
1

2

Good morning everyone! Please turn off cell phones, fill out eval forms, etc.

3

This talk is for programmers of all levels:
Beginners will learn why the debugger sometimes lies to them and how to beat
the truth out of it
Intermediates will learn techniques for dealing with core dumps of all kinds and
divining the causes of really weird problems
Experts may be interested by our system for aggregating stability data during
testing and even after release, and how we act upon that in support
QA will learn all they need to know about what "crash dumps" are and how to
collect them in a way that gets them fixed fast
Artists are in the wrong room.

4

Today’s program, in six parts.

First, what is a crash? What exactly happens in the app and the operating system when one is encountered?
Second, some basic anatomy of crash dumps and what they contain.
Third, why the debugger is so often unreliable when dealing with crash data or optimized executables.
Fourth, typical patterns of common crashes, and how to identify them.
Fifth, how to collect all your evidence in one place, and deal with it efficiently.
Sixth, how we collect data and act on stability data from our customers even after we’ve shipped to them.

This talk is about:
Crashes

Collecting crashes
Testing crashes
Analyzing crashes
Common causes of crashes
Fixing crashes
A crash course

The mysterious "Disassembly" window in your debugger and why it is your best friend
Debugging "release" builds generally

How to do it, why to do it, and why not to be afraid
How to read a call stack by eye when the tools fail you
Tips about MSVC and GDB you may not have known
Techniques for a forensic approach to debugging

Tools for collecting stability data from a lot of machines
Best practices for QA while you're still testing internally
How to get data from your game after you've shipped it
How Valve gets data from five million testers customers around the world and turns it into
patches

And some handy open source tools: breakpad, socorro, and friends
Every platform Valve supports:

PC, Mac, 360, PS3, Linux

5

Let’s start with a story.

10

A story about the crash on Mars. Not the probe that slammed into it because it mixed
up miles and kilometers…

11

… but the Spirit rover, which went out of commission for many days because its control
computer crashed.

12

Here’s the specs on the Mars spirit rover’s computer system. It has two ways of
communicating by radio: a low-gain antenna, which is used for emergencies and during
landing, and a high-gain antenna, which is like a satellite dish that communicates at a
much higher baud. Either antenna can be used to transmit directly to Earth, or (at a
faster rate) to the Mars Global Surveyor orbiting overhead, which can relay data
between Earth and the probe.

This information from a great NASA paper:
The Mars Rover Spirit FLASH Anomaly
Glenn Reeves
Tracy Neilson
Jet Propulsion Laboratory (JPL)
Pasadena, CA 91109
818-393-1051
Glenn.E.Reeves@jpl.nasa.gov, Tracy.A.Neilson@jpl.nasa.gov

13

14

15

After midnight, the probe successfully turned on its UHF radio and trasnmitted to the
orbiter for 2 minutes and 20 seconds, but sent no data. Ie, its radio was on and working
properly, but had not been given data to transmit.

The probe missed its next appointed downloads, and finally sent the Blue Bleep Of
Death at its “double backup emergency” super low bitrate.

NASA knew four things could put the probe in that mode: low power, broken system
clock, loss of uplink, or an X-band radio fault. They knew the clock wasn’t broken
because Spirit beeped on time, the “uplink lost” timer hadn’t expired yet, there was no
indication of low power on day 18, and an X-band fault wouldn’t have affected the UHF
radio.

16

17

The DOS filesystem is a tree of subdirectories.
Each subdir is a file containing a list of filenames and disk addresses
Deleting a file means just overwriting the first byte of its name with 0xE5
Mounting the filesystem means loading the directory trees into RAM

18

But this means that the amount of RAM needed to mount the filesystem increases with
the number of deleted files! Even though the space is available “on disk”, you still need
storage to represent all those deleted filenames.

19

Two configuration errors conspired to place the system into
a condition where it would reset repeatedly and also
prevented the vehicle from autonomously shutting itself off
to save power. A configuration error in the DOS Library
module allowed the size of the private memory area to
expand by allocating additional space from the free system
space12. A configuration error in the Mem Library module
silently resulted in a suspended task when the request for
additional memory could not be satisfied.

20

…in what is probably the first ever example of interplanetary DLC. The patch included:

Compaction of subdirectories after files are deleted to yield back the used space
Automatically entering crippled mode after repeated resets
Using watchdog timer to force overnight shutdown if “normal” shutdown deadlocked
Put a timeout on the semaphore that waited for the FLASH library functions to return

Oh, and not using malloc after initialization!

21

And so they Saved Science.

