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This Talk

= Optimizing physics simulation on a multi-core
architecture.

@ Focus on CELL architecture

= Variety of simulation domains
= Cloth, Rigid Bodies, Fluids, Particles

@ Practical advice based on real case-studies
= Demos!
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Basic Issues

= Looking for opportunities to parallelize processing
@ High Level — Many independent solvers on multiple cores
= Low Level — One solver, one/multiple cores
= Coding with small memory in mind
@ Streaming
@ Batching up work
= Software Caching
= Speeding up processing within each unit
@ SIMD processing, instruction scheduling
@ Double-buffering

= Parallelizing/optimizing existing code
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What is not in this talk?

= Detalls on specific physics algorithms
= Too much material for a 1-hour talk
= WIll provide references to techniques

=« Much insight on non-CELL platforms

@ Concentrate on actual results
= Concepts should be applicable beyond CELL
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The Cell Processor Model
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Physics on CELL

SPUO g SPU1 g SPU2 g SPU3

256K LS| |l 256K LS| [l 256K LS| |l [256K LS

Main Memory

DMA DMA DMA DMA
256K LS 256K LS 256K LS| | 256K LS

SPU4 g SPUS i SPUG g SPUY

= Physics should happen mostly on SPUs
@ There’s more of them!
= SPUs have greater bandwidth & performance
@ PPU is busy doing other stuff
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SPU Performance Recipe

= Large bandwidth to and from main memory
= Quick (1-cycle) LS memory access

= SIMD Instruction set

= Concurrent DMA and processing

= Challenges:
@ Limited LS size, shared between code and data
= Random accesses of main memory are slow
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Cloth Simulation
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Cloth Simulation

= Cloth mesh simulated as point masses
(vertices) connected via distance constraints
(edges).

4 eM
: i A
m,*———*m,

@ References:

@ T.Jacobsen,Advanced Character Physics, GDC 2001
@ A.Meggs,Taking Real-Time Cloth Beyond Curtains,GDC 2005
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1.

3.

4.

Simulation Step

Compute external forces, fE,per vertex
Compute new vertex positions [ Integration |:

ptl = (2p! —p!™1) + 3FF « 2 x AL

Fix edge lengths
= Adjust vertex positions

Correct penetrations with collision geometry

= Adjust vertex positions
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How many vertices?
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= How many vertices fit in 256K (less actually)?
= Alot, surprisingly...

@ Tips:
= Look for opportunities to stream data
= Keep in LS only data required for each step
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it Integration Step
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2 pt = (2pt — ) + 51 x L AR
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= 16 + 16 + 16 + 4 =52 bytes / vertex

= Less than 4000 verts in 200K of memory
= We don’t need to keep them all in LS

= Keep vertex data in main memory and bring it
In in blocks
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Streaming Integration
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Streaming Integration
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Streaming Integration
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Streaming Integration
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Streaming Integration
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Streaming Integration
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Streaming Integration
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Double-buffering
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= Take advantage of concurrent DMA and
processing to hide transfer times
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Without double-buffering:

DMA_IN DMA_ouUT | DMA_IN DMA_OUT [
IIIE!III IIIIIHHHH%!%!IIIII III!III IIIEIIII IIIIIHHHH%!%!IIIII III!III

With double-buffering:

IIIIIHH%HH%IIIII IIIIIHHH%HHHIIIII IIIIIHH%HH%’IIII
DMA_IN DMA_IN DMA_OUT | DMA_IN DMA_OUT | DMA_IN
BO B1 BO B2 B1 B3
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Streaming Data
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= Streaming Is possible when the data access
pattern is simple and predictable (e.g. linear)
= Number of verts processed per frame depends on
processing speed and bandwidth but not LS size
= Unfortunately, not every step in the cloth
solver can be fully streamed

