
Multi-monitor Game Development

Thomas Fortier

AMD Graphics Developer Relations

thomas.fortier@amd.com

Multi-monitor & multi-GPU game development

Topics Covered in this Session

 Eyefinity technology overview.

 Multi-monitor gameplay & impact on game design.

 Developing for Eyefinity solutions.

 Eyefinity certification program.

Multi-monitor & multi-GPU game development

ATI Eyefinity Technology Overview

 ATI’s latest multi-monitor technology.

 Enables up to 3/6 displays per graphic card.

 Supports multi-monitor gaming.

 Required setup:

Radeon 5000 Series Vista / Win7 Displays with identical resolutions

+ +

Multi-monitor & multi-GPU game development

3x1 landscape

ATI Eyefinity Technology Overview

3x1 portrait 3x2 landscape

Multi-monitor & multi-GPU game development

ATI Eyefinity Technology Overview

3x display width

1x display height

End user

Windows

Rendering
surface

Multi-monitor & multi-GPU game development

Multi-monitor Gameplay Considerations

End users expect the following:

1. Eyefinity display modes in game graphics options.

2. Larger field of view.

3. Equal or better gameplay experience.

Multi-monitor & multi-GPU game development

Developing for Eyefinity Solutions

Support for Eyefinity display modes:

1. Don’t exclude non-standard display modes.

2. Don’t exclude non-standard aspect ratios.

Example display modes for a 3x1 setup:

• Native modes – 1600 x 1200, 1280 x 1024, etc.

• Eyefinity modes – 4800 x 1200, 3840 x 1024, etc.

Multi-monitor & multi-GPU game development

Developing for Eyefinity Solutions

Support for increased field of view:

1. Adjust projection matrix so that it matches display
mode & aspect ratio.

Multi-monitor & multi-GPU game development

Developing for Eyefinity Solutions

Multi-monitor gameplay experience:

1. Menu & UI element placement considerations.

2. Cut scenes placement.

Multi-monitor & multi-GPU game development

Querying Eyefinity State Information

 Statically link to:

• atigpu.lib

 Include header file:

• atigpud.h

 Call AtiGetMultiMonitorConfig() to retreive:

• Eyefinity state information

• Per display state information

Multi-monitor & multi-GPU game development

Querying Eyefinity State Information

 Eyefinity state information:

• On/off, resolution, display grid configuration, etc.

 Per display information:

• Grid coord, rendering rect, visible rect, etc.

display width

display height

Eyefinity width

Eyefinity height[0,0] [0,1] [0,2]

Multi-monitor & multi-GPU game development

Developing for Eyefinity Solutions

Other gameplay considerations:

1. RTS scrolling.

2. First person shooting crosshair placement.

3. Let us know if you come across any other issues...

Multi-monitor & multi-GPU game development

Eyefinity Certification Program

Eyefinity Ready

1. Support for Eyefinity display modes.

2. Support for expanded field of view.

Eyefinity Validated

1. Eyefinity Ready with…

2. Proper placement of menu & UI elements.

Multi-monitor & multi-GPU game development

Key Takeaways

 Multi-monitor solutions matter!

 Test and profile with multi-monitor systems.

• Don’t hardcode specific multi-monitor configurations.

• Handle any resolution & aspect ratio

• Properly handle menu, HUD, & cut scene placement.

 Refer to AMD Eyefinity SDK samples

• ati.amd.com/developer

Maximizing Multi-GPU Performance

Thomas Fortier

AMD Graphics Developer Relations

thomas.fortier@amd.com

Multi-monitor & multi-GPU game development

Topics Covered in this Session

 Why multi-GPU solutions matter.

 Hardware & driver considerations.

 Impact on game design.

 Profiling & performance gains.

Multi-monitor & multi-GPU game development

Dual-GPU boards Multi-board systems Hybrid graphics

Why Multi-GPU Solutions Matter

Multi-monitor & multi-GPU game development

Why Support Multi-GPU in Your Game

 Growing market share of multi-GPU solutions.

 All game and hw reviews integrate multi-GPU
solutions.

 Expectation by gamers is that game framerate
should “just scale” with additional GPUs.

 The competition is doing it!

