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Multi-monitor & multi-GPU game development

Topics Covered in this Session

 Eyefinity technology overview.

 Multi-monitor gameplay & impact on game design.

 Developing for Eyefinity solutions.

 Eyefinity certification program.
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ATI Eyefinity Technology Overview

 ATI’s latest multi-monitor technology.

 Enables up to 3/6 displays per graphic card.

 Supports multi-monitor gaming.

 Required setup:

Radeon 5000 Series Vista / Win7 Displays with identical resolutions

+ +
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3x1 landscape

ATI Eyefinity Technology Overview

3x1 portrait 3x2 landscape
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ATI Eyefinity Technology Overview
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Multi-monitor Gameplay Considerations

End users expect the following:

1. Eyefinity display modes in game graphics options.

2. Larger field of view.

3. Equal or better gameplay experience.
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Developing for Eyefinity Solutions

Support for Eyefinity display modes:

1. Don’t exclude non-standard display modes.

2. Don’t exclude non-standard aspect ratios.

Example display modes for a 3x1 setup:

• Native modes – 1600 x 1200, 1280 x 1024, etc.

• Eyefinity modes – 4800 x 1200, 3840 x 1024, etc.
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Developing for Eyefinity Solutions

Support for increased field of view:

1. Adjust projection matrix so that it matches display 
mode & aspect ratio.
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Developing for Eyefinity Solutions

Multi-monitor gameplay experience:

1. Menu & UI element placement considerations.

2. Cut scenes placement.
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Querying Eyefinity State Information

 Statically link to:

• atigpu.lib

 Include header file:

• atigpud.h

 Call AtiGetMultiMonitorConfig() to retreive:

• Eyefinity state information

• Per display state information
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Querying Eyefinity State Information

 Eyefinity state information:

• On/off, resolution, display grid configuration, etc.

 Per display information:

• Grid coord, rendering rect, visible rect, etc.

display width

display height

Eyefinity width

Eyefinity height[0,0] [0,1] [0,2]
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Developing for Eyefinity Solutions

Other gameplay considerations:

1. RTS scrolling.

2. First person shooting crosshair placement.

3. Let us know if you come across any other issues...
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Eyefinity Certification Program

Eyefinity Ready

1. Support for Eyefinity display modes.

2. Support for expanded field of view.

Eyefinity Validated

1. Eyefinity Ready with…

2. Proper placement of menu & UI elements.
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Key Takeaways

 Multi-monitor solutions matter!

 Test and profile with multi-monitor systems.

• Don’t hardcode specific multi-monitor configurations.

• Handle any resolution & aspect ratio

• Properly handle menu, HUD, & cut scene placement.

 Refer to AMD Eyefinity SDK samples

• ati.amd.com/developer
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Topics Covered in this Session

 Why multi-GPU solutions matter.

 Hardware & driver considerations.

 Impact on game design.

 Profiling & performance gains.



Multi-monitor & multi-GPU game development

Dual-GPU boards         Multi-board systems           Hybrid graphics

Why Multi-GPU Solutions Matter
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Why Support Multi-GPU in Your Game

 Growing market share of multi-GPU solutions.

 All game and hw reviews integrate multi-GPU 
solutions.

 Expectation by gamers is that game framerate 
should “just scale” with additional GPUs.

 The competition is doing it!

Market trend
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Crossfire Technical Overview
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Crossfire Technical Overview
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Alternate Frame Rendering

 Alternate frame rendering leads to two types of 
problems:

• Interframe dependencies

• CPU/GPU synchronization points

 In each case, parallelism between CPU and GPUs is 
lost.
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Querying the Number of GPUs

 Statically link to:

• atigpu.lib

 Include header file:

• atigpud.h

 Call this function:

• INT count = AtiMultiGPUAdapters();

• In windowed mode, set Count to 1
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Interframe Dependencies
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Interframe Dependencies

 When are interframe dependencies a problem?

• Depends on frequency of P2P blits.

 Solutions:

• Create n copies of the resource triggering P2P blits.

• Associate each copy of the resource to a specific GPU.

• resource[frame_num % num_gpus]

• Repeat resource updates for n frames.
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Interframe Dependencies
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Interframe Dependencies
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Interframe Dependencies

 There are many ways to update resources using the 
GPU:

• Drawing to Vertex / Index Buffers

• Stream Out

• CopyResource()

• CopySubresourceRegion()

• GenerateMips()

• ResolveSubresource()

• Etc…
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CPU/GPU Synchronization Points
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CPU/GPU Syncs - Queries

 Having the driver block on a query starves the GPU 
queues, and limits parallelism.

 Solutions:

• Don’t block on query results.

• Don’t have queries straddle across frames.

• For queries issued every frame, create a query object for 
each GPU.

• Pick up query results n frames after it was issued.
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CPU/GPU Syncs – CPU Access to GPU Resources

 Triggers pipeline stalls because driver blocks waiting 
on GPU at lock/map call.

 Followed by a P2P blit at unlock/unmap call.

 Often results in negative scaling…

 Solutions:

• DX10/DX11 – Stream to and copy from staging textures.

• DX9 – Stream to and copy from sysmem textures.

• DX9 – Never lock static vertex/index buffers, textures.
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Multi-GPU Performance Gains

 What kind of performance scaling should you 
expect from multi-GPU systems?

• Function of CPU/GPU workload balance.

• Typical for 2 GPUs is 2X scaling.

• For 3 & 4 GPUs, varies from game to game.
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Crossfire Profiling

 Make sure to be GPU bound.

• Test framerate scaling with resolution change.

 Test for multi-GPU scaling.

• Rename app exe to ForceSingleGPU.exe.

 Test for texture interframe dependencies.

• Rename app exe to AFR-FriendlyD3D.exe.

 Remove queries.

 Check for CPU locks of GPU resources.
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Key Takeaways

 Multi-GPU solutions matter!

 Test and profile with multi-GPU systems.

• Properly handle interframe dependencies.

• Check for CPU locks of GPU resources.

• Don’t block on queries.

 Refer to AMD Crossfire SDK samples

• ati.amd.com/developer

• CrossFire Detect & AFR-Friendly projects.
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Thank You

Thomas Fortier – thomas.fortier@amd.com


