

Approaches that have been taken at Disney Online Studios in the
development of our MMO environments.

MMO 101:

Roger H. Hughston

 Almost 25 years as a computer professional.

 Over 20 years with Disney.

 Information Technology / Imagineering / VR studio /
Disney Online.

 Disney Online Studios - Director of Architecture, Research &
Development.

 A bunch of MMO and MMO type projects.

 Love to play games and love to build them.

OK, what is a Disney MMO?

 A computer experience in which a large number of
children and their families can simultaneously
interact in a persistent world.

 Children and their families

 Large number of

 Simultaneous

 Interactive

 Persistent

I’m a geek and this a Technical Talk!

 Talk about the technologies used.

 Talk about the hard problems

 Talk about a game server topology.

 Technical - Approaches that have been taken
at Disney Online Studios in the development
of our MMO environments.

A typical Disney environment

Game Clients

Flash AS2–Browser–Web Assets

Panda 3D–Browser/Fat Client–Web/Local Assets

Flash AS3–Browser–Web Assets

Panda3D-Browser/Fat Client–Web/Local Assets

Flash AS3–Browser–Web Assets

Client Communications

 HTTP(s)

 Preferred transport. Decoupled and stateless.

 None HTTP = TCP.

 We like the guaranties we get with TCP.

 Accessibility is higher priority than latency.

Primary HTTP Server Farms

 HTTP is the first choice for infrastructure!

 Load balance for scaling and resiliency

 Cache are your friends.

 HTTP is a commodity.

 The world is optimizing.

 PNG, SWFT, HTML, Patching files…

 Streaming content and code…

 0 to N of these farms…

 Linux, Apache, Squid, CDN’s

Transaction Server Farms

HTTP is the choice for low fidelity
transactions.
 HTTP is a commodity.

 Login, purchases, profiles, blogs…

 Leader boards, achievements…

 0 to N of these farms…

 Linux, Apache, Tomcat, PHP, Java

Game Server Clusters

 A series of machines and data storage used
to manage the game logic.

 Custom servers and server clusters.

 Smart FOX servers – Heavy use of custom
extensions.

Linux, Java, c++, Python

 Persistent storage.

 Low bandwidth shared data.

 Hot Redundancy.

 1 to N per environment.

 MySQL, Oracle, Custom…

Database Systems

Instrument servers

 Record everything.
 Game events and Accumulators.

 OS/ Network/ disk... events and Accumulators.

 Business event and accumulators.

 When you think you have too much - add more.

 Real-time access simplifies problem resolution.

A typical Disney environment

 Data - Rate of change

 Data - Latency

 Data - Size

 Scaling

 Security

 Development

 Resiliency

Let’s talk about the hard problems.

Data - Rate of Change

 The Data changes at a high rate.
 Up to ~100ms.

 Clients want this data fast.

Statefull solved with HTTP solutions.

Stateless solved with Push, not a PULL (HTTP).
 Late entry

 Early exit

 Delta Notification

 Adopt the concept of a budget.

 “Rate of Change is a budget problem.”

Data - Size

 You have to move this over the internet.

 You have to move this in memory(s).

 You have to move this to and from disk.

 Size really does matter.

 “Data Size is a budget problem.”

Data - Latency

 Get over it!

 The internet is distance and distance is latency.

 Adopt the concept of a Limit.

~100 – 200 ms.

 This will help other parts of the system and force all
engineers to help address its existence.

 “Data Latency is not a budget problem.”

Scaling

 Make it Faster-Optimizing Vertical
 Improved hardware and software

 Replicate-Cache Horizontal
 Wider hardware and software = Farms.

 Wider distribution = Cache is our friend.

 Wider commercial distribution = CDNs.

 Isolation Depth
 New disjoined Hardware - software

 Just use a different…...

Not just expansion, contraction is important also!

Security

 Do not trust the…

 Client

 Hosting software

 Environment

…

 Ouch. I must trust them ?

 Trust where you must

 Verify

 Audit

Development = Big $$$ and Time

 MMO’s are constantly changing
 Build infrastructure not direct solutions

 Build protocols not stand alone solutions

 Prefer lose integration over tight coupling

 Tools Tools Tools
 Enable the right talent to do their jobs

 Get other disciplines out of their way

 Optimize the ownership pipeline

 Allow for Federation!
 Simple ability to have a lot of environments active at once

 Only way to reasonably support disjoint development

Resiliency.

Expect things to fail – Plan for it

Build it in.

 Prefer Multi Master Model

 Else Replication

 Else Hot Spare

 Else ??

 Fail Soft not Hard!

