-0
5o
O
=)
(&

High-Performance Physics Solver Design
for Next Generation Consoles

=

:Iu:

n
P
i1
e
=%

Vangelis Kokkevis
Steven Osman
Eric Larsen

Simulation Technology Group

Sony Computer Entertainment America
US R&D

GameDevelopers

Conference

-0
=
O
=)
(&

T
B4
Wi
iy
=
L AP
I
= i

This Talk

= Optimizing physics simulation on a multi-core
architecture.

@ Focus on CELL architecture

= Variety of simulation domains
= Cloth, Rigid Bodies, Fluids, Particles

@ Practical advice based on real case-studies
= Demos!

GameDevelopers

Conference

o
o
&)
()
o)

-
-
il
=
i
P
B G
H i
=

Basic Issues

= Looking for opportunities to parallelize processing
@ High Level — Many independent solvers on multiple cores
= Low Level — One solver, one/multiple cores
= Coding with small memory in mind
@ Streaming
@ Batching up work
= Software Caching
= Speeding up processing within each unit
@ SIMD processing, instruction scheduling
@ Double-buffering

= Parallelizing/optimizing existing code

GameDevelopers

Conference

I_
-
-
in
P
B G
H i
=

o
o
&)
£l
o)

What is not in this talk?

= Detalls on specific physics algorithms
= Too much material for a 1-hour talk
= WIll provide references to techniques

=« Much insight on non-CELL platforms

@ Concentrate on actual results
= Concepts should be applicable beyond CELL

GameDevelopers

Conference

The Cell Processor Model

~0
o=
O
0
0

i
i
in .
=
Ll
L

DMA DMA DMA DMA

256K LS 256K LS 256K LS 256K LS

GameDevelopers
Conference

~0
o=
O
0
0

-

i"u

L]
i
B
T
=%

Physics on CELL

SPUO g SPU1 g SPU2 g SPU3

256K LS| |l 256K LS| [l 256K LS| |l [256K LS

Main Memory

DMA DMA DMA DMA
256K LS 256K LS 256K LS| | 256K LS

SPU4 g SPUS i SPUG g SPUY

= Physics should happen mostly on SPUs
@ There’s more of them!
= SPUs have greater bandwidth & performance
@ PPU is busy doing other stuff

GameDevelopers
Conference

T
=
iji
i
n
I— .
B H
=
=

~0
E.
05
=
&)

SPU Performance Recipe

= Large bandwidth to and from main memory
= Quick (1-cycle) LS memory access

= SIMD Instruction set

= Concurrent DMA and processing

= Challenges:
@ Limited LS size, shared between code and data
= Random accesses of main memory are slow

GameDevelopers

Conference

Cloth Simulation

o
o
&)
£l
o)

I_
-
-
in
P
B G
H i
=

GameDevelopers

Conference

-0
=
O
=)
(&

I_
e
e
I
P
i1
e
=

Cloth Simulation

= Cloth mesh simulated as point masses
(vertices) connected via distance constraints
(edges).

4 eM
: i A
m,*———*m,

@ References:

@ T.Jacobsen,Advanced Character Physics, GDC 2001
@ A.Meggs,Taking Real-Time Cloth Beyond Curtains,GDC 2005

GameDevelopers

Conference

o
o
&)
£l
o)

I_
-
-
in
P
B G
H i
=

1.

3.

4.

Simulation Step

Compute external forces, fE,per vertex
Compute new vertex positions [Integration |:

ptl = (2p! —p!™1) + 3FF « 2 x AL

Fix edge lengths
= Adjust vertex positions

Correct penetrations with collision geometry

= Adjust vertex positions

GameDevelopers

Conference

How many vertices?

-0
5o
O
=)
(&

= How many vertices fit in 256K (less actually)?
= Alot, surprisingly...

