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This Talk

Optimizing physics simulation on a multi-core 
architecture.

Focus on CELL architecture
Variety of simulation domains

Cloth, Rigid Bodies, Fluids, Particles
Practical advice based on real case-studies
Demos!



Basic Issues
Looking for opportunities to parallelize processing

High Level – Many independent solvers on multiple cores
Low Level – One solver, one/multiple cores

Coding with small memory in mind
Streaming
Batching up work
Software Caching

Speeding up processing within each unit
SIMD processing, instruction scheduling
Double-buffering

Parallelizing/optimizing existing code



What is not in this talk?

Details on specific physics algorithms
Too much material for a 1-hour talk
Will provide references to techniques

Much insight on non-CELL platforms
Concentrate on actual results
Concepts should be applicable beyond CELL



The Cell Processor Model
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Physics on CELL

Physics should happen mostly on SPUs
There’s more of them!
SPUs have greater bandwidth & performance
PPU is busy doing other stuff
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SPU Performance Recipe

Large bandwidth to and from main memory
Quick (1-cycle) LS memory access
SIMD instruction set
Concurrent DMA and processing
Challenges:

Limited LS size, shared between code and data
Random accesses of main memory are slow



Cloth Simulation



Cloth Simulation

Cloth mesh simulated as point masses 
(vertices) connected via distance constraints 
(edges).

m1m1

m2m2 m3m3

d1d1

d2d2

d3d3Mesh TriangleMesh Triangle

References:
T.Jacobsen,Advanced Character Physics, GDC 2001
A.Meggs,Taking Real-Time Cloth Beyond Curtains,GDC 2005



Simulation Step

1. Compute external forces, fE,per vertex
2. Compute new vertex positions [ Integration ]:

pt+1 = (2pt− pt−1)+ 1

3. Fix edge lengths 
Adjust vertex positions

4. Correct penetrations with collision geometry
Adjust vertex positions

2f
E ∗ 1m ∗Δt2



How many vertices?

How many vertices fit in 256K (less actually)? 
A lot, surprisingly…

Tips:
Look for opportunities to stream data
Keep in LS only data required for each step



Integration Step

Less than 4000 verts in 200K of memory
We don’t need to keep them all in LS
Keep vertex data in main memory and bring it 
in in blocks 

16  +  16             +  16  +   4 = 52 bytes / vertex

pt+1 = (2pt− pt−1)+ 12fE ∗
1
m ∗Δt2



Streaming Integration
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Streaming Integration
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Double-buffering

Take advantage of concurrent DMA and 
processing to hide transfer times

Without double-buffering:

Process B0 DMA_OUT 
B0

DMA_IN 
B1

DMA_IN 
B0 Process B1 DMA_OUT 

B1
…

With double-buffering:
Process B0

DMA_IN 
B1

DMA_IN 
B0

…
DMA_OUT 

B0

Process B1

DMA_IN 
B2

Process B2

DMA_OUT 
B1

DMA_IN 
B3



Streaming Data

Streaming is possible when the data access 
pattern is simple and predictable (e.g. linear)

Number of verts processed per frame depends on 
processing speed and bandwidth but not LS size

Unfortunately, not every step in the cloth 
solver can be fully streamed 

Fixing edge lengths requires random memory 
access…



Fixing Edge Lengths

Points coming out of the integration step don’t 
necessarily satisfy edge distance constraints

struct Edge
{

int v1;
int v2;
float restLen;

}
p[v1] p[v2]

p[v1] p[v2]

Vector3 d = p[v2] – p[v1];
float len = sqrt(dot(d,d));
diff = (len-restLen)/len;
p[v1] -= d * 0.5 * diff;
p[v2] += d * 0.5 * diff;



Fixing Edge Lengths

An iterative process: Fix one edge at a time 
by adjusting 2 vertex positions
Requires random access to particle positions 
array
Solution:

Keep all particle positions in LS
Stream in edge data
In 200K we can fit 200KB / 16B > 12K vertices



Rigid Bodies

Our group is currently porting the AGEIATM

PhysXTM SDK to CELL
Large codebase written with a PC 
architecture in mind

Assumes easy random access to memory
Processes tasks sequentially (no parallelism)

Interesting example on how to port existing 
code to a multi-core architecture



Starting the Port

Determine all the stages of the rigid body 
pipeline
Look for stages that are good candidates for 
parallelizing/optimizing
Profile code to make sure we are focusing on 
the right parts
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Rigid Body Pipeline
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Profiling Scenario



Profiling Results
Cumulative Frame Time
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Running on the SPUs

Three steps:
1. (PPU) Pre-process

“Gather” operation (extract data from PhysX data 
structures and pack it in MM)

2. (SPU) Execute
DMA packed data from MM to LS
Process data and store output in LS
DMA output to MM