= FiXing edge lengths requires random memory
access...
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Fixing Edge Lengths
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= Points coming out of the integration step don’t
necessarily satisfy edge distance constraints
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struct Edge . --------- @ e
{ ................. e ..,

int vl T

i nt V2, ........................ . ﬂ

fl oat restLen; plvi] plv2]
}

Vector3 d = p[v2] - p[Vvl]; Q \ Q Z 0

float len = sqrt(dot(d,d));
diff = (len-restLen)/I en;

plvi] -=d * 0.5 * diff; — &
o[v2] +=d * 0.5 * diff: o[v1] .
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Fixing Edge Lengths

= An Iterative process: Fix one edge at a time
by adjusting 2 vertex positions

= Requires random access to particle positions
array

= Solution:
= Keep all particle positions in LS

@ Stream in edge data
= In 200K we can fit 200KB / 16B > 12K vertices
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Rigid Bodies

0
=
)
-
(da )

= Our group is currently porting the AGEIA™
PhysX™ SDK to CELL

= Large codebase written with a PC
architecture in mind
= Assumes easy random access to memory
= Processes tasks sequentially (no parallelism)

= Interesting example on how to port existing
code to a multi-core architecture
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Starting the Port
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=« Determine all the stages of the rigid body
nipeline

= Look for stages that are good candidates for
parallelizing/optimizing

= Profile code to make sure we are focusing on
the right parts
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Rigid Body Pipeline
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Potentially colliding Updated body
body pairs velocities

Points of contact
between bodies

New body positions

Constraint Equations GameDeveloperS
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Rigid Body Pipeline
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Potentially colliding

body pairs Updated body

velocities

Points of contact
between bodies

New body positions
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Profiling Scenario
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Profiling Results

Cumulative Frame Time
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Running on the SPUs
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@ Three steps:

1. (PPU) Pre-process

= “Gather” operation (extract data from PhysX data
structures and pack it in MM)

2. (SPU) Execute
= DMA packed data from MM to LS
= Process data and store output in LS
< DMA output to MM

3. (PPU) Post-process

= “Scatter” operation (unpack output data and put back in
PhysX data structures)
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Why Involve the PPU?

=« Required PhysX data is not conveniently packed
= Data Is often not aligned

= We need to use PhysX data structures to avoid
breaking features we haven’t ported

= Solutions:
@ Use list DMASs to bring in data
@ Modify existing code to force alignment
@ Change PhysX code to work with new data structures
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Batching Up Work
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Work batch
buffers in MM

Task Task
Description Description

PhysX PhysX
data-structures batch batch data-structures
inputs/ | ... | inputs/

outputs outputs
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Narrow-phase Collision Detection

= Problem:
@ A list of object pairs that may be colliding
@ Want to do contact processing on SPUs
@ Pairs list has references to geometry

(A,C)

(A.B)
B.C) Ny
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Narrow-phase Collision Detection

« Data locality
= Same bodies may be in several pairs
= Geometry may be instanced for different bodies

< SPU memory access
= Can only access main memory with DMA
= No hardware cache
« Data reuse must be explicit
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Software Cache

= ldea: make a (read-only) software cache
= Cache entry is one geometric object
= Entries have variable size

= Basic operation
= SPU checks cache for object

@ If not in cache, object fetched with DMA
@ Cache returns a local address for object

GameDevelopers

Conference



Software Cache
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< Data Structures
@ Two entry buffers
= New entries appended to “current” buffer
@ Hash-table used to record and find loaded entries

Buffer 0 Buffer 1
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Next DMA —
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Software Cache
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= Data Replacement

= When space runs out in a buffer
= Qverwrite data in second buffer

= Considerations
= Does not fragment memory
= No searches for free space
= But does not prefer frequently used data

=
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Software Cache

= Hiding the DMA latency

= Double-buffering Current Buffer

= Start DMA for un-cached entries
= Process previously DMA'd entries

= Process/pre-fetch batches
= Fetch and compute times vary
< Batching may improve balance