@ Tips:
= Look for opportunities to stream data
= Keep in LS only data required for each step

I_
e
e
n
P
i1
e
=%

GameDevelopers

Conference

-2 |
it Integration Step

i

2 pt = (2pt —) + 51 x L AR

T

I P oo

= 16 + 16 + 16 + 4 =52 bytes / vertex

= Less than 4000 verts in 200K of memory
= We don’t need to keep them all in LS

= Keep vertex data in main memory and bring it
In in blocks

GameDevelopers

Conference

Streaming Integration

~0
o=
O
0
0

Main Memory

pt E Local Store

o1 I

7 ey
1

m

-

i"h

in
-
B
g
=

GameDevelopers
Conference

2T

Streaming Integration

~0
o=
O
0
0

Main Memory

50 5152 B3 Local Store

Ml 508182 B3
2l 50 51 52 o L B0 50 B01BOL

! DN
L_

T

e
b -
L
L

DMA_IN
BO

GameDevelopers
Conference

w1

Streaming Integration

~0
o=
O
0
0

Main Memory

pt E Local Store
pt—1 B1l| B2 | B3
200 51 o2 6o | B0 B0 B0BO

! N

T

e
-
L
L

GameDevelopers
Conference

2T

Streaming Integration

~0
o=
O
0
0

Main Memory

i 50 B1
p SU S Local Store

A
= rammr DT

! N

T

e
-
L
L

GameDevelopers
Conference

2T

Streaming Integration

~0
o=
O
0
0

Main Memory

pt E Local Store
pt—l |B1 B2 B3
7 DR EEEEETE

7 50 81 5283
=

T

e
-
L
L

DMA_IN B rocess BO DMA_ouUT | DMA_IN
BO BO B1

GameDevelopers
Conference

-

Streaming Integration

~0
o=
O
0
0

Main Memory

pt E Local Store
pt—1 B1l| B2 | B3
200 51 o2 6o Bl Bl BLBL

! N

it

i
- -
L
L

DMA_IN DMA_ouUT | DMA_IN

GameDevelopers
Conference

-

Streaming Integration

~0
o=
O
0
0

Main Memory

28 B0 B1 B2
2] B2 Local Store

- ENIEE
= mimr DT
1

it

i
- -
L
L

o0 e [52 o0

DMA_IN DMA_ouUT | DMA_IN DMA_OUT

GameDevelopers
Conference

-

Streaming Integration

~0
o=
O
0
0

Main Memory

pt E Local Store
pt—1 B1l| B2 | B3
200 51 o2 6o Bl Bl BLBL

! N

it

i
- -
L
L

DMA_IN DMA_ouUT | DMA_IN DMA_OUT [

GameDevelopers
Conference

Double-buffering

~0
o=
O
0
0

= Take advantage of concurrent DMA and
processing to hide transfer times

»
i
in .
-
Ll
L

Without double-buffering:

DMA_IN DMA_ouUT | DMA_IN DMA_OUT [
IIIE!III IIIIIHHHH%!%!IIIII III!III IIIEIIII IIIIIHHHH%!%!IIIII III!III

With double-buffering:

IIIIIHH%HH%IIIII IIIIIHHH%HHHIIIII IIIIIHH%HH%’IIII
DMA_IN DMA_IN DMA_OUT | DMA_IN DMA_OUT | DMA_IN
BO B1 BO B2 B1 B3

GameDevelopers
Conference

Streaming Data

~0
=.
05
=
)

= Streaming Is possible when the data access
pattern is simple and predictable (e.g. linear)
= Number of verts processed per frame depends on
processing speed and bandwidth but not LS size
= Unfortunately, not every step in the cloth
solver can be fully streamed

= FiXing edge lengths requires random memory
access...

