
Building Blocks
Artist Driven Procedural Buildings

James Golding - Epic Games

Who Am I

• Started as Field Engineer at MathEngine
– Oxford, UK
– 1999-2003

• Senior Programmer at Epic Games• Senior Programmer at Epic Games
– Raleigh, NC, USA
– Worked here for nearly 8 years
– Physics, animation, tools, gameplay…
– Shipped some games

• Unreal Tournament 2003, 2004, UT3,
• Gears of War 1 & 2

Who Is This Talk For

• Programmers
• Level Designers
• Technical Artists

• There is no code, I promise!

• Anyone who thinks about building big
cities for games

Our Goals

• Good looking buildings with high visual density

• Easily change shape and size for gameplay

• Automatically generate LODs

Not Our Goals

• We are not interested in generating entire
city with one button, or even an entire
building, but decorating a building defined
by designer.by designer.

Existing Approaches
• Use level geometry tools, cover with meshes

– Lots of work placing meshes
– Painful to change meshing

• Build custom building meshes• Build custom building meshes
– Hard to adjust for gameplay
– Each one needs LOD custom made

• Simple shapes with tiling material
– Did not meet our visual bar

New Approach

• Designer creates 'high level' description of
building

• Artists build a library of rectangular, modular,
facade meshes

• Artist creates 'ruleset' which describes how
facade pieces are used

Initial idea from "Procedural Modeling of Buildings" by Müller et al.
(2006, ETH Zurich)

Defining Building Shape

• Collection of simple shapes

Defining Building Shape

• Apply ‘Ruleset’ to group

Defining Building Shape

• Can easily modify building at any time

Breaking It Down
• Starting with a reference photo

Breaking It Down
• Artist breaks it into modular meshes

Breaking It Down
• Procedural system places meshes

‘Scopes’

• A ‘scope’ is a 2D rectangle
– Location
– Orientation
– Dimensions– Dimensions

• Tool takes 3D building shape and extracts
set of scopes

Extracting Rectangles

• Certain areas are not rectangular
– Walls - if roof is not flat
– Roof - if building plan is non-rectangular

• We make simple polygons to fill holes• We make simple polygons to fill holes

• Don’t extract scope from roof
– always just big polygon

Extracting Rectangles

Rules?

• Each rule can do one of two things:
– Split a scope into smaller scopes
– Place mesh that fills the scope area on the

building facadebuilding facade

• Forms a graph

Rules?

• A grammar for describing facades
– ‘Context Free’

• Graph of nodes good for a graphical tool• Graph of nodes good for a graphical tool
– More visual = happy artists

The RulesThe Rules

Mesh Rule

• Artist specifies
– What mesh
– X and Z extent that it fills

• Easy to scale and place instance • Easy to scale and place instance
– scale = desired size/defined size

Mesh Rule

• Initial concerns over scaling of artist built
meshes
– System lets you specify which meshes are

scaled and which are notscaled and which are not
– Generally not visually noticeable with building-

type meshes
– Needs to avoid tiny doors etc

Repeat Rule

• Choose an axis (X or Z)
• Break up scope along that axis into equal size pieces
• Ensure no piece along axis is larger than defined

maximum size
• Generates varying number of new scopes, depending on • Generates varying number of new scopes, depending on

building size

Repeat Rule

Split Rule

• Designer specifies axis and number of scopes to break
into.

• Each split can be fixed size or variable.
• Always require one of the splits to be variable.
• If scope is too small to fit in fixed size areas, must • If scope is too small to fit in fixed size areas, must

discard them.
• Similar to windowing toolkits (wxSizer etc)

Split Rule

Alternate Rule

• Hard to achieve ABABA 'fence post' layout with just
repeat and split.

• A is fixed, B is stretchy.

Alternate Rule

Occlusion Rule
• Quickly find that meshes are being placed where not seen
• Needed for intersections between buildings to look good

Occlusion Rule

• Output is 'clear', 'blocked' or 'partial'
– Don't place mesh if 'blocked'
– Can choose different mesh depending on

'clear' and 'partial''clear' and 'partial'

• Initially this was a separate rule node
– Used so frequently, we included this into the

Mesh rule

Occlusion Rule

Top/Bottom Rule

• Don't want shop fronts at the bottom of
every scope in building

• Performs different actions if bottom of
scope is at bottom of entire buildingscope is at bottom of entire building

• Does same thing for top (e.g. large trim at
very top)

Top/Bottom Rule

Random Rule

• Does not resize scope
• Executes to N out of the M possible child

Rules
• Allows meshes on top of each other• Allows meshes on top of each other

– E.g. a Window mesh with random AC unit
and/or awning.

Random Rule
• Composite regions like random shopfronts

Random Rule

Random Rule

Quad Rule

• Sometimes you DO want a tiling material
• Simple variation of Mesh Rule
• Adjusts UVs to tile base on scope size

– Same logic as Repeat Rule– Same logic as Repeat Rule

• Second non-tiling UV channel

Quad Node

Sub Ruleset

• Allow a Ruleset to refer to other Rulesets

• Complicated Rulesets can be reused.