22

Why do we care about crashes?
Raise your hand if you've ever had a game crash on you.
Keep your hand up if you thought this was really annoying.
Keep your hand up if you ever lost progress to a crash.
Look around the room.
Those people with their hands up are your customers.
[display image]

Even if you hate your customers, an unstable game will usually fail console
certification.

The question isn’t really “why are crashes important” but “why is it important to fix
them this way?”

23

The question is really, why treat crashes differently from other bugs?
Well, they’re extremely annoying to the customer, and they can make you fail cert
outright more easily than almost any other bug.
But at the same time, once you know how to diagnose them, it’s often obvious what
caused the crash.
So crashes have a pretty high ratio of how annoying they are over how hard they are to
fix.
Also, crashes are unique in ways that makes them debugabble by means not available
to most other bugs: in particular, it’s often easier *not* to wait for a repro, since you
have a snapshot of the crash’s state.
And really this talk isn’t so much about crashes particularly as a forensic approach to
debugging: how you can look at the current state of a process, at its memory and stack,
and figure out what’s gone wrong and what to do about it.

24

Unless you’re in aerospace, when you say “the computer crashed” you don’t mean it
actually blew up and died. You mean that your application stopped running because it
hit some exceptional condition and went to “plan B.”

25

A crash is a programmed response to an exceptional condition. It’s a Plan B you’ve filed
with the operating system ahead of time, to tell it what to do in the case your program
can’t continue.
Plan B is designed to:

Protect the computer from a malfunctioning program
Allow the user to recover and regain control of their OS (more so in
Win/Mac than consoles)
Provide information to help fix the problem

But sometimes this information is hard to interpret
Debugging a crash is like performing an autopsy: you're looking at the state of
the thing after it has died, and trying to figure out the sequence of events that
got it there

The default exception handler for the Windows OS is this familiar dialog, which lets you
close the program, send back diagnostic information, or open a debugger.

This is the technical description, but I find there’s another metaphorical way to look at
crashes that’s a more helpful mindset for actually fixing them.

26

… a crash is a crime scene.

Debugging a crash is like performing an autopsy: you're looking at the state of
the thing after it has died, and trying to figure out the sequence of events that
got it there

You have to think like CSI.
Sometimes the primary cause is in the past and you infer it from
secondary evidence
Sometimes the state of the victim is a little bit ground-up and you need
to piece it back together like a puzzle.

27

Whatever the cause, the program went into an exception handler -- not a C++
exception, but a "Plan B filed in case of emergencies“
Typically, this halts the program, records some information about the current state of
the program, and goes into a recovery state -- shutting down the process in a Windows
machine, or simply halting/rebooting a console.
"Recording the current state" can take many different forms, but usually it includes the
current state of the CPU, a call stack, and sometimes some of the memory of the
current thread stack, other threads, or the process heap.

28

Different things happen after this. Where does the data go?

The simplest possibility is that it just gets written to disk as a big file – either to your
local filesystem, or a file server, or wherever. This is convenient for in-house testing,
when you can just double click the file and get the debugger to open.

30

In Windows, it can get sent back to Microsoft via Windows Error Reporting (aka
Watson), and you as a developer can have Microsoft send that along to you via
Winqual.

31

On the Mac platform, app crashes automatically go into MacOS’s built in crash reporter
app. This collects a call stack (not the entire stack) and writes it to a text file. The
customer can push “Report” to upload this text file to Apple, where it falls beneath an
event horizon and is never heard from again. They don’t give devs access.

Because Mac CRT libraries are often built with symbols included, you’ll usually get
useful stacks even if you blew up inside the OS.

http://developer.apple.com/library/mac/#technotes/tn2004/tn2123.html

32

http://developer.apple.com/library/mac/
http://developer.apple.com/library/mac/

Or you can always write your own handler and do whatever you want -- including
sending this data back to you.
Breakpad is one open source solution, which we use, but there are alternatives.
Certain digital distribution services provide this to you

33

What clues to cause of death can we learn from looking inside the body?

34

In doing an autopsy, it helps to know where everything is and how it’s supposed to be
put together generally. In particular, you’ll often find yourself manually poking through
call stacks to find function parameters. Data has a tendency to ricochet around program
memory like a bullet inside the thorax,

35

Let’s warm up with a really simple crash that was sitting on my hard drive.

36

We’ve crashed somewhere in that block, but where exactly? There’s a bunch of places
that could go wrong. And, because we’ve built in release, opening the Locals window
doesn’t seem to have anything useful for us. So, when the going gets tough, the tough
go to the disassembly.

37

But, as you can see, the disassembly window doesn’t always have nice variable names.
So to understand the disassembly, you need to understand the CPU’s registers. Let’s
take a quick review.