-
ili

=

-
5 4
g
==

GameDevelopers

Conference

Fixing Edge Lengths

o
o
&)
£l
o)

= Points coming out of the integration step don’t
necessarily satisfy edge distance constraints

T
B4

Wi

yl;
=
L AP
I
=

struct Edge . --------- @ e
{ e ..,

int vl T

i nt V2, ﬂ

fl oat restLen; plvi] plv2]
}

Vector3 d = p[v2] - p[Vvl]; Q \ Q Z 0

float len = sqrt(dot(d,d));
diff = (len-restLen)/I en;

plvi] -=d * 0.5 * diff; — &
o[v2] +=d * 0.5 * diff: o[v1] .
GameDevelopers

Conference

o
o
&)
()
o)

-
-
il
=
i
P
B G
H i
=

Fixing Edge Lengths

= An Iterative process: Fix one edge at a time
by adjusting 2 vertex positions

= Requires random access to particle positions
array

= Solution:
= Keep all particle positions in LS

@ Stream in edge data
= In 200K we can fit 200KB / 16B > 12K vertices

GameDevelopers

Conference

Rigid Bodies

0
=
)
-
(da)

= Our group is currently porting the AGEIA™
PhysX™ SDK to CELL

= Large codebase written with a PC
architecture in mind
= Assumes easy random access to memory
= Processes tasks sequentially (no parallelism)

= Interesting example on how to port existing
code to a multi-core architecture

-
-
ili
=
"
-
5 4
= e
=0

GameDevelopers

Conference

Starting the Port

o
3
&)
£l
o)

=« Determine all the stages of the rigid body
nipeline

= Look for stages that are good candidates for
parallelizing/optimizing

= Profile code to make sure we are focusing on
the right parts

T
B4
Wi
ETI
=
L AP
I
=

GameDevelopers

Conference

T

" s

Rigid Body Pipeline

o
=
0
]
]
Current body positions

il

in
-
B
g
=

Potentially colliding Updated body
body pairs velocities

Points of contact
between bodies

New body positions

Constraint Equations GameDeveloperS
Conference

T

" s

Rigid Body Pipeline

o
=
0
]
]
- Current body positions

il

L]
i
B
T
=%

Potentially colliding

body pairs Updated body

velocities

Points of contact
between bodies

New body positions

GameDevelopers
Constraint Equations Conference

Profiling Scenario

~0
o=
O
£l
0

EE®

-

i"u

in
-
B
g
=

GameDevelopers

Conference

06

L
®

Profiling Results

Cumulative Frame Time

GDC

=
b
il
=
L
.
g
: -
=

70000
60000 A
50000 |
@ Other
agooo B INTEGRATION
0 SOLVER
0 CONSTRAINT PREP
2000 B NARROWPHASE
B BROADPHASE
20000 |
10000 |
0

N~
™
N~

57
113
169
225
281
337
393
449
505
561
617
673
729
785
841
897
953
1009
1065
1121
1177
1233
1289
1345
1401
1457
1513
1569
1625
1681
1793

849
1905

—

GameDevelopers

Conference

Running on the SPUs

o
o
&)
£l
o)

@ Three steps:

1. (PPU) Pre-process

= “Gather” operation (extract data from PhysX data
structures and pack it in MM)

2. (SPU) Execute
= DMA packed data from MM to LS
= Process data and store output in LS
< DMA output to MM

3. (PPU) Post-process

= “Scatter” operation (unpack output data and put back in
PhysX data structures)

T
B4

Wi

ETI
=
L AP
I
=

GameDevelopers

Conference

o
3
&)
£l
o)

T
B4
Wi
ETI
=
L AP
I
=

Why Involve the PPU?