= DMA-lists useful
@ One DMA command
@ Multiple chunks of data gathered

—+Process

<DMA
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Software Caching

@ Conclusions

= Simple cache is practical
= Used for small convex objects in PhysX

= Design considerations
= Tradeoff of cache-logic cycles vs. bandwidth saved
= Pre-fetching important to include
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SPU Exec < PPU Exec: SIMD + fast mem access

GameDevelopers
Conference



Multiple SPU Performance
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« Pre- and Post- processing times determine
how many SPUs can be used effectively
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Multiple SPU Performance
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PPU vs SPU comparisons

i

Convex Stack (500 boxes)
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Duck Demo

-0
=
O
=)
(&

= One of our first CELL demos (spring 2005)

= Several interacting physics systems:
= Rigid bodies (ducks & boats)
= Height-field water surface
= Cloth with ripping (salls)
= Particle based fluids (splashes + cups)

I_
-
e
I
P
i1
e
=

GameDevelopers

Conference



Duck Demo (Lots of Ducks)
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Duck Demo

= Ambitious project with short deadline
= Early PC prototypes of some pieces

= Most straightforward way to parallelize:
= Dedicate one SPU for each subsystem

= Each piece could be developed and tested
individually
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il Duck Demo Resource Allocation
i _ <«— 1 frame —»
gl = PU —main loop .
E « SPU thread synchronization, draw calls
T
== . SPUO - height field water (<50%) HE water
= SPU1 — splashes iso-surface (<50%) -
= SPU2 — cloth sails for boat 1 (<50%) clom
= SPUS3 - cloth sails for boat 2 (<50%) Cloth
@ SPU4 —rigid body collision/response (95%) _
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Parallelization Recipe
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One three-step approach to code
parallelization:
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1. Find independent components
2. Run them side-by-side
3. Recursively apply recipe to components
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Challenges

Step 1: Find independent components
= Where do you look?

= Maybe you need to break apart and overlap
your data?
- e.g. Broad phase collision detection
= Maybe you need to break apart your loop into
individual iterations?
-> e.g. Solving cloth constraints
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Broad Phase Collision Detection

Need to test 600 rigid bodies against each other.

600 Objects

¢

200 Objects A [[200/0bjects B 200 Objects C-

200 Objects A vs [200 Objects BT
200 Objects A vs | 200 Objects C |

>

1200 Objects B. vs 200 Objects C

We can execute
all three of
these
simultaneously
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Cloth Solving
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for (i=1to 5) {
cloth=solve(cloth)

}

=
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for (i=1 to 5) {
solve_on_procl(a);
solve_on_proc2(b);
wait_for_all()
solve _on_procl(c);

wait_for_all();
} GameDevelopers
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...challenges

Step 2: Run them side-by-side

=« Bandwidth and cache issues
- Need good data layout to avoid thrashing cache
or bus
= Processor issues
- Need efficient processor management scheme

= What if the job sizes are very different?
e.g. a suit of cloth and a separate neck tie
- Need further refinement of large jobs, or you only
save on the small neck tie time
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...challenges

< Step 3: Recurse

= When do you stop?
> Overhead of launching smaller jobs

-> Synchronization when a stage is done

e.g. Gather results from all collision detection before
solving

= But this can go down to the instruction level

e.g. Using Structure-of-Arrays, transform four
Independent vectors at once
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High Level Parallelization:
Duck Demo
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Fluid Simulation| Fluid Surface | Rigid Bodies Cloth Sails

'\/’

Dependency exists
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Fluid Simulation| Fluid Surface

Rigid Bodies

s I L. But cloth was for
Olhaalls multiple boats

Cloth Boat 1 Note that the parts didn’t take an
equal amount of time to run. We
Cloth Boat 2 could have done better given time!
GameDevelopers
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Lower Level Parallelization
Rigid Body Simulation

Broad Phase
Collision Detection

600 bodies
example

Narrow Phase
Collision Detection

O o ©9©O

0 o—o U

On®) [FO

-

Constraint Solving

£

£

U

Broad Phase
Collision Detection

Procl | Proc2 | Proc3

Objects A -

Objects A

Narrow Phase
Collision Detection

Procl | Proc2 | Proc 3
(O | O | O
[H 1 | OO | [}
OO | [H1]| OO

—P> Proc 1

Constraint Solving

Proc 2 | Proc 3
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Structure of Arrays