38

The two major CPUs game developers deal with are the POWER architecture and the
x86. Each contains POWER has a whole bunch of register, of which only those in the
left column really matter: the 32 general purpose registers, which store integers and
addresses, 32 floating point registers, and the two jump target registers CTR and LR. On
the x86, you have eight general purpose registers, of which EBP and ESP are usually
reserved for use in managing the stack.

39

Of the PowerPC’s 32 general purpose registers, some have special meanings to the OS,
and r1 is almost always reserved for use as the stack pointer. All the stuff I say about
the PPC in this talk, by the way, comes from IBM’s documentation for their own ABI –
the game consoles have slightly different implementations, whose details you can get
from your platform documentation, but the operation is similar or analogous.

40

We can return now to the disassembly window and try to get a better idea of where
the game died. Notice that there are two OR operators in that conditional expression.
That means the corresponding assembly ought to have two corresponding branch
opcodes (because of C++’s early-out shortcut semantics). You can see that the
instruction which actually crashed came after both branches, so the crash occurred
somewhere in pPlayer->GetRenderedWeaponModel()->IsViewModel(). In particular,
the op that died was trying to load a word from the address in register 3, but r3
contained NULL. Why? Let’s see what it means for one function to pass data to another
in C++.

42

On the PowerPC, parameters are passed from left to right, on registers r3 through r10.
Params too big to go on registers go on the stack.

43

C++ member functions have an invisible first parameter “this”, which is a pointer to the
class instance. Thus, in a C++ function, r3 will always have THIS, and the first formal
parameter goes on r4.

44

On the x86, there’s many different calling conventions, but in most, parameters are
pushed onto the stack in right to left order.

45

There’s a few common x86 conventions for dealing with C++ member functions. The
more efficient one, THISCALL, passes “this” on the ecx register. Others simply pass it as
an implicit first parameter on the stack.

46

So, armed with this knowledge, we can return to our case study.

47

In this case, we’ve gone past the two conditionals, and died between the bctrls. We
know that the first bctrl returned 0x00, and that its return value was to become THIS to
the second, so we can look up at the two virtual function calls in the third clause of the
if(), and see that what must have happened is that GetRenderedWeaponModel()
returned NULL.

48

Why the debugger is a filthy lying rat.

49

As you’ve noticed, the watch window can be what’s technically referred to as a BIG FAT
LIAR. To see the reason for this, we can look at what the optimizing compiler does to a
function when you compile it in release mode.

Pictured: the “0xffffffffff” lie for an unknown local

50

Here’s the simplest function I could think of, Euclid’s Greatest Common Divisor
algorithm. Based on the code you would expect to find room for two locals on the
stack, and indeed that’s what we’ve got. Looking at the code the “debug” compiler
produced, we see pretty much the prolog code we expect: it makes room on the stack
and moves the input parameters from r3 and r4 to the locals A and B in memory. When
it does the math, you see that it loads A and B from memory into a register before each
operation, does the op, and then stores them back. Finally, it retrieves the result from
memory, puts it onto r3 for return, and restores the stack.

The compiler does this in “debug” builds in order to preserve a 1:1 mapping between
the source code and the machine language. The assembly performs work in the same
order as the source, and for every line of source code you can find the corresponding
machine op, and vice versa. Also, the debugger can always find local variables in
memory, because they are always stored back after being modified, and always to
consistent locations.

You might expect that all this round trip traffic to main RAM might be less than
performant, and you’d be right. Let’s look at that same function compiled in Release.

51

As you can see, now there is no stack! The function doesn’t even have to move the
stack pointer since it calls no sub functions, and more importantly, it never stores its
locals in memory. They are always in the registers. So, the debugger’s watch may not
know where to look for these numbers. Also, generally, the compiler can do many kinds
of optimization that may cause some intermediate values to vanish altogether. It can
order machine code differently from the source, collapse common calculation, all sorts
of things that destroy the 1:1 mapping between source and assembly. That’s why the
instruction arrow jumps around a lot when stepping through release code, and why the
debugger has such a hard time finding local data: the data is never in memory in the
first place, but stored in registers, or possibly never even stored at all.

52

The watch window has to interpret the compiler results it sees to give you data, and
when its interpretations fail, it’s an unreliable witness. As any CSI knows, if you’ve got
an unreliable witness, the best place to turn is the physical evidence.

53

The notion of volatile and nonvolatile registers on the PPC is very useful in debugging
analysis. Because a function must restore nonvolatile regs to their initial state before
returning to its caller, that means that it must always save them to the stack before
modifying them. That means that nonvolatile regs are almost always recoverable so
long as you still have the stack. Volatile registers can easily be overwritten.

