vast universe, user-defined
content...)

Obstacles

• No model is available
• don’t know how to do it !

• not realistic enough !

• not enough time to develop one !

• Cost of model is too high and/or not linear

• Lack of skills / tools
• no synthesis-savvy sound designer / coder

• no adequate tool chain

Obstacles

• Fear factor / Industry inertia
• It will replace me !

• It won’t sound good !

• If it’s not broken, don’t fix it

• Citation effect required

• Legal issues
• synthesis techniques patented

(e.g. waveguides / CCRMA and before that FM synthesis)

Design

Two approaches to Procedural Audio

Bottom-Up:

• examine how the sounds are physically produced

• write a system recreating them

Top-Down

• analyse examples of the sound we want to create

• find the adequate synthesis system to emulate them

Or using fancy words…

• Teleological Modelling

process of modelling something using physics laws

(bottom – up approach)

• Ontogenetic Modelling

process of modelling something based on how it appears /
sounds (top –down approach)

Which one to choose ?

Bottom-up approach requirements:
• Knowledge of synthesis

• Knowledge of sound production mechanisms (physics, mechanics, animal
anatomy etc…)

• Extra support from programmers

Top-down approach usually more suitable for real-time:
• Less CPU resources

• Less specialized knowledge needed

Ultimately depends on your team skills

Which one to choose ?

Importance of using audio analysis / visualisation software

Basic method:

• Select a set of similar samples

• Analyse their defining audio characteristics

• Choose a synthesis model (or combination of models) allowing you to
recreate these sounds

Procedural Model Example : Wind

Good example of bottom-up versus

top-down design

• Computational fluid dynamics to
generate aerodynamic sound

(Dobashi / Yamamoto / Nishita)

• Noise generator and bandpass
filters (Subtractive synthesis)

Wind Demo

Procedural Model Example : Whoosh

• Karman vortices are periodically
generated behind the object
(primary frequency of the
aerodynamic sound)

• Using classic subtractive synthesis
is cheaper

• Ideal candidate for motion controllers

Procedural Model Example :Whoosh

Heavenly Sword:
• about 30 Mb of whooshes on disk

• about 3 Mb in memory at all times

Recorded whooshes

Subtractive synthesis (SoundSeed)

Aerodynamics computations

Procedural Model Example
Water / Bubbles

Physics of a bubble is well-known

• Impulse response = damped sinusoid

• resonance frequency based on radius

• Energy loss based on simple thermodynamic laws

• Statistical distributions used to generate streams / rain

• Impacts on various surfaces can be simulated

Bubbles generated with procedural audio

Bubbles Demo

Procedural Model Example : Solids

Procedural Model Example : Solids

Other solutions for the analysis part:

• LPC analysis

Source – Filter separation

• Spectral Analysis

Track modes, calculate their frequency, amplitude and
damping

Procedural Model Example : Solids

Different excitation signals for:

• Impacts (hitting)

• Friction (scraping / rolling / sliding)

Interface with game physics engine / collision manager

Procedural Model Example : Solids

“Physics” bank for Little Big Planet on PSP:

• 85 waveforms

• 60 relatively “complex” Scream scripts

• Extra layer of control with more patches

(using with SCEA’s Xfade tool)

Impacts generated by procedural audio

Impacts Demo

Procedural Model Example : Creature

• Physical modelling of the

vocal tract (Kelly-Lochbaum

model using waveguides)

• Glottal oscillator

Procedural Model Example : Creature

Synthasaurus: an animal vocalization synthesizer from the 90s.

Procedural Model Example : Creature

Eye Pet vocalizations:

• Over a thousand recordings of animals
• 634 waveforms used
• In 95 sound scripts

Eye Pet waveforms

Synthasaurus

Sound texture synthesis / modelling

A sound texture is usually decomposed into:

• deterministic events
• composed of highly sinusoidal components
• often exhibit a pitch

• transient events
• brief non-sinusoidal sounds
• e.g. footsteps, glass breaking…

• stochastic background
• everything else !
• resynthesis using wavelet-tree learning algorithm

Sound texture synthesis / modelling

Example: Tapestrea from Perry R Cook and co.