=« Required PhysX data is not conveniently packed
= Data Is often not aligned

= We need to use PhysX data structures to avoid
breaking features we haven’t ported

= Solutions:
@ Use list DMASs to bring in data
@ Modify existing code to force alignment
@ Change PhysX code to work with new data structures

GameDevelopers

Conference

Batching Up Work

~0
o=
O
0
0

« Create work batches for each task

-

i"u

L]
i
B
T
=%

Work batch
buffers in MM

Task Task
Description Description

PhysX PhysX
data-structures batch batch data-structures
inputs/ | ... | inputs/

outputs outputs

GameDevelopers
Conference

~0
o=
O
0
0

-

i"u

in
-
B
g
=

Narrow-phase Collision Detection

= Problem:
@ A list of object pairs that may be colliding
@ Want to do contact processing on SPUs
@ Pairs list has references to geometry

(A,C)

(A.B)
B.C) Ny

GameDevelopers
Conference

I_
-
-
in
P
B G
H i
=

o
o
&)
£l
o)

Narrow-phase Collision Detection

« Data locality
= Same bodies may be in several pairs
= Geometry may be instanced for different bodies

< SPU memory access
= Can only access main memory with DMA
= No hardware cache
« Data reuse must be explicit

GameDevelopers

Conference

o
3
&)
£l
o)

T
B4
Wi
ETI
=
L AP
I
=

Software Cache

= ldea: make a (read-only) software cache
= Cache entry is one geometric object
= Entries have variable size

= Basic operation
= SPU checks cache for object

@ If not in cache, object fetched with DMA
@ Cache returns a local address for object

GameDevelopers

Conference

Software Cache

-0
5o
O
=)
(&

< Data Structures
@ Two entry buffers
= New entries appended to “current” buffer
@ Hash-table used to record and find loaded entries

Buffer 0 Buffer 1

=

i;u:

n
P
i1
e
=%

Next DMA —

GameDevelopers

Conference

Software Cache

-0
=
O
=)
(&

= Data Replacement

= When space runs out in a buffer
= Qverwrite data in second buffer

= Considerations
= Does not fragment memory
= No searches for free space
= But does not prefer frequently used data

=

:Iu:

n
P
i1
e
=%

GameDevelopers

Conference

-0
5o
O
=)
(&

=

:Iu:

n
P
i1
e
=%

Software Cache

= Hiding the DMA latency

= Double-buffering Current Buffer

= Start DMA for un-cached entries
= Process previously DMA'd entries

= Process/pre-fetch batches
= Fetch and compute times vary
< Batching may improve balance

= DMA-lists useful
@ One DMA command
@ Multiple chunks of data gathered

—+Process

<DMA

GameDevelopers

Conference

-0
5o
O
=)
(&

=

:Iu:

n
7
i1
e
=%

Software Caching

@ Conclusions

= Simple cache is practical
= Used for small convex objects in PhysX

= Design considerations
= Tradeoff of cache-logic cycles vs. bandwidth saved
= Pre-fetching important to include

GameDevelopers

Conference

=3 _
i Single SPU Performance
n
E;- ® PPU only:
H - T
= PPU + SPU:

SO e |
SPU [2¢EE \

SPU Exec < PPU Exec: SIMD + fast mem access

GameDevelopers
Conference

Multiple SPU Performance

-0
5o
O
=)
(&

« Pre- and Post- processing times determine
how many SPUs can be used effectively

=

:Iu:

n
P
i1
e
=%

GameDevelopers

Conference

T

Multiple SPU Performance

~0
o=
O
0
0

ey [IEIEIEY

it

i
- -
L
T
=

1spu | [N R

SRS
2 SPUs
]

3 SPUs

Conference

-

£
SDC:06

PPU vs SPU comparisons

i

Convex Stack (500 boxes)

""r'l .