Market trend

Multi-monitor & multi-GPU game development

Crossfire Technical Overview

Multi-monitor & multi-GPU game development

Crossfire Technical Overview

Frame 1

Frame 3

Frame 5

Frame 7

Frame 2

Frame 4

Frame 6

Frame 8

Multi-monitor & multi-GPU game development

Alternate Frame Rendering

 Alternate frame rendering leads to two types of
problems:

• Interframe dependencies

• CPU/GPU synchronization points

 In each case, parallelism between CPU and GPUs is
lost.

Multi-monitor & multi-GPU game development

Querying the Number of GPUs

 Statically link to:

• atigpu.lib

 Include header file:

• atigpud.h

 Call this function:

• INT count = AtiMultiGPUAdapters();

• In windowed mode, set Count to 1

Multi-monitor & multi-GPU game development

Interframe Dependencies

Frame 1

Frame 3

Frame 5

Frame 7

Frame 2

Frame 4

Frame 6

Frame 8

Multi-monitor & multi-GPU game development

Interframe Dependencies

 When are interframe dependencies a problem?

• Depends on frequency of P2P blits.

 Solutions:

• Create n copies of the resource triggering P2P blits.

• Associate each copy of the resource to a specific GPU.

• resource[frame_num % num_gpus]

• Repeat resource updates for n frames.

Multi-monitor & multi-GPU game development

Interframe Dependencies

Frame 1

Frame 3

Frame 5

Frame 7

Frame 2

Frame 4

Frame 6

Frame 8

Multi-monitor & multi-GPU game development

Interframe Dependencies

Frame 1

Frame 3

Frame 5

Frame 7

Frame 2

Frame 4

Frame 6

Frame 8

Multi-monitor & multi-GPU game development

Interframe Dependencies

 There are many ways to update resources using the
GPU:

• Drawing to Vertex / Index Buffers

• Stream Out

• CopyResource()

• CopySubresourceRegion()

• GenerateMips()

• ResolveSubresource()

• Etc…

Multi-monitor & multi-GPU game development

CPU/GPU Synchronization Points

Frame 1

Frame 3

Frame 2

Frame 4

Frame 5

Multi-monitor & multi-GPU game development

CPU/GPU Syncs - Queries

 Having the driver block on a query starves the GPU
queues, and limits parallelism.

 Solutions:

• Don’t block on query results.

• Don’t have queries straddle across frames.

• For queries issued every frame, create a query object for
each GPU.

• Pick up query results n frames after it was issued.

Multi-monitor & multi-GPU game development

CPU/GPU Syncs – CPU Access to GPU Resources

 Triggers pipeline stalls because driver blocks waiting
on GPU at lock/map call.

 Followed by a P2P blit at unlock/unmap call.

 Often results in negative scaling…

 Solutions:

• DX10/DX11 – Stream to and copy from staging textures.

• DX9 – Stream to and copy from sysmem textures.

• DX9 – Never lock static vertex/index buffers, textures.

Multi-monitor & multi-GPU game development

Multi-GPU Performance Gains

 What kind of performance scaling should you
expect from multi-GPU systems?

• Function of CPU/GPU workload balance.

• Typical for 2 GPUs is 2X scaling.

• For 3 & 4 GPUs, varies from game to game.

Multi-monitor & multi-GPU game development

Crossfire Profiling

 Make sure to be GPU bound.

• Test framerate scaling with resolution change.

 Test for multi-GPU scaling.

• Rename app exe to ForceSingleGPU.exe.

 Test for texture interframe dependencies.

• Rename app exe to AFR-FriendlyD3D.exe.

 Remove queries.

 Check for CPU locks of GPU resources.

Multi-monitor & multi-GPU game development

Key Takeaways

 Multi-GPU solutions matter!

 Test and profile with multi-GPU systems.

• Properly handle interframe dependencies.

• Check for CPU locks of GPU resources.

• Don’t block on queries.

 Refer to AMD Crossfire SDK samples

• ati.amd.com/developer

• CrossFire Detect & AFR-Friendly projects.

Multi-monitor & multi-GPU game development

Thank You

Thomas Fortier – thomas.fortier@amd.com

