
High-Performance Physics Solver Design
for Next Generation Consoles

Vangelis Kokkevis
Steven Osman

Eric Larsen

Simulation Technology Group

Sony Computer Entertainment America
US R&D

This Talk

Optimizing physics simulation on a multi-core
architecture.

Focus on CELL architecture
Variety of simulation domains

Cloth, Rigid Bodies, Fluids, Particles
Practical advice based on real case-studies
Demos!

Basic Issues
Looking for opportunities to parallelize processing

High Level – Many independent solvers on multiple cores
Low Level – One solver, one/multiple cores

Coding with small memory in mind
Streaming
Batching up work
Software Caching

Speeding up processing within each unit
SIMD processing, instruction scheduling
Double-buffering

Parallelizing/optimizing existing code

What is not in this talk?

Details on specific physics algorithms
Too much material for a 1-hour talk
Will provide references to techniques

Much insight on non-CELL platforms
Concentrate on actual results
Concepts should be applicable beyond CELL

The Cell Processor Model

PPU

SPE0

DMA

256K LS

SPU0

SPE0

DMA

256K LS

SPU1

SPE0

DMA

256K LS

SPU2

SPE0

DMA

256K LS

SPU3

DMA

256K LS

SPU4

DMA

256K LS

SPU5

DMA

256K LS

SPU6

DMA

256K LS

SPU7

Main Memory

L1/L2

Physics on CELL

Physics should happen mostly on SPUs
There’s more of them!
SPUs have greater bandwidth & performance
PPU is busy doing other stuff

PPU

SPE0
DMA

256K LS

SPU0

DMA

SPU1

DMA

SPU2

DMA

SPU3

DMA

SPU4

DMA

SPU5

DMA

SPU6

DMA

SPU7

Main Memory

L1/L2

256K LS 256K LS 256K LS

256K LS 256K LS 256K LS 256K LS

SPU Performance Recipe

Large bandwidth to and from main memory
Quick (1-cycle) LS memory access
SIMD instruction set
Concurrent DMA and processing
Challenges:

Limited LS size, shared between code and data
Random accesses of main memory are slow

Cloth Simulation

Cloth Simulation

Cloth mesh simulated as point masses
(vertices) connected via distance constraints
(edges).

m1m1

m2m2 m3m3

d1d1

d2d2

d3d3Mesh TriangleMesh Triangle

References:
T.Jacobsen,Advanced Character Physics, GDC 2001
A.Meggs,Taking Real-Time Cloth Beyond Curtains,GDC 2005

Simulation Step

1. Compute external forces, fE,per vertex
2. Compute new vertex positions [Integration]:

pt+1 = (2pt− pt−1)+ 1

3. Fix edge lengths
Adjust vertex positions

4. Correct penetrations with collision geometry
Adjust vertex positions

2f
E ∗ 1m ∗Δt2

How many vertices?

How many vertices fit in 256K (less actually)?
A lot, surprisingly…

Tips:
Look for opportunities to stream data
Keep in LS only data required for each step

Integration Step

Less than 4000 verts in 200K of memory
We don’t need to keep them all in LS
Keep vertex data in main memory and bring it
in in blocks