Array of Structures Structure of Arrays
or “AoS” or “SoA”

} 1 AoS Vector Datal[0]
Data[1]

Datal[0]
Data[1]
Data[2]
Datal[3]
Data[4]
Data[5]
Datal[6]
Data[7]

> 1 SoA Vector

Bonus!
Since W is almost always 0 or 1, we can eliminate it with a
clever math library and save 25% memory and bandwidth!
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Lowest Level Parallelization:
Structure-of-Array processing of Particles
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Given:
p,(t)=position of particle n at time t
Vv (t)=velocity of particle n at time t

=
e
il
-
n:
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P, (t)=p,(t.) + v, (t.,) *dt +0.5* G * dt?
P,(t)=p,(t.) + Vy(t ;) *dt + 0.5 * G * dt?

Note they are independent of each other

So we can run four together using SoA
Py (=P 4y (tig) + Vi 4(tiy) *dt+0.5* G * dt
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Failure Case
Gauss Seidel Solver
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Consider a simple position-based solver that

uses distance constraints. Given:

p=current positions of all objects

solve(c,, p) takes p and constraint c, and computes a new p
that satisfies c,
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p=solve(c,, p)
p=solve(c,, p)

Note that to solve c,, we need the result of c,,.
Can'’t solve ¢, and c, concurrently!
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Faillure Case
Possible Solutions
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Generally, It’s you're out of luck, but...

= Some cases have very limited dependencies
e.g. particle-based cloth solving

> Solution: Arrange constraints such that no four
adjacent constraints share cloth particles

« Consider a different solver
e.g. Jacobi solvers don’'t use updated values until all
constraints have been processed once
= But they need more memory (P,o,, @Nd Pcyrrent)
= And may need more iterations to converge
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Duck Demo (EyeToy + SPH)
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= Smoothed Particle Hydrodynamics
e (SPH) Fluid Simulation
~ | @ Smoothed-particles
% = Mass distributed around a point
= = Density falls to 0 at a radius h "l
»

e

= Forces between particles closer than 2h
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= High-level parallelism
= Put particles in grid cells
= Process on different SPUs
“ (Not used In duck demo)

= Low-level parallelism
= SIMD and dual-issue on SPU

= Large n per cell may be better
@ Less grid overhead
@ Loops fast on SPU

SPH Fluid Simulation

| " .° .
GameDevelopers
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SPH Loop
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< Consider two sets of particles P and Q
@ E.qg., taken from neighbor grid cells
= O(n?) problem

= Can unroll (e.g., by 4)
for (i = 0; i < numP; i++)
for (j = 0; j < numQ; j+=4)
Compute force (p;, ;)
Compute force (p;, Q1)
Compute force (p;, g.»)
Compute force (p;, g;.5)
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SPH Loop, SoA
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“ ldea:
@ Increase SIMD throughput with structure-of-arrays
@ Transpose and produce combinations
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X X
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Z Z
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SPH Loop, Software Pipelined
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= Add software pipelining
@ Conversion instructions can dual-issue with math
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Loadl
To SoA[i

From SoA[i-1]

Store [i-1]

Compute[i] gl Compute]i] Load[i+1]

To SoA[i+1]

From SoA[i]
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Recap

= Finding independence is hard!
@ Across subsystems or within subsystems?
= Across iterations or within iterations?
= Data level independence?
@ Instruction level independence?
= How about “bandwidth level” independence?

« Parallelization overhead

= Sometimes running serially wins over overhead of
parallelization
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Particle Simulation Demo
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Questions?

http://www.research.scea.com/

Contacts:

Vangelis Kokkevis: vangelis_kokkevis@playstation.sony.com
Eric Larsen: eric_larsen@playstation.sony.com

Steven Osman: steven_osman@playstation.sony.com
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