
Behavior Trees:
Three Ways of Cultivating Game AI

Alex J. Champandard

AiGameDev.com

Michael Dawe

Big Huge Games

David Hernandez-Cerpa

LucasArts

BEHAVIOR TREES APPLIED!

• Halo 3 & ODST

• [PROTOTYPE]

• Spore

• GTA: Chinatown Wars

• The Bourne Conspiracy

• SWAT 4, Bioshock

• Dark Sector

• …

FEATURES

• BTs are a framework for game AI.

• BTs model character behaviors extremely well.

• BTs are simple, yet extremely customizable.

OVERVIEW

Behavior

Behavior

BehaviorBehaviorBehavior

ActionActionActionActionAction

Behavior

Behavior

AGENDA

1) Building Blocks

2) Design Patterns

3) Script Integration

4) Debugging

5) Discussion

BUILDING BLOCKS
Behavior Trees Part 1, David

NODE TYPES

• Priority
– Child nodes are evaluated in order until one

validates

• Sequential
– First child is validated and executed

– When it is finished, the next one is validated

• Stochastic
– All children are validated

– A random node is selected among the valid ones

BEHAVIOR TREE UPDATE

Root

IdleCombat

PatrolUse ComputerRangedMelee

Weapon 3Weapon 2Weapon 1AttackFlee

EVENT-DRIVEN BEHAVIORS

Idle

PatrolUse ComputerMelee

Weapon 3Weapon 1AttackFlee

Evade

Combat

Ranged

Incoming Projectile

Root

• Stimulus types
– Disabled by event

– Autodisabled

Weapon 2

DYNAMIC BEHAVIORS

• Dynamic behaviors support
– Level specific content

• Patrols

• Initial setups

• Story driven events

– DLC

• Behaviors are added to actors in the level
(enticers)
– When a NPC uses the actor, it attaches the

behavior to the tree

DYNAMIC BEHAVIORS

Root

IdleCombat

PatrolUse ComputerRangedMelee

Weapon 3Weapon 2Weapon 1AttackFlee

DYNAMIC BEHAVIORS

Root

Combat

RangedMelee

Weapon 3Weapon 2Weapon 1AttackFlee

STIdle

DYNAMIC BEHAVIORS

• Validate
– Look for enticers

• Update
1. Move to enticer

2. Wait for other NPCs

3. Subscribe

– Attach new behavior to the tree

4. Wait for behavior to finish

5. Unsubscribe

– Remove behavior from the tree

Root

Use Computer

STIdle

DESIGN PATTERNS
Behavior Trees Part 2, Alex

IN THE NEXT 10 MINUTES, FIND OUT...

What’s the biggest problem developers face working
with behavior trees and scaling up?

IN THE NEXT 10 MINUTES, FIND OUT...

When should you build your BT like a HFSM, and what
happens if you do?

COVER

COVER

MOVING

MOVING

BLACKBOARD

COVER

MOVING

CROUCHING

STANDING

SneakToCover

PeakAtThreat

RunToTarget

RunToTarget

BLACKBOARD

COVER

MOVING

CROUCHING

STANDING

SneakToCover

BLACKBOARD

COVER

MOVING

CROUCHING

STANDING

BT DESIGN TAKE AWAY

• Decouple your BT from the problem at hand,
for example using a blackboard.

• Build purposeful behaviors as sequences of
short goal-directed actions.

• Be careful with “state-like” behaviors that
keep running.

• Leverage the power of the tree search!

SCRIPT INTEGRATION
Behavior Trees Part 3, Michael

SCRIPT INTEGRATION

• Behavior trees are all about flexibility
– Selector choice!

– Reuseable goals!

• Rapid iteration is a key goal
– Bigger games, more actors, individualized

behaviors

– Need to quickly change in response to prototyping
and playtest

• Separate the algorithm from the behaviors

FLEXIBILITY FROM SCRIPT

• Lua at BHG, but could be any language

• What you’ll need:

– Scripting language integration

• Calling script from code and vice versa

• Really nice to have:

– Designers comfortable with scripting

• You will need support time (more on that later)

– Script debugging

Gather

C++ Lua

Behavior TreeBehavior Interface

Behavior

Behavior
Behavior

Precondition

Type

.

.

.

What behaviors want to run?

Type/precondition results

Run

Calls to on_exit, on_enter, behavior
Behavior

on_enter

on_exit

CREATING A BEHAVIOR SCRIPT

• Behaviors have a common structure
– Precondition

– Behavior

• Optional components
– Type (priority, sequential, random)

– on_enter, on_exit

– Whatever else you decide your behaviors need

• In Lua, these can be known function names in
a table

BEHAVIOR SCRIPT

CREATING A TREE WITH BEHAVIOR
SCRIPTS

• First implementation: Scripts that create
behavior trees

• Lua functions to add, remove, insert behaviors
from an existing tree
– add_behavior(tree, behavior)

• Great flexibility, but hard to conceptualize
– Creating trees in script was difficult to grasp

– Especially when trying to reuse trees you didn’t
write

BEHAVIOR TREE TOOL

• External .NET app to manage trees and
behaviors

• Easy to create new behaviors or reuse existing
ones

• Statistics on commonly used behaviors

• Search for behavior/tree by name or usage

BEHAVIOR TREE TOOL

BENEFITS OF USING SCRIPT

• Designers write behaviors so you don’t have
to
– Currently 63 unique behaviors in our game

• I wrote 7

– Lots of time back for other tasks

• Faster implementation and iteration
– No rebuilding code

– Can reload scripts while the game runs
– Need prep for this; flush behaviors, cached names,

pointers?

COMMON QUESTIONS

• Performance-related

– “Isn’t scripting slow?”

– “How do you stay under CPU budget?”

• Behavior creation-related

– “Are designers scripting well?”

– “What if my designers aren’t scripters?”

KEEPING SCRIPT FAST

• Don’t let it be slow!
– BHG limits lua to integer math

– Prevent mid-frame garbage collection

• Limit scripting to where it makes sense
– AI loop is not in script

– No trig in script!

– Anything “complicated enough” done in code

• Could put behaviors to code for performance
– …but maybe not

DESIGNER SCRIPTING

• Good enough is great!

• Does take code support time

– ~10% of my time debugging for designers

– ~10% on function requests (trig, &c.)

• Watch for things that should be done in code

• Strength in speed! Don’t stifle creativity

• Plan on reviewing trees and behaviors
periodically

DEBUGGING
Behavior Trees Part 4, David

DEBUGGING

DEBUGGING

Behavior Trees:
Three Ways of Cultivating Game AI

Alex J. Champandard

AiGameDev.com

Michael Dawe

Big Huge Games

David Hernandez-Cerpa

LucasArts