16 + 16 + 16 + 4 = 52 bytes / vertex

pt+1 = (2pt− pt−1)+ 12fE ∗
1
m ∗Δt2

Streaming Integration

B0 B1 B2 B3

B0 B1 B2 B3

B0 B1 B2 B3

pt

pt−1

fE

B0 B1 B2 B31
m

Main Memory

Local Store

Streaming Integration

B0 B1 B2 B3

B0 B1 B2 B3

B0 B1 B2 B3

pt

pt−1

fE

B0 B1 B2 B31
m

Local Store

Main Memory

DMA_IN
B0

B0 B0 B0 B0

Streaming Integration

B0 B1 B2 B3

B0 B1 B2 B3

B0 B1 B2 B3

pt

pt−1

fE

B0 B1 B2 B31
m

Main Memory

Local Store

DMA_IN
B0

B0 B0 B0 B0

Process B0

Streaming Integration

B0 B1 B2 B3

B0 B1 B2 B3

B0 B1 B2 B3

pt

pt−1

fE

Process B0 DMA_OUT
B0

B0 B1 B2 B31
m

Main Memory

Local Store

DMA_IN
B0

B0 B0 B0 B0

Streaming Integration

B0 B1 B2 B3

B0 B1 B2 B3

B0 B1 B2 B3

pt

pt−1

fE

Process B0 DMA_OUT
B0

B0 B1 B2 B31
m

DMA_IN
B1

Main Memory

Local Store

DMA_IN
B0

B1 B1 B1 B1

Streaming Integration

B0 B1 B2 B3

B0 B1 B2 B3

B0 B1 B2 B3

pt

pt−1

fE

Process B0 DMA_OUT
B0

B0 B1 B2 B31
m

DMA_IN
B1

Main Memory

Local Store

DMA_IN
B0

B1 B1 B1 B1

Process B1

Streaming Integration

B0 B1 B2 B3

B0 B1 B2 B3

B0 B1 B2 B3

pt

pt−1

fE

Process B0 DMA_OUT
B0

B0 B1 B2 B31
m

DMA_IN
B1

Main Memory

Local Store

DMA_IN
B0

B1 B1 B1 B1

Process B1 DMA_OUT
B1

Streaming Integration

B0 B1 B2 B3

B0 B1 B2 B3

B0 B1 B2 B3

pt

pt−1

fE

Process B0 DMA_OUT
B0

B0 B1 B2 B31
m

DMA_IN
B1

Main Memory

Local Store

DMA_IN
B0

B1 B1 B1 B1

Process B1 DMA_OUT
B1

…

Double-buffering

Take advantage of concurrent DMA and
processing to hide transfer times

Without double-buffering:

Process B0 DMA_OUT
B0

DMA_IN
B1

DMA_IN
B0 Process B1 DMA_OUT

B1
…

With double-buffering:
Process B0

DMA_IN
B1

DMA_IN
B0

…
DMA_OUT

B0

Process B1

DMA_IN
B2

Process B2

DMA_OUT
B1

DMA_IN
B3

Streaming Data

Streaming is possible when the data access
pattern is simple and predictable (e.g. linear)

Number of verts processed per frame depends on
processing speed and bandwidth but not LS size

Unfortunately, not every step in the cloth
solver can be fully streamed

Fixing edge lengths requires random memory
access…

Fixing Edge Lengths

Points coming out of the integration step don’t
necessarily satisfy edge distance constraints

struct Edge
{

int v1;
int v2;
float restLen;

}
p[v1] p[v2]

p[v1] p[v2]

Vector3 d = p[v2] – p[v1];
float len = sqrt(dot(d,d));
diff = (len-restLen)/len;
p[v1] -= d * 0.5 * diff;
p[v2] += d * 0.5 * diff;

Fixing Edge Lengths

An iterative process: Fix one edge at a time
by adjusting 2 vertex positions
Requires random access to particle positions
array
Solution:

Keep all particle positions in LS
Stream in edge data
In 200K we can fit 200KB / 16B > 12K vertices

Rigid Bodies

Our group is currently porting the AGEIATM

PhysXTM SDK to CELL
Large codebase written with a PC
architecture in mind

Assumes easy random access to memory
Processes tasks sequentially (no parallelism)

Interesting example on how to port existing
code to a multi-core architecture

Starting the Port

Determine all the stages of the rigid body
pipeline
Look for stages that are good candidates for
parallelizing/optimizing
Profile code to make sure we are focusing on
the right parts

Constraint
Solve

Constraint
Solve

Broadphase
Collision Detection

Rigid Body Pipeline

Broadphase
Collision Detection

Narrowphase
Collision Detection

Narrowphase
Collision Detection

Constraint PrepConstraint Prep

IntegrationIntegration

Constraint PrepConstraint Prep

Points of contact
between bodies

Potentially colliding
body pairs

New body positions

Updated body
velocities

Current body positions

Constraint Equations

Rigid Body Pipeline

Broadphase
Collision Detection

Broadphase
Collision Detection

Points of contact
between bodies

Potentially colliding
body pairs

New body positions

Updated body
velocities

Current body positions

Constraint Equations

NP NP NP

CP CP CP

CS CS CS

I I I

Profiling Scenario

Profiling Results
Cumulative Frame Time

0

10000

20000

30000

40000

50000

60000

70000

1 57 11
3

16
9

22
5

28
1

33
7

39
3

44
9

50
5

56
1

61
7

67
3

72
9

78
5

84
1

89
7

95
3

10
09

10
65

11
21

11
77

12
33

12
89

13
45

14
01

14
57

15
13

15
69

16
25

16
81

17
37

17
93

18
49

19
05

19
61

Other
INTEGRATION
SOLVER
CONSTRAINT_PREP
NARROWPHASE
BROADPHASE

Running on the SPUs

Three steps:
1. (PPU) Pre-process

“Gather” operation (extract data from PhysX data
structures and pack it in MM)