54

The debugger can show you all the registers in their current state at the bottom frame
of the stack, because they were stored in the exception at the moment of crashing..

55

… and is usually pretty good at recovering the nonvolatile registers from the other
frames of the stack, again because they must have either been untouched, or stored in
memory somewhere.

56

That’s what it means to set the “active frame” in the call stack window. It’s not just
about moving the contents of the source pane to the right place – it tells the debugger
to update the stack, local, and register windows to what they would have been in that
context. As I move up and down in the call stack pane, it automatically updates r1 in
the registers pane to contain the stack base for that function.

57

So let’s say we wanted to recover THIS from one frame up. The watch window lies and
says THIS is 0xffffffff.

58

And that’s because the r3 register is volatile and gone by this point. However, if you
look carefully at the disasm, you’ll see that one of the first things this function did was
move the contents of r3 (which you’ll recall is where the “this” parameter gets passed)
onto r30. R30 is nonvolatile, so if we can find it in the registers pane, it should be
possible to punch it into the watch window typecast as the appropriate pointer type,
and bang it’s like your locals window actually worked properly.

59

Generally speaking most compilers like to move function params into nonvolatiles. They
don’t always do it, they don’t always do it at the same time or in the same place or in
the same order or onto the same registers, so you’ll need to look at the disasm to see if
it happened in the current frame and if so where the parameters went. However, often
you’ll get lucky and find your parameters or locals on a nonvolatile somewhere, which
means that you can frequently retrieve missing function params in this way.

60

The x86 has many different calling conventions, which mostly differ in whether the
caller or the callee restores the stack pointer, and what order parameters go onto the
stack in. They’re numerous and well documented elsewhere, so I’ll skip past them.

Diagram credit: Jerry Coffin

http://en.wikibooks.org/wiki/X86_Disassembly/The_Stack

61

http://en.wikibooks.org/wiki/X86_Disassembly/The_Stack

On the x86, all parameters always get pushed onto the stack anyway, so they’re always
in memory. Thus the debugger usually does a pretty good job of retrieving then. Even if
it doesn’t, you can always go poking around in memory yourself to find them, although
your eyes may bleed a bid after combing through the disassembly to try to figure out
which offset corresponds with which value.

62

Everything I’ve described just now isn’t specific to crashes. All of this is really as much
true for debugging any optimized executable, regardless of whether it’s dead or alive.
So, you can use these same skills to attach to a currently running game – even a release
image running on a QA kit – and try to figure out a problem without having to
reproduce it on your machine in a debug exe.

63

Also, if you have a live issue on a running kit, but for some reason it’s inconvenient for
you to debug it at just that moment – maybe you’re busy, or QA needs the kit back, or
it’s going to take a long time – then you can manually trigger a dump to create a state
snapshot that you can take back to your workstation and examine at your leisure.
There’s mechanisms for this on every platform to do this from the debugger, and
programmatically from inside the game.

64

Let’s look at some common issues and how to recognize them.

65

A very simple one: misaligned read – trying to, say, load a 32-bit word from an address
that isn’t a multiple of four bytes. (That’s a crash on PPC.)

66

Okay, that’s pretty easy. MSVC will tell you, misaligned read. Before we move on, take a
quick look at what those two numbers mean: one is the instruction of the faulty
address, and the other is the exception code. You can map numeric exception codes to
strings by looking at the “exceptions” dialog under the debug menu.

67

Even if you didn’t have that, it’s still pretty easy to trace. You can see that the faulty
instruction here is “load word from address in register 11.” Well, register eleven
contains an odd number, which can’t possibly be word aligned, so boom.

68

Stack overflow. Well, this one’s generally easy. Is it the “update stack” opcode? If so, is
that stack pointer being updated to an address that isn’t mapped memory?
Or, more generally, the CPU exception is “access violation.” Is it trying to write to some
pointer which is an offset from the stack pointer, and if so, is that offset in unmapped
memory?

69

Okay, how about a jump through a bad virtual function.

Let’s say you have a basic Polynomial class with six virtual functions, which means
somewhere in memory is a table with six function pointers in it – its vtable. Then you
have your function that calls a couple virtuals on it, and you blow up.

Jumping through a bad virtual function pointer will usually have a pretty obvious
signature like this, where you jumped to an address that wasn’t actually in the code
segment – the call stack will contain a frame that’s just a number, not corresponding to
any legitimate function. But with a little investigation you can usually divine a little
more about it. If you look at the code around the last frame on the stack, you can find
that the Polynomial, which was being passed as ecx (the “this”) pointer to the virtual
function, was on esi. So we put esi in our watch window and AHA! Its vtable is not that
of a Polynomial at all. It is that of a Thingy, which has only one virtual function. So, our
factory function must have returned a pointer to something that wasn’t actually a
Polynomial.