 Ask early and often – “What happens when this fails?”

The hard problems.

 Have a budget (size, speed)

 Know the Limits (latency, …..)

 Scaling-Horizontal first.

 Security–Trust and verify were you must.

 Resiliency–scale from micro to monster size.

 Development - maintenance time and $$

 This is the real hard problem.

A Game-server Topology

 Distributed Class systems

 Messaging Bus

 Network Culling

 Rooms/Zones

 Interest

 Publish / Subscribe / Messaging

Game-servers and the Clients

 All Worlds all seamlessly accessible.

 Change fidelity is high.
 Let’s give the client what he needs when he needs it.

 It’s all about pushing data to a client.

 The data size is very large.
 Culling and statefull updates are required.

Distributed Class System.

 Most of our languages are class based, Fits very nicely.

 Language agnostic definitions and contracts.

 Contract for serializing, interest reflection, and high level security.

 Atomic and molecular data types.

 Data and Function signature and dispatching.

 Bindings for C++, Java, Python, Action Script, C#...

 Support for Class instance life cycle.

 Class asynchronous up calls.

 High level security and interest routing.

 Atomic generation, deletion, function dispatching, and document type messaging.

Distributed Class System

 struct BarrierData {

 uint16 context;

 string name;

 uint32 avIds[];

 };

 dclass DistributedObject {

 setBarrierData(BarrierData data[]) broadcast ram;

 setBarrierReady(uint16 context[2]) airecv clsend;

 execCommand(string, uint32 mwMgrId, uint32 avId, uint32 zoneId);

 broadcastMessage() broadcast;

 };

 dclass DistributedTestObject : DistributedObject

 {

 setRequiredField(uint32 r = 78) required broadcast ram;

 setB(uint32 B) broadcast;

 setBA(uint32 BA) broadcast airecv;

 setBO(uint32 BO) broadcast ownsend db;

 setBR(uint32 BR) broadcast ram;

 setBRA(uint32 BRA) broadcast ram airecv;

 };

Room/Zone Base Divisions

 Container used for grouping.

 Entities/Instances exist in zones.

 Pertinent game data is reflected to the zone
observers.

 We map important groupings to zones.
 Locations in the world.

 Groups of entities.

 Simple broadcast multiplexers.

 …

Simple and Complex Interest

 Allow multiple interests to be active at once.
 Location of the avatar is in.

 Location the guild member are listening to.

 Location all Tinker Fairies listen to.

 Location of world population records.

 Cut scene transitions.

 Interest follows the avatar.

 EOF indicator.

 Smooth zoning transitions.

 Multiple interest foreshadows the avatar.

Zone + Interest = Network Culling!

 Discovery, Filtering, Targeted groups…

 Implemented with a messaging channel pattern.

 Command message pattern.

 Event messaging patterns.

 Request-reply patterns.

Channels=Phone System in the Cluster

 64bit .. Usually described as 2x32 bit values.

 Point-to-point channels.

 Publish-subscribe channels.

 Data type Channels.

 Interest type channels.

 Game Clients have no access to channels.

 Game Clients are function and DC driven only. (security)

Channels + DC = Functional Cluster

 Channels.

 Instance Channel.

 Locations Channel.

 Owners Channel.

 Controlling AI Channel.

 Persistent Store Channel.

 DC Class Definition.

How to read/write.

What to do with it.

Logical system

Asynchronous very finite units

What are DC Classes

 Avatars.

 Game object .

 A world.

 Every physical process.

 RPC type services.

 ….

 We like classes better than function dispatching.

What are Channels.

 Every distributed object has a channel.

 Every Account has a unique channel.

 Every guild, group…

 A channel is like a phone number. If you want to talk to it you
use the channel.

A Game-Server Topology

 Distributed Class systems.

 Messaging Bus.
 It’s not a hierarchy it’s a cloud.

 Network Culling.
 Rooms/Zones.

 Interest.

 Persistent store is not linked to update.
 Asynchronous.

Memory image with a trickle writer.

 Update merging.

General Rules for Server Systems
 Commodity before proprietary.

 Protocol over library.

 Asynchronous over synchronous.

 Process over threads.

 Horizontal over vertical scaling.

 Loose coupling over tight integration.

 Fail soft!!!!

 Optimizing game development life cycle is critical.

 Have a budget.

 Classes over functions.

 Keep it as simple as possible.

 Let the problem pick the technology!

War Stories (time allowing)

 You own it.

 Fake it.

 Know the real question.

 Hidden Races

 DBMS replication is for recovery, not
performance.

Roger@Disney.com