3. (PPU) Post-process
“Scatter” operation (unpack output data and put back in
PhysX data structures)



Why Involve the PPU?
Required PhysX data is not conveniently packed 
Data is often not aligned
We need to use PhysX data structures to avoid 
breaking features we haven’t ported

Solutions:
Use list DMAs to bring in data
Modify existing code to force alignment
Change PhysX code to work with new data structures



Batching Up Work
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A

Narrow-phase Collision Detection

Problem:
A list of object pairs that may be colliding
Want to do contact processing on SPUs
Pairs list has references to geometry

C

B

(A,C)

(A,B)

(B,C)

…



Narrow-phase Collision Detection

Data locality
Same bodies may be in several pairs
Geometry may be instanced for different bodies

SPU memory access
Can only access main memory with DMA
No hardware cache
Data reuse must be explicit



Software Cache

Idea: make a (read-only) software cache
Cache entry is one geometric object
Entries have variable size

Basic operation
SPU checks cache for object
If not in cache, object fetched with DMA
Cache returns a local address for object



Software Cache

Data Structures
Two entry buffers
New entries appended to “current” buffer

Hash-table used to record and find loaded entries

A

B
C

Buffer 0

Next DMA

Buffer 1



Software Cache

Data Replacement
When space runs out in a buffer

Overwrite data in second buffer

Considerations
Does not fragment memory
No searches for free space
But does not prefer frequently used data



Software Cache

Hiding the DMA latency
Double-buffering

Start DMA for un-cached entries
Process previously DMA’d entries

Process/pre-fetch batches
Fetch and compute times vary

Batching may improve balance
DMA-lists useful

One DMA command
Multiple chunks of data gathered

Current Buffer

D
F

E

Process

DMA

A

B
C



Software Caching

Conclusions
Simple cache is practical

Used for small convex objects in PhysX

Design considerations
Tradeoff of cache-logic cycles vs. bandwidth saved
Pre-fetching important to include



Single SPU Performance

PPU only:PPU only:

Exec             Exec             

PPU + SPU:PPU + SPU:

PPUPPU

PPUPPU

SPUSPU Exec                         Exec                         

FreeFree

SPU Exec < PPU Exec: SIMD + fast mem accessSPU Exec < PPU Exec: SIMD + fast mem access

PreP PostP



Multiple SPU Performance

Pre- and Post- processing times determine 
how many SPUs can be used effectively



Multiple SPU Performance
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PPU vs SPU comparisons
Convex Stack (500 boxes)
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Duck Demo

One of our first CELL demos (spring 2005)
Several interacting physics systems:

Rigid bodies (ducks & boats)
Height-field water surface
Cloth with ripping (sails)
Particle based fluids (splashes + cups)



Duck Demo (Lots of Ducks)



Duck Demo

Ambitious project with short deadline
Early PC prototypes of some pieces
Most straightforward way to parallelize:

Dedicate one SPU for each subsystem
Each piece could be developed and tested 
individually



Duck Demo Resource Allocation
PU – main loop

SPU thread synchronization, draw calls

SPU0 – height field water (<50%)

SPU1 – splashes iso-surface (<50%)

SPU2 – cloth sails for boat 1 (<50%)

SPU3 – cloth sails for boat 2 (<50%)

SPU4 – rigid body collision/response (95%)

HF water

Iso-Surface

Cloth

Cloth

Rigid Bodies

1 frame



Parallelization Recipe

One three-step approach to code 
parallelization:

1. Find independent components
2. Run them side-by-side
3. Recursively apply recipe to components



Challenges

Step 1: Find independent components
Where do you look?
Maybe you need to break apart and overlap 
your data?

e.g. Broad phase collision detection
Maybe you need to break apart your loop into 
individual iterations?

e.g. Solving cloth constraints



Broad Phase Collision Detection

600 Objects

200 Objects A 200 Objects B 200 Objects C

200 Objects A 200 Objects Bvs

200 Objects A 200 Objects Cvs

200 Objects C200 Objects B vs

We can execute 
all three of 

these 
simultaneously

Need to test 600 rigid bodies against each other.



Cloth Solving
for (i=1 to 5) {

cloth=solve(cloth)
}

A B

C

for (i=1 to 5) {
solve_on_proc1(a);
solve_on_proc2(b);
wait_for_all()
solve_on_proc1(c);
wait_for_all();

}



…challenges

Step 2: Run them side-by-side
Bandwidth and cache issues

Need good data layout to avoid thrashing cache 
or bus

Processor issues
Need efficient processor management scheme

What if the job sizes are very different?
e.g. a suit of cloth and a separate neck tie

Need further refinement of large jobs, or you only 
save on the small neck tie time



…challenges

Step 3: Recurse
When do you stop?