• Terrifying prospect of recursive
architecture!

Size Rule

• Simple choice based on dimension
– Useful for fixing ‘squeezing’

Size Rule

Without Size Rule With Size Rule

VariationsVariations

Variations
• Each side of a building may need to look

different

Variations

• Initially allowed Level Designers to assign
rulesets per-face
– Corners usually looked bad
– Artists had no control over ruleset – Artists had no control over ruleset

combinations

Variations

• Each face of a building volume can have
a variation ‘name’ set on it
– Special rule node uses that to decide which

output to fireoutput to fire
– Level designer can choose ‘front’, ‘side’ etc.
– Ruleset designer can ensure they all match

nicely

Variations

Context menu on each face
offers variations created by
artist

Variations

CornersCorners

Trim And Corners

• Making trim work around corners is one of
the hardest parts

• We came up with three approaches to • We came up with three approaches to
decorating corners

Trim And Corners
• Build Rulesets with flat edges

– Only really possible with modern architecture

Trim And Corners
• Cover corner with mesh, at average angle

between faces
– LDs did this manually on previous games

Trim And Corners
• Building custom corner pieces

– use custom Rule to pick correct piece based on angle
– lots of custom meshes need making
– limit LD to certain angles

Corner Rule
• Each scope ‘owns’ its left edge
• Use angle to scope on left to pick mesh
• Asks scope to right how much ‘space’ to leave

there

Corner Rule

• Allows mixing rule sets with different
corner sizes

Corner Rule

• This requires edge<->scope map
– Array of ‘top level scopes’
– Array of ‘edges’

• I am scope 3’s left edge and scope 12’s right edge• I am scope 3’s left edge and scope 12’s right edge
• This is my start and end location
• This is my angle

• Build this map as part of scope extraction

Corner Rule

• Requires each edge to only have 2 scopes

Corner Rule

• Split entire building at each roof level

Corner Rule

• Also produces pleasing architecture

Corner Rule

Other FeaturesOther Features

Roof
• Curved Corners

– From each vertex of roof poly, can find its Corner Rule
– Add options to Corner Rule to describe corner shape
– Use that to reshape the corner

Roof

Floor
• Option to run rules ‘on top’ of big floor poly

Player Collision

• Can use the simple 'building volume’
– Fast
– Smooth

• Certain meshes can be flagged as having
collision in addition to this

Parameters
• Expose parameters in shaders applied to

building pieces
– Wall Diffuse and Specular Color
– Window Diffuse and Specular Color

• Gives more variation for no memory cost

Rendering Approach

• Buildings tend to be made of many copies
of a few meshes
– trim, window frame, columns…

• Lots of draw calls• Lots of draw calls
• Initially tried merging meshes to reduce

sections
– Huge vertex/index buffers!

Rendering Approach

• Instanced rendering!
• Different on all 3 platforms

– Need to duplicate index buffer etc.

• Trade-off index buffer memory for speed• Trade-off index buffer memory for speed

Window Interiors

Window Interiors
• Three textures - one for each depth

Window Interiors
• Use mask to offset texture UV based on cam

vector

Window Interiors
• Pack all masks into one texture

LODLOD

Building LOD

• Low LOD mesh is automatically created
– Mesh the same shape as the volume used to

construct building

• Renders high detail meshes into texture• Renders high detail meshes into texture
– All faces atlassed into one texture

• Low LOD mesh is always loaded
– Textures can stream in different mip levels

Building LOD

Windows

• Buildings all have glass windows
– reflective with cubemaps
– LOD needs a mask for reflective windows
– losing reflection creates very noticeable pop– losing reflection creates very noticeable pop

Windows
We render 3 passes:

Diffuse Window Mask Lighting

Windows

Diffuse + Window Mask
Mask stored as 1 bit alpha in DXT1

Lighting
Lower resolution

Windows

• Advantages to 2 texture approach:
– Lighting texture can be lower resolution
– Lets us light cubemap ‘glass’ areas
– Allows building instances– Allows building instances

• Share Diffuse but unique Lighting
• Reduces variety of buildings, but uses less LOD

texture memory

Building LOD

Transitions

• Using dither approach to transition

• Objects attached to building change when
building doesbuilding does
– A/C units, pipes, signs etc
– Captured by render-to-texture process

Transitions

Transitions

LOD Quad

• Idea for automatic intermediate LOD
• All meshes after rule collapse to single quad
• Quad uses LOD texture

LOD Quad

What’s NextWhat’s Next

What’s Next

• More orthogonal variation ‘channels’
• Decal support within ruleset
• Apply rules to triangular regions
• Interiors• Interiors

– Transition (doors)
– Collision

ConclusionConclusion

Conclusion

• Good looking buildings with high visual density

• Easily change shape and size for gameplay

• Automatically generate LODs

Conclusion

• Keeps artist and level designer workflows from
colliding

• One change to a ruleset, the whole city changes

• Artists willing to learn a crazy new system and
push it are invaluable and awesome

• Thanks Pete ☺

Conclusion
• Rulesets everywhere!