2. (SPU) Execute
DMA packed data from MM to LS
Process data and store output in LS
DMA output to MM

3. (PPU) Post-process
“Scatter” operation (unpack output data and put back in
PhysX data structures)

Why Involve the PPU?
Required PhysX data is not conveniently packed
Data is often not aligned
We need to use PhysX data structures to avoid
breaking features we haven’t ported

Solutions:
Use list DMAs to bring in data
Modify existing code to force alignment
Change PhysX code to work with new data structures

Batching Up Work

Task
Description

Task
Description

batch
inputs/
outputs

batch
inputs/
outputs

Work batch
buffers in MM
Work batch

buffers in MM

PhysX
data-structures

PhysX
data-structures

PPU
Pre-Process

PPU
Pre-Process

Task
Description

Task
Description

batch
inputs/
outputs

batch
inputs/
outputs

……

SPU
Execute

SPU
Execute

PPU
Post-Process

PPU
Post-Process

PhysX
data-structures

PhysX
data-structures

Create work batches for each task

A

Narrow-phase Collision Detection

Problem:
A list of object pairs that may be colliding
Want to do contact processing on SPUs
Pairs list has references to geometry

C

B

(A,C)

(A,B)

(B,C)

…

Narrow-phase Collision Detection

Data locality
Same bodies may be in several pairs
Geometry may be instanced for different bodies

SPU memory access
Can only access main memory with DMA
No hardware cache
Data reuse must be explicit

Software Cache

Idea: make a (read-only) software cache
Cache entry is one geometric object
Entries have variable size

Basic operation
SPU checks cache for object
If not in cache, object fetched with DMA
Cache returns a local address for object

Software Cache

Data Structures
Two entry buffers
New entries appended to “current” buffer

Hash-table used to record and find loaded entries

A

B
C

Buffer 0

Next DMA

Buffer 1

Software Cache

Data Replacement
When space runs out in a buffer

Overwrite data in second buffer

Considerations
Does not fragment memory
No searches for free space
But does not prefer frequently used data

Software Cache

Hiding the DMA latency
Double-buffering

Start DMA for un-cached entries
Process previously DMA’d entries

Process/pre-fetch batches
Fetch and compute times vary

Batching may improve balance
DMA-lists useful

One DMA command
Multiple chunks of data gathered

Current Buffer

D
F

E

Process

DMA

A

B
C

Software Caching

Conclusions
Simple cache is practical

Used for small convex objects in PhysX

Design considerations
Tradeoff of cache-logic cycles vs. bandwidth saved
Pre-fetching important to include

Single SPU Performance

PPU only:PPU only:

Exec Exec

PPU + SPU:PPU + SPU:

PPUPPU

PPUPPU

SPUSPU Exec Exec

FreeFree

SPU Exec < PPU Exec: SIMD + fast mem accessSPU Exec < PPU Exec: SIMD + fast mem access

PreP PostP

Multiple SPU Performance

Pre- and Post- processing times determine
how many SPUs can be used effectively

Multiple SPU Performance

11 22 33 44PPUPPU

1 SPU1 SPU

11

22

33

44SS

3 SPUs3 SPUs

11 22 4433

11

22

33

44
2 SPUs2 SPUs

PPU vs SPU comparisons
Convex Stack (500 boxes)

0

10000

20000

30000

40000

50000

60000

70000

80000

1 35 69 10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

40
9

44
3

47
7

51
1

54
5

57
9

61
3

64
7

68
1

71
5

74
9

78
3

81
7

85
1

88
5

91
9

95
3

98
7

10
21

10
55

10
89

11
23

11
57

11
91

12
25

12
59

12
93

frame

m
ic

ro
se

co
nd

s PPU-only
1-SPU
2-SPUs
3-SPUs
4-SPUs

Duck Demo

One of our first CELL demos (spring 2005)
Several interacting physics systems:

Rigid bodies (ducks & boats)
Height-field water surface
Cloth with ripping (sails)
Particle based fluids (splashes + cups)

Duck Demo (Lots of Ducks)

Duck Demo

Ambitious project with short deadline
Early PC prototypes of some pieces
Most straightforward way to parallelize:

Dedicate one SPU for each subsystem
Each piece could be developed and tested
individually

Duck Demo Resource Allocation
PU – main loop

SPU thread synchronization, draw calls

SPU0 – height field water (<50%)