Overhead of launching smaller jobs
Synchronization when a stage is done

e.g. Gather results from all collision detection before 
solving

But this can go down to the instruction level
e.g. Using Structure-of-Arrays, transform four 

independent vectors at once



High Level Parallelization:
Duck Demo

Fluid Simulation Fluid Surface Rigid Bodies Cloth Sails

Dependency exists

Fluid Simulation Fluid Surface

Rigid Bodies

Cloth Sails

Cloth Boat 1

Cloth Boat 2

Note that the parts didn’t take an 
equal amount of time to run.  We 

could have done better given time!

But cloth was for 
multiple boats



Broad Phase
Collision Detection

Narrow Phase
Collision Detection

Constraint Solving

Lower Level Parallelization
Rigid Body Simulation

600 bodies 
example

Objects A Objects B Objects C

Broad Phase
Collision Detection

Narrow Phase
Collision Detection

Constraint Solving

Objects A Objects B

Objects CObjects B

Objects A

Objects C

Proc 3Proc 2Proc 1 Proc 3Proc 2Proc 1 Proc 3Proc 2Proc 1



Structure of Arrays
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Array of Structures
or “AoS”

Structure of Arrays
or “SoA”

1 AoS Vector

1 SoA Vector

Bonus!
Since W is almost always 0 or 1, we can eliminate it with a 
clever math library and save 25% memory and bandwidth!



Lowest Level Parallelization:
Structure-of-Array processing of Particles

Given:
pn(t)=position of particle n at time t
vn(t)=velocity of particle n at time t

p1(ti)=p1(ti-1) + v1(ti-1) * dt + 0.5 * G * dt2

p2(ti)=p2(ti-1) + v2(ti-1) * dt + 0.5 * G * dt2

…

Note they are independent of each other
So we can run four together using SoA

p{1-4}(ti)=p{1-4}(ti-1) + v{1-4}(ti-1) * dt + 0.5 * G * dt2



Failure Case
Gauss Seidel Solver

Consider a simple position-based solver that 
uses distance constraints.  Given:
p=current positions of all objects
solve(cn, p) takes p and constraint cn and computes a new p

that satisfies cn

p=solve(c0, p)
p=solve(c1, p)

…

Note that to solve c1, we need the result of c0.  
Can’t solve c0 and c1 concurrently!



Failure Case
Possible Solutions

Generally, it’s you’re out of luck, but…
Some cases have very limited dependencies
e.g. particle-based cloth solving

Solution: Arrange constraints such that no four 
adjacent constraints share cloth particles

Consider a different solver
e.g. Jacobi solvers don’t use updated values until all 
constraints have been processed once

But they need more memory (pnew and pcurrent)
And may need more iterations to converge



Duck Demo (EyeToy + SPH)



Smoothed Particle Hydrodynamics
(SPH) Fluid Simulation

Smoothed-particles
Mass distributed around a point
Density falls to 0 at a radius h

Forces between particles closer than 2h

h



SPH Fluid Simulation
High-level parallelism

Put particles in grid cells
Process on different SPUs
(Not used in duck demo)

Low-level parallelism
SIMD and dual-issue on SPU
Large n per cell may be better

Less grid overhead
Loops fast on SPU



SPH Loop
Consider two sets of particles P and Q

E.g., taken from neighbor grid cells
O(n2) problem

Can unroll (e.g., by 4)
for (i = 0; i < numP; i++)

for (j = 0; j < numQ; j+=4)
Compute force (pi, qj)
Compute force (pi, qj+1)
Compute force (pi, qj+2)
Compute force (pi, qj+3)



SPH Loop, SoA
Idea:

Increase SIMD throughput with structure-of-arrays
Transpose and produce combinations

pi

qj

qj+1

x y z

x y z

x y z

x
y
z

x
y
z

x
y
z

x
y
z

SoA p

SoA q x
y
z

x
y
z

x
y
z

x
y
zx y z

x y zqj+2

qj+3



SPH Loop, Software Pipelined
Add software pipelining

Conversion instructions can dual-issue with math

Load[i]

To SoA[i]

Compute[i]

From SoA[i]
Store[i]

Compute[i]
Load[i+1]

Store [i-1]

To SoA[i+1]

From SoA[i-1]

Pipe 0 Pipe 1



Recap

Finding independence is hard!
Across subsystems or within subsystems?
Across iterations or within iterations?
Data level independence?
Instruction level independence?
How about “bandwidth level” independence?

Parallelization overhead
Sometimes running serially wins over overhead of 
parallelization



Particle Simulation Demo



Questions?

http://www.research.scea.com/

Contacts:
Vangelis Kokkevis: vangelis_kokkevis@playstation.sony.com
Eric Larsen: eric_larsen@playstation.sony.com
Steven Osman: steven_osman@playstation.sony.com
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