

From J2ME to iOS

Galaxy on Fire 2
on the iPad and iPhone

Marc Hehmeyer, CTO
Fishlabs Entertainment GmbH

Agenda

  FISHLABS
 What’s Galaxy on Fire 2
 Concept
 Graphical Assets
  Engine/Game Adaptation
 Sound
  Learning

FISHLABS

 Specialized in premium 3D mobile games in
Java and C/C++

 Headquartered in Hamburg, Germany
  Founded 2004
  35 full-time employees
  2m Java/BREW game downloads through

160+ carriers & portals
  30m iPhone game downloads

What’s GOF 2

Concept

 Starting October 2009
 GOF 2 is a perfect fit for iDevices
 Basic game structure can be the same
 Deliver top notch graphics

Concept

48% 52%

OpenGL ES distribution July 2010

1.1
2.0

1.1 : iPod Touch 1st, 2nd Gen; iPhone 2G, 3G
2.0 : iPod Touch 3rd Gen; iPhone 3GS; iPhone 4

Concept

  iDevices fragmentation
 Different screen sizes: 480x320, 960x640, 1024x786

 Different performance: CPU, GPU, Memory
 Different OS: iOS 3.0 – iOS 4.0
 Goal: decent framerate

 iPhone 3G and iPod touch 2nd gen. lowest

Concept

 New mood concepts necessary
 Switching from keypad to touch
 New interface
  Pimp up the gameplay

Concept

Graphics / Meshes

Graphics / Level of Detail

Graphics / Textures

  Java: 256x256 pixels max
  Java: one texture for all 3D models

Graphics / Textures

  iDevices: up to 2048x2048 pixels
  iDevices: 128 textures for 3D models

Graphics / Texture Compression

Uncompressed
32bit
512x512
 1024 KB

Graphics / Texture Compression

PVRTC4

12.5% Size
 128 KB

Graphics / Texture Compression

PVRTC2

6.25% size
 64 KB

1024

128
64

0

200

400

600

800

1000

1200

File size (kb)

Uncompressed
PVRTC4
PVRTC2

Texture Compression

Graphics / FX

  Particle systems
  - engine
  - smoke
  - atmospheric fog

  Animation for explosions
  Real-time lighting

Engine
From integer to float

  Java: integer due to absence of FPU
  iDevices: floating- instead of fixed-point

  Make use of the FPU

Engine
State sorting

  Java: limited materials
 Rendering strategy: immediate mode
  iOS: up to 30 materials
 Rendering strategy: retain mode

 Drawing Order
 1. Opaque objects first
 2. Alpha testing objects
 3. Alpha-blended objects

Engine
Batching: From 60 to 1 draw calls

Engine
View frustum culling

Game Coding

  Java: garbage collection
 C/C++: own memory handling
 C/C++: remember to init
 Keypad to touch
 New interface layout
  Station[][][] stations;

Sound

  Java:
 only limited sound capability
 use of midis and simple sound effects

  iDevices:
 great sound hardware
  full OpenAL support

Learning

  It’s not a PORT
  Think more of a console approach
 Don’t underestimate the beta phase
 Developers are the worst testers
 Avoid feature creep
 Have fun!

Thank you

m.hehmeyer@fishlabs.net

