

Approaches that have been taken at Disney Online Studios in the
development of our MMO environments.

MMO 101:

Roger H. Hughston

 Almost 25 years as a computer professional.

 Over 20 years with Disney.

 Information Technology / Imagineering / VR studio /
Disney Online.

 Disney Online Studios - Director of Architecture, Research &
Development.

 A bunch of MMO and MMO type projects.

 Love to play games and love to build them.

OK, what is a Disney MMO?

 A computer experience in which a large number of
children and their families can simultaneously
interact in a persistent world.

 Children and their families

 Large number of

 Simultaneous

 Interactive

 Persistent

I’m a geek and this a Technical Talk!

 Talk about the technologies used.

 Talk about the hard problems

 Talk about a game server topology.

 Technical - Approaches that have been taken
at Disney Online Studios in the development
of our MMO environments.

A typical Disney environment

Game Clients

Flash AS2–Browser–Web Assets

Panda 3D–Browser/Fat Client–Web/Local Assets

Flash AS3–Browser–Web Assets

Panda3D-Browser/Fat Client–Web/Local Assets

Flash AS3–Browser–Web Assets

Client Communications

 HTTP(s)

 Preferred transport. Decoupled and stateless.

 None HTTP = TCP.

 We like the guaranties we get with TCP.

 Accessibility is higher priority than latency.

Primary HTTP Server Farms

 HTTP is the first choice for infrastructure!

 Load balance for scaling and resiliency

 Cache are your friends.

 HTTP is a commodity.

 The world is optimizing.

 PNG, SWFT, HTML, Patching files…

 Streaming content and code…

 0 to N of these farms…

 Linux, Apache, Squid, CDN’s

Transaction Server Farms

HTTP is the choice for low fidelity
transactions.
 HTTP is a commodity.

 Login, purchases, profiles, blogs…

 Leader boards, achievements…

 0 to N of these farms…

 Linux, Apache, Tomcat, PHP, Java

Game Server Clusters

 A series of machines and data storage used
to manage the game logic.

 Custom servers and server clusters.

 Smart FOX servers – Heavy use of custom
extensions.

Linux, Java, c++, Python

 Persistent storage.

 Low bandwidth shared data.

 Hot Redundancy.

 1 to N per environment.

 MySQL, Oracle, Custom…

Database Systems

Instrument servers

 Record everything.
 Game events and Accumulators.

 OS/ Network/ disk... events and Accumulators.

 Business event and accumulators.

 When you think you have too much - add more.

 Real-time access simplifies problem resolution.

A typical Disney environment

 Data - Rate of change

 Data - Latency

 Data - Size

 Scaling

 Security

 Development

 Resiliency

Let’s talk about the hard problems.

Data - Rate of Change

 The Data changes at a high rate.
 Up to ~100ms.

 Clients want this data fast.

Statefull solved with HTTP solutions.

Stateless solved with Push, not a PULL (HTTP).
 Late entry

 Early exit

 Delta Notification

 Adopt the concept of a budget.

 “Rate of Change is a budget problem.”

Data - Size

 You have to move this over the internet.

 You have to move this in memory(s).

 You have to move this to and from disk.

 Size really does matter.

 “Data Size is a budget problem.”

Data - Latency

 Get over it!

 The internet is distance and distance is latency.

 Adopt the concept of a Limit.

~100 – 200 ms.

 This will help other parts of the system and force all
engineers to help address its existence.

 “Data Latency is not a budget problem.”

Scaling

 Make it Faster-Optimizing Vertical
 Improved hardware and software

 Replicate-Cache Horizontal
 Wider hardware and software = Farms.

 Wider distribution = Cache is our friend.

 Wider commercial distribution = CDNs.

 Isolation Depth
 New disjoined Hardware - software

 Just use a different…...

Not just expansion, contraction is important also!

Security

 Do not trust the…

 Client

 Hosting software

 Environment

…

 Ouch. I must trust them ?

 Trust where you must

 Verify

 Audit

Development = Big $$$ and Time

 MMO’s are constantly changing
 Build infrastructure not direct solutions

 Build protocols not stand alone solutions

 Prefer lose integration over tight coupling

 Tools Tools Tools
 Enable the right talent to do their jobs

 Get other disciplines out of their way

 Optimize the ownership pipeline

 Allow for Federation!
 Simple ability to have a lot of environments active at once

 Only way to reasonably support disjoint development

Resiliency.

Expect things to fail – Plan for it

Build it in.

 Prefer Multi Master Model

 Else Replication

 Else Hot Spare

 Else ??

 Fail Soft not Hard!