Implementation

Implementation Requirements

• Adapted tools
• higher-level tools to develop procedural audio models
• adapted pipeline

• Experienced sound designers
• sound synthesis
• sound production mechanisms

• Experienced programmers
• sound synthesis
• DSP knowledge

Implementation with Scripting

Current scripting solutions:

• randomization of assets

• volume / pan / pitch variations

• streaming for big assets

Remaining issues:

• no timbral modifications

• still uses a lot of resources (memory or disk)

• not really dynamic

A “simple” patch in Sony
Scream Tool:

• 11 concurrent scripts

• each “grain” has its
own set of
parameters

Implementation with Patching

• Tools such as Pure Data / MAX MSP / Reaktor

• Better visualisation of flow and parallel processes

• Better visualisation of where the control parameters arrive in
the model

• Sometimes hard to understand due to the granularity of
operators

A “simple” patch in Reaktor…

Another solution

Vendors of ready-to-use Procedural Audio models:

• easy to use but…
• limited to available models
• limited to what parameters they allow
• limited to the idea the vendor has of the sound

Examples:
• Staccato Systems already in 2000…
• WWISE SoundSeed series
• AudioGaming

Going further…

Need for higher-level tools that let the designer:

• create its own model

• specify its own control parameters

• without having an extensive knowledge of synthesis / sound
production mechanisms

• without having to rely on third party models

Importance of audio features extraction

• To create models by detecting common features in sounds

• To provide automatic event modelling based on sound
analysis

• To put the sound designer back in control

Think asset models, not assets

Implementation: Typical modules

Lots of different ways to organize modules, different levels of
granularity

3 main types of modules:

• Event generation: probability distributions

• Audio synthesis: subtractive, modal, granular, F.M,
waveguides…

• Parameter Control : envelope generators, Perlin noise,
excitation modelling (friction, sliding etc…)

Implementation : Interface

Requires an even greater interaction between sound designer,
game designer and programmer

Control parameters can come from a lot of subsystems:
• Animation
• Physics
• AI
• Gameplay

Requires a uniform interface with all game subsystems

Implementation : Parameters

You can add all the parameters you want

It’s a trap !

• Limit the number of parameters

• Limit their range

• Test the stability of the model early

Implementation : Parameter space

Divide parameter space

to create stable models

Implementation: CPU Usage

The bad news

• Highly dependent on model
• Even dependent on parameters ! (e.g. number of grains, main pitch)
• Non linear models (FOF)

It’s not so bad…

• Typical sample playback uses resources also (resampling, filter…)
• Some algorithms are not more CPU hungry than a simple EQ

Implementation: CPU Usage

Mitigating factors:

• Depends if modular / fixed architecture for a few chosen models
(“interpreted” a la PD, or “compiled”)

• LOD: for different sounds and inside the same sound

• Dependent on update rate (control signal)

• Important to have tools display some metrics about CPU usage in the
tools

• Granularity of modules

Quality Assurance

QA: typical sound bugs

• The sound effect is not playing
• is it loaded ?

• is it triggered ?

• is it a voice management issue? Not enough free voices?

• priority is too low?

• The sound effect is not looping
• wrong looping points

• bad settings (must be flagged as looping ?)

• voice cut off by voice manager

QA: more typical sound bugs

• Wrong volume / panning:
• wrong 3D settings

• errors in 3D positioning code ?

• The sound is stuck in looping mode:
• sfx not stopped

• hardware voice not released

• Garbage data is played
• sample data not correctly loaded / encoded / decoded

• something is writing over our data etc…

• stuttering streaming issue

What kind of bugs are they ?

• Easily detectable

• Mostly quantitative bugs

• Do not require specific audio knowledge

• Any tester can be assigned

• There is a known list of possible causes

QA: PA sound bugs

• Synthesis vs. playback: qualitative aspect (sounds like this or
that)

• P.A. model more complex and controlled by more subsystems
than sample playback
• harder to describe the exact conditions under which a bug occurs

• harder to reproduce it

• CPU cost not linear: harder to deal with something not
playing…

QA: PA sound bugs

• Fixing the issue is harder

• Modifying the model may be required

• Different structure will not have the same CPU cost or control
parameters

• Might bring up new audio glitches

QA: solutions

• Education of testers (ideally a specific audio tester)

• Testers should know about the audio models or be able to
refer to them

• The stability of the model must be tested in the tools as much
as possible

Are we there yet ?

The good news

• Some models can be implemented very easily

• Impacts / contacts
• Footsteps
• Air / Water
• …

• They offer a lot of advantages compared to static sounds

• Procedural audio is not necessarily CPU expensive

The bad news

• Not a solution for everything

• It is still harder to implement

• Mostly due to lack of:

• trained sound designers / programmers / testers
• adapted tools / run-time
• ready-to-use models

Solutions

• Get better tools (higher-level, importance of audio features
extraction)

• Educate teams across disciplines

• This will help the creation of procedural models database

• Share models across the industry

Thank you !

Any questions ?