SPU1 – splashes iso-surface (<50%)

SPU2 – cloth sails for boat 1 (<50%)

SPU3 – cloth sails for boat 2 (<50%)

SPU4 – rigid body collision/response (95%)

HF water

Iso-Surface

Cloth

Cloth

Rigid Bodies

1 frame

Parallelization Recipe

One three-step approach to code
parallelization:

1. Find independent components
2. Run them side-by-side
3. Recursively apply recipe to components

Challenges

Step 1: Find independent components
Where do you look?
Maybe you need to break apart and overlap
your data?

e.g. Broad phase collision detection
Maybe you need to break apart your loop into
individual iterations?

e.g. Solving cloth constraints

Broad Phase Collision Detection

600 Objects

200 Objects A 200 Objects B 200 Objects C

200 Objects A 200 Objects Bvs

200 Objects A 200 Objects Cvs

200 Objects C200 Objects B vs

We can execute
all three of

these
simultaneously

Need to test 600 rigid bodies against each other.

Cloth Solving
for (i=1 to 5) {

cloth=solve(cloth)
}

A B

C

for (i=1 to 5) {
solve_on_proc1(a);
solve_on_proc2(b);
wait_for_all()
solve_on_proc1(c);
wait_for_all();

}

…challenges

Step 2: Run them side-by-side
Bandwidth and cache issues

Need good data layout to avoid thrashing cache
or bus

Processor issues
Need efficient processor management scheme

What if the job sizes are very different?
e.g. a suit of cloth and a separate neck tie

Need further refinement of large jobs, or you only
save on the small neck tie time

…challenges

Step 3: Recurse
When do you stop?

Overhead of launching smaller jobs
Synchronization when a stage is done

e.g. Gather results from all collision detection before
solving

But this can go down to the instruction level
e.g. Using Structure-of-Arrays, transform four

independent vectors at once

High Level Parallelization:
Duck Demo

Fluid Simulation Fluid Surface Rigid Bodies Cloth Sails

Dependency exists

Fluid Simulation Fluid Surface

Rigid Bodies

Cloth Sails

Cloth Boat 1

Cloth Boat 2

Note that the parts didn’t take an
equal amount of time to run. We

could have done better given time!

But cloth was for
multiple boats

Broad Phase
Collision Detection

Narrow Phase
Collision Detection

Constraint Solving

Lower Level Parallelization
Rigid Body Simulation

600 bodies
example

Objects A Objects B Objects C

Broad Phase
Collision Detection

Narrow Phase
Collision Detection

Constraint Solving

Objects A Objects B

Objects CObjects B

Objects A

Objects C

Proc 3Proc 2Proc 1 Proc 3Proc 2Proc 1 Proc 3Proc 2Proc 1

Structure of Arrays

X0 Y0 Z0 W0

X1 Y1 Z1 W1

X2 Y2 Z2 W2

X3 Y3 Z3 W3

X4 Y4 Z4 W4

X5 Y5 Z5 W5

X6 Y6 Z6 W6

X7 Y7 Z7 W7

Data[0]

Data[1]

Data[2]

Data[3]

Data[4]

Data[5]

Data[6]

Data[7]

X0

Y0

Z0

W0

X1

Y1

Z1

W1

X2

Y2

Z2

W2

X3

Y3

Z3

W3

X4

Y4

Z4

W4

X5

Y5

Z5

W5

X6

Y6

Z6

W6

X7

Y7

Z7

W7

Data[0]

Data[1]

Data[2]

Data[3]

Data[4]

Data[5]

Data[6]

Data[7]

Array of Structures
or “AoS”

Structure of Arrays
or “SoA”

1 AoS Vector

1 SoA Vector

Bonus!
Since W is almost always 0 or 1, we can eliminate it with a
clever math library and save 25% memory and bandwidth!

Lowest Level Parallelization:
Structure-of-Array processing of Particles

Given:
pn(t)=position of particle n at time t
vn(t)=velocity of particle n at time t

p1(ti)=p1(ti-1) + v1(ti-1) * dt + 0.5 * G * dt2

p2(ti)=p2(ti-1) + v2(ti-1) * dt + 0.5 * G * dt2

…

Note they are independent of each other
So we can run four together using SoA

p{1-4}(ti)=p{1-4}(ti-1) + v{1-4}(ti-1) * dt + 0.5 * G * dt2

Failure Case
Gauss Seidel Solver

Consider a simple position-based solver that
uses distance constraints. Given:
p=current positions of all objects
solve(cn, p) takes p and constraint cn and computes a new p

that satisfies cn

p=solve(c0, p)
p=solve(c1, p)

…

Note that to solve c1, we need the result of c0.
Can’t solve c0 and c1 concurrently!