 Ask early and often – “What happens when this fails?”

The hard problems.

 Have a budget (size, speed)

 Know the Limits (latency, …..)

 Scaling-Horizontal first.

 Security–Trust and verify were you must.

 Resiliency–scale from micro to monster size.

 Development - maintenance time and $$

 This is the real hard problem.

A Game-server Topology

 Distributed Class systems

 Messaging Bus

 Network Culling

 Rooms/Zones

 Interest

 Publish / Subscribe / Messaging

Game-servers and the Clients

 All Worlds all seamlessly accessible.

 Change fidelity is high.
 Let’s give the client what he needs when he needs it.

 It’s all about pushing data to a client.

 The data size is very large.
 Culling and statefull updates are required.

Distributed Class System.

 Most of our languages are class based, Fits very nicely.

 Language agnostic definitions and contracts.

 Contract for serializing, interest reflection, and high level security.

 Atomic and molecular data types.

 Data and Function signature and dispatching.

 Bindings for C++, Java, Python, Action Script, C#...

 Support for Class instance life cycle.

 Class asynchronous up calls.

 High level security and interest routing.

 Atomic generation, deletion, function dispatching, and document type messaging.

Distributed Class System

 struct BarrierData {

 uint16 context;

 string name;

 uint32 avIds[];

 };

 dclass DistributedObject {

 setBarrierData(BarrierData data[]) broadcast ram;

 setBarrierReady(uint16 context[2]) airecv clsend;

 execCommand(string, uint32 mwMgrId, uint32 avId, uint32 zoneId);

 broadcastMessage() broadcast;

 };

 dclass DistributedTestObject : DistributedObject

 {

 setRequiredField(uint32 r = 78) required broadcast ram;

 setB(uint32 B) broadcast;

 setBA(uint32 BA) broadcast airecv;

 setBO(uint32 BO) broadcast ownsend db;

 setBR(uint32 BR) broadcast ram;

 setBRA(uint32 BRA) broadcast ram airecv;

 };

Room/Zone Base Divisions

 Container used for grouping.

 Entities/Instances exist in zones.

 Pertinent game data is reflected to the zone
observers.

 We map important groupings to zones.
 Locations in the world.

 Groups of entities.

 Simple broadcast multiplexers.

 …

Simple and Complex Interest

 Allow multiple interests to be active at once.
 Location of the avatar is in.

 Location the guild member are listening to.

 Location all Tinker Fairies listen to.

 Location of world population records.

 Cut scene transitions.

 Interest follows the avatar.

 EOF indicator.

 Smooth zoning transitions.

 Multiple interest foreshadows the avatar.

Zone + Interest = Network Culling!

 Discovery, Filtering, Targeted groups…

 Implemented with a messaging channel pattern.

 Command message pattern.

 Event messaging patterns.

 Request-reply patterns.

Channels=Phone System in the Cluster

 64bit .. Usually described as 2x32 bit values.

 Point-to-point channels.

 Publish-subscribe channels.

 Data type Channels.

 Interest type channels.

 Game Clients have no access to channels.

 Game Clients are function and DC driven only. (security)

Channels + DC = Functional Cluster

 Channels.

 Instance Channel.

 Locations Channel.

 Owners Channel.

 Controlling AI Channel.

 Persistent Store Channel.

 DC Class Definition.

How to read/write.

What to do with it.

Logical system

Asynchronous very finite units

What are DC Classes

 Avatars.

 Game object .

 A world.

 Every physical process.

 RPC type services.

 ….

 We like classes better than function dispatching.

What are Channels.

 Every distributed object has a channel.

 Every Account has a unique channel.

 Every guild, group…

 A channel is like a phone number. If you want to talk to it you
use the channel.

A Game-Server Topology

 Distributed Class systems.

 Messaging Bus.
 It’s not a hierarchy it’s a cloud.

 Network Culling.
 Rooms/Zones.

 Interest.

 Persistent store is not linked to update.
 Asynchronous.

Memory image with a trickle writer.

 Update merging.

General Rules for Server Systems
 Commodity before proprietary.

 Protocol over library.

 Asynchronous over synchronous.

 Process over threads.

 Horizontal over vertical scaling.

 Loose coupling over tight integration.

 Fail soft!!!!

 Optimizing game development life cycle is critical.

 Have a budget.

 Classes over functions.

 Keep it as simple as possible.

 Let the problem pick the technology!

War Stories (time allowing)

 You own it.

 Fake it.

 Know the real question.

 Hidden Races

 DBMS replication is for recovery, not
performance.

Roger@Disney.com