80000
B
"ewmm
-t 70000
——
_“
60000
50000
3 — PPU-only
§ —1-SPU
S 40000 2-SPUs
S 3-SPUs
S — 4-SPUs
30000
ML 20000
O I
[
| 10000
|
i 0
-

35
69
103
137
171
205
239
273
307
341
375
409
443
a77
511
545
579
613
647
681
715
749
783
817
851
885
919
953
987
1123
1157
1191
1225
1259
1293

1021
1055
1089

| frame

A GameDevelopers
Conference

Duck Demo

-0
=
O
=)
(&

= One of our first CELL demos (spring 2005)

= Several interacting physics systems:
= Rigid bodies (ducks & boats)
= Height-field water surface
= Cloth with ripping (salls)
= Particle based fluids (splashes + cups)

I_
-
e
I
P
i1
e
=

GameDevelopers

Conference

Duck Demo (Lots of Ducks)

90:209.: =

LeEp =, L0

it

pers

GameDevelo

Conference

o
3
&)
£l
o)

T
B4
Wi
ETI
=
L AP
I
=

Duck Demo

= Ambitious project with short deadline
= Early PC prototypes of some pieces

= Most straightforward way to parallelize:
= Dedicate one SPU for each subsystem

= Each piece could be developed and tested
individually

GameDevelopers

Conference

-3
G :
il Duck Demo Resource Allocation
i _ <«— 1 frame —»
gl = PU —main loop .
E « SPU thread synchronization, draw calls
T
== . SPUO - height field water (<50%) HE water
= SPU1 — splashes iso-surface (<50%) -
= SPU2 — cloth sails for boat 1 (<50%) clom
= SPUS3 - cloth sails for boat 2 (<50%) Cloth
@ SPU4 —rigid body collision/response (95%) _
GameDevelopers

Conference

Parallelization Recipe

-0
=
O
=)
(&

One three-step approach to code
parallelization:

I_
-
e
I
P
i1
e
=

1. Find independent components
2. Run them side-by-side
3. Recursively apply recipe to components

GameDevelopers

Conference

o
o
&)
()
o)

-
-
il
=
i
P
B G
H i
=

Challenges

Step 1: Find independent components
= Where do you look?

= Maybe you need to break apart and overlap
your data?
- e.g. Broad phase collision detection
= Maybe you need to break apart your loop into
individual iterations?
-> e.g. Solving cloth constraints

GameDevelopers

Conference

~0
o=
O
£l
0

=

i;lj:

in
7
i1
e
=%

Broad Phase Collision Detection

Need to test 600 rigid bodies against each other.

600 Objects

¢

200 Objects A [[200/0bjects B 200 Objects C-

200 Objects A vs [200 Objects BT
200 Objects A vs | 200 Objects C |

>

1200 Objects B. vs 200 Objects C

We can execute
all three of
these
simultaneously

GameDevelopers

Conference

Cloth Solving

-0
=
O
=)
(&

for (i=1to 5) {
cloth=solve(cloth)

}

=

:Iu:

i
7
T
=
=

for (i=1 to 5) {
solve_on_procl(a);
solve_on_proc2(b);
wait_for_all()
solve _on_procl(c);

wait_for_all();
} GameDevelopers

Conference

~0
=.
05
=
)

-
ili

=

-
5 4
g
==

...challenges

Step 2: Run them side-by-side

=« Bandwidth and cache issues
- Need good data layout to avoid thrashing cache
or bus
= Processor issues
- Need efficient processor management scheme

= What if the job sizes are very different?
e.g. a suit of cloth and a separate neck tie
- Need further refinement of large jobs, or you only
save on the small neck tie time

GameDevelopers

Conference

o
3
&)
£l
o)

I_
-
-
in
P
B G
H i
=

...challenges

< Step 3: Recurse

= When do you stop?
> Overhead of launching smaller jobs

-> Synchronization when a stage is done

e.g. Gather results from all collision detection before
solving

= But this can go down to the instruction level

e.g. Using Structure-of-Arrays, transform four
Independent vectors at once

GameDevelopers

Conference

High Level Parallelization:
Duck Demo

~0
=.
05
=
)

Fluid Simulation| Fluid Surface | Rigid Bodies Cloth Sails

'\/’