Failure Case
Possible Solutions

Generally, it’s you’re out of luck, but…
Some cases have very limited dependencies
e.g. particle-based cloth solving

Solution: Arrange constraints such that no four
adjacent constraints share cloth particles

Consider a different solver
e.g. Jacobi solvers don’t use updated values until all
constraints have been processed once

But they need more memory (pnew and pcurrent)
And may need more iterations to converge

Duck Demo (EyeToy + SPH)

Smoothed Particle Hydrodynamics
(SPH) Fluid Simulation

Smoothed-particles
Mass distributed around a point
Density falls to 0 at a radius h

Forces between particles closer than 2h

h

SPH Fluid Simulation
High-level parallelism

Put particles in grid cells
Process on different SPUs
(Not used in duck demo)

Low-level parallelism
SIMD and dual-issue on SPU
Large n per cell may be better

Less grid overhead
Loops fast on SPU

SPH Loop
Consider two sets of particles P and Q

E.g., taken from neighbor grid cells
O(n2) problem

Can unroll (e.g., by 4)
for (i = 0; i < numP; i++)

for (j = 0; j < numQ; j+=4)
Compute force (pi, qj)
Compute force (pi, qj+1)
Compute force (pi, qj+2)
Compute force (pi, qj+3)

SPH Loop, SoA
Idea:

Increase SIMD throughput with structure-of-arrays
Transpose and produce combinations

pi

qj

qj+1

x y z

x y z

x y z

x
y
z

x
y
z

x
y
z

x
y
z

SoA p

SoA q x
y
z

x
y
z

x
y
z

x
y
zx y z

x y zqj+2

qj+3

SPH Loop, Software Pipelined
Add software pipelining

Conversion instructions can dual-issue with math

Load[i]

To SoA[i]

Compute[i]

From SoA[i]
Store[i]

Compute[i]
Load[i+1]

Store [i-1]

To SoA[i+1]

From SoA[i-1]

Pipe 0 Pipe 1

Recap

Finding independence is hard!
Across subsystems or within subsystems?
Across iterations or within iterations?
Data level independence?
Instruction level independence?
How about “bandwidth level” independence?

Parallelization overhead
Sometimes running serially wins over overhead of
parallelization

Particle Simulation Demo

Questions?

http://www.research.scea.com/

Contacts:
Vangelis Kokkevis: vangelis_kokkevis@playstation.sony.com
Eric Larsen: eric_larsen@playstation.sony.com
Steven Osman: steven_osman@playstation.sony.com

	This Talk
	Basic Issues
	What is not in this talk?
	The Cell Processor Model
	Physics on CELL
	SPU Performance Recipe
	Cloth Simulation
	Cloth Simulation
	Simulation Step
	How many vertices?
	Integration Step
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Streaming Integration
	Double-buffering
	Streaming Data
	Fixing Edge Lengths
	Fixing Edge Lengths
	Rigid Bodies
	Starting the Port
	Rigid Body Pipeline
	Rigid Body Pipeline
	Profiling Scenario
	Profiling Results
	Running on the SPUs
	Why Involve the PPU?
	Batching Up Work
	Narrow-phase Collision Detection
	Narrow-phase Collision Detection
	Software Cache
	Software Cache
	Software Cache
	Software Cache
	Software Caching
	Single SPU Performance
	Multiple SPU Performance
	Multiple SPU Performance
	PPU vs SPU comparisons
	Duck Demo
	Duck Demo (Lots of Ducks)
	Duck Demo
	Duck Demo Resource Allocation
	Parallelization Recipe
	Challenges
	Broad Phase Collision Detection
	Cloth Solving
	…challenges
	…challenges
	High Level Parallelization:�Duck Demo
	Lower Level Parallelization�Rigid Body Simulation
	Structure of Arrays
	Lowest Level Parallelization:� Structure-of-Array processing of Particles
	Failure Case�Gauss Seidel Solver
	Failure Case�Possible Solutions
	Duck Demo (EyeToy + SPH)
	Smoothed Particle Hydrodynamics (SPH) Fluid Simulation
	SPH Fluid Simulation
	SPH Loop
	SPH Loop, SoA
	SPH Loop, Software Pipelined
	Recap
	Particle Simulation Demo
	Questions?