Dependency exists

v
iji

=

&“l X
-
5 4
-

Fluid Simulation| Fluid Surface

Rigid Bodies

s I L. But cloth was for
Olhaalls multiple boats

Cloth Boat 1 Note that the parts didn’t take an
equal amount of time to run. We
Cloth Boat 2 could have done better given time!
GameDevelopers

Conference

o
o
&)
£l
o)

T
B4

Wi

ETI
=
L AP
I
=

Lower Level Parallelization
Rigid Body Simulation

Broad Phase
Collision Detection

600 bodies
example

Narrow Phase
Collision Detection

O o ©9©O

0 o—o U

On®) [FO

-

Constraint Solving

£

£

U

Broad Phase
Collision Detection

Procl | Proc2 | Proc3

Objects A -

Objects A

Narrow Phase
Collision Detection

Procl | Proc2 | Proc 3
(O | O | O
[H 1 | OO | [}
OO | [H1]| OO

—P> Proc 1

Constraint Solving

Proc 2 | Proc 3

GameDevelopers

Conference

T

" s

~0
o=
O
£l
0

il

in
-
B
g
=

Structure of Arrays

Array of Structures Structure of Arrays
or “AoS” or “SoA”

} 1 AoS Vector Datal[0]
Data[1]

Datal[0]
Data[1]
Data[2]
Datal[3]
Data[4]
Data[5]
Datal[6]
Data[7]

> 1 SoA Vector

Bonus!
Since W is almost always 0 or 1, we can eliminate it with a
clever math library and save 25% memory and bandwidth!

GameDevelopers

Conference

Lowest Level Parallelization:
Structure-of-Array processing of Particles

~0
E.
05
=
&)

Given:
p,(t)=position of particle n at time t
Vv (t)=velocity of particle n at time t

=
e
il
-
n:
-
o
3 i
=34

P, (t)=p,(t.) + v, (t.,) *dt +0.5* G * dt?
P,(t)=p,(t.) + Vy(t ;) *dt + 0.5 * G * dt?

Note they are independent of each other

So we can run four together using SoA
Py (=P 4y (tig) + Vi 4(tiy) *dt+0.5* G * dt

GameDevelopers

Conference

Failure Case
Gauss Seidel Solver

~0
E.
05
=
&)

Consider a simple position-based solver that

uses distance constraints. Given:

p=current positions of all objects

solve(c,, p) takes p and constraint c, and computes a new p
that satisfies c,

-
>
iji
=
E“E{
I— .
B H
3 i
=

p=solve(c,, p)
p=solve(c,, p)

Note that to solve c,, we need the result of c,,.
Can'’t solve ¢, and c, concurrently!

GameDevelopers

Conference

Faillure Case
Possible Solutions

5
e
&
)
o

Generally, It’s you're out of luck, but...

= Some cases have very limited dependencies
e.g. particle-based cloth solving

> Solution: Arrange constraints such that no four
adjacent constraints share cloth particles

« Consider a different solver
e.g. Jacobi solvers don’'t use updated values until all
constraints have been processed once
= But they need more memory (P,o,, @Nd Pcyrrent)
= And may need more iterations to converge

T
LH

z

=
B4
s
R

GameDevelopers

Conference

T

Duck Demo (EyeToy + SPH)

~0
o=
O
£l
0

it
i
- -
L
T
=

GameDevelopers

Conference

2
=
= Smoothed Particle Hydrodynamics
e (SPH) Fluid Simulation
~ | @ Smoothed-particles
% = Mass distributed around a point
= = Density falls to 0 at a radius h "l
»

e

= Forces between particles closer than 2h

GameDevelopers

Conference

T
B4
Wi
iy
=
L AP
I
= i

-0
=
O
=)
(&

= High-level parallelism
= Put particles in grid cells
= Process on different SPUs
“ (Not used In duck demo)

= Low-level parallelism
= SIMD and dual-issue on SPU

= Large n per cell may be better
@ Less grid overhead
@ Loops fast on SPU

SPH Fluid Simulation

| " .° .
GameDevelopers

Conference

SPH Loop

-0
=
O
=)
(&

< Consider two sets of particles P and Q
@ E.qg., taken from neighbor grid cells
= O(n?) problem

= Can unroll (e.g., by 4)
for (i = 0; i < numP; i++)
for (j = 0; j < numQ; j+=4)
Compute force (p;, ;)
Compute force (p;, Q1)
Compute force (p;, g.»)
Compute force (p;, g;.5)

T
B4
Wi
iy
=
L AP
I
= i

GameDevelopers

Conference

SPH Loop, SoA

~0
o=
O
£l
0

“ ldea:
@ Increase SIMD throughput with structure-of-arrays
@ Transpose and produce combinations

-

i"u

in
-
B
g
=

SOADP | e |

y
Z 7 zZ

X
y

X
y
y Z

X X
y 'y
Z Z

GameDevelopers

Conference

SPH Loop, Software Pipelined

~0
o=
O
0
0

= Add software pipelining
@ Conversion instructions can dual-issue with math

-

i"u

in
-
B
g
=

Loadl
To SoA[i

From SoA[i-1]

Store [i-1]

Compute[i] gl Compute]i] Load[i+1]

To SoA[i+1]

From SoA[i]

GameDevelopers
Conference

o
3
&)
()
o)

-
-
il
=
"
P
B G
H i
=

Recap

= Finding independence is hard!
@ Across subsystems or within subsystems?
= Across iterations or within iterations?
= Data level independence?
@ Instruction level independence?
= How about “bandwidth level” independence?

« Parallelization overhead

= Sometimes running serially wins over overhead of
parallelization

GameDevelopers

Conference

Particle Simulation Demo

- LN -
L B R

donsEk = L

pers

GameDevelo

Conference

-0
5o
O
=)
(&

=

:Iu:

n
P
i1
e
=%

Questions?

http://www.research.scea.com/

Contacts:

Vangelis Kokkevis: vangelis_kokkevis@playstation.sony.com
Eric Larsen: eric_larsen@playstation.sony.com

Steven Osman: steven_osman@playstation.sony.com

GameDevelopers

Conference

	This Talk
	Basic Issues
	What is not in this talk?
	The Cell Processor Model
	Physics on CELL
	SPU Performance Recipe
	Cloth Simulation
	Cloth Simulation
	Simulation Step
	How many vertices?
	Integration Step
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Double-buffering
	Streaming Data
	Fixing Edge Lengths
	Fixing Edge Lengths
	Rigid Bodies
	Starting the Port
	Rigid Body Pipeline
	Rigid Body Pipeline
	Profiling Scenario
	Profiling Results
	Running on the SPUs
	Why Involve the PPU?
	Batching Up Work
	Narrow-phase Collision Detection
	Narrow-phase Collision Detection
	Software Cache
	Software Cache
	Software Cache
	Software Cache
	Software Caching
	Single SPU Performance
	Multiple SPU Performance
	Multiple SPU Performance
	PPU vs SPU comparisons
	Duck Demo
	Duck Demo (Lots of Ducks)
	Duck Demo
	Duck Demo Resource Allocation
	Parallelization Recipe
	Challenges
	Broad Phase Collision Detection
	Cloth Solving
	…challenges
	…challenges
	High Level Parallelization:�Duck Demo
	Lower Level Parallelization�Rigid Body Simulation
	Structure of Arrays
	Lowest Level Parallelization:� Structure-of-Array processing of Particles
	Failure Case�Gauss Seidel Solver
	Failure Case�Possible Solutions
	Duck Demo (EyeToy + SPH)
	Smoothed Particle Hydrodynamics (SPH) Fluid Simulation
	SPH Fluid Simulation
	SPH Loop
	SPH Loop, SoA
	SPH Loop, Software Pipelined
	Recap
	Particle Simulation Demo
	Questions?