70

Bad return addresses – aka the smashed stack. Insidious, annoying, and common.
When one function calls another, of course it must store its return address somewhere
in memory, usually on the stack. Well, great, except our local data’s also on the stack,
and thus when you write off the end of an array you can easily overwrite the backchain
(making it impossible for the debugger to find parent stack frames) and the return
address.

When this happens a function will "return" to an address that's garbage or NULL.

MSVC will usually refuse to give you any kind of call stack when this
happens, or even give you a memory window unless you switch to a
different thread.

71

There’s exactly two opcodes on the PPC that provide a “jump to address”, each of them
using a specific register. Looking at which register caused the fault can give you a quick
hint as to what went wrong. If it’s the count register (used for function pointer calls),
then you probably have a bad vpointer, or the like. If the Link Register is NULL, then
something overwrite its cell on your stack.

72

Ultimately you need to think like a detective at an accident scene. Here you have all
these smashed bits and pieces of evidence, and you’re trying to work backwards to
figure out what caused them to get there like that. And sometimes it can take a little bit
of detective work and inference to get to your conclusion.

(I’m not quite sure what that picture is… I typed “forensics” into the NIH’s website and
that came up.)

73

Sometimes when part of your stack has been trashed, but you still have an r1 pointer
and know generally where the bottom frame ought to be, you can make an educated
guess about what the actual stack was by looking for consistent chains. Because the
stack is so heavily trafficked, old stack frames – those “left over” as traces in memory
from previous operations – would tend not to be internally consistent; if you have a
chain that forms a complete, consistent link all the way back to main(), it has good odds
of being the actual one under execution at the time of death.

Let’s say this is a stack, and your r1 is 0x7005D8C0. The bottom frame is all zeroed out,
but the damage doesn’t seem to go too far. Maybe we can recover something. Any cell
containing a number like 0x7005D*** is probably a pointer to a stack location, since it’s
so near the value of r1 and we know a priori that’s where the stack is.

So, if we were to guess at 0x7005D900 being the bottom of a frame,
that means that it links to 7005d960, and... No, that‘s

null.

74

How about this one? No, that’s not a legitimate stack address.

75

How about d920? Well, that links to d9c0, to da20, and that looks like a consistent
chain! And indeed if you follow that up you get back to main, so that looks real.

And of course you can write debugger scripts to do this for you, based on a guess at a
stack address.

76

Sometimes the registers contain trace evidence that can point near the fault. For
example, remember that ctr contains the address of the last virtual function called. So,
if your crash is due to a bad LR, CTR might still contain a pointer to the most recently
called virtual function, perhaps even the function that crashed. Even if not, it might be
some function called recently, which can be an important clue.

77

Now let me take you through a fun one that actually came up while I was putting these
slides together.

78

I opened up one of those dumps and got this call stack, so I knew that a) something had
trashed my stack and b) I wasn’t going to have a good day. The first thing I looked at
was the registers pane, and I saw that LR was null, but CTR had a valid code address, so
I looked at that, and found it was pointing to… free(). Okay, that’s not very specific at
all.

79

Well, r1 is still legit, so it points at the stack. What’s on my stack frame? A bunch of
zeroes and FFs, apparently, so I can see my stack has been well and truly trashed for
quite a ways.

80

Remember that stack frames form a linked list in memory, where the “backchain” cell
of each frame is the pointer to the previous frame. The way that the debugger
reconstructs your call stack pane is by walking that linked list. Previously I showed how
to do that by hand by looking upwards a few frames past the damage, but here it looks
like the entire stack has been… stepped on.

81

Except when you “return” from a frame, you don’t actually delete anything. You just
move the pointer up. The old frames, from the functions you called, stay there in
memory like ghosts.

82

So, on the assumption that my function must have previously called some other
function in the past, I looked *down* the stack – towards where a callee’s frame would
have been – to look for any frames that pointed at the current r1 in the exception.
And there is one! Okay, if that’s a backchain, then the old return address must be here,
try looking that up in the code, and…

Boom, at some point, we called: void CFont::GetCharRGBA(wchar_t ch, int rgbaWide,
int rgbaTall, unsigned char *pRGBA)

83

Armed with this knowledge, we can go back to the memory window and make an
educated guess about the pattern there. Does it show up with eight column width?

84

Sixteen column?

85

Twenty column?

Do you see it?

ENHANCE!

And our stack frame – it’s too small for you to see – is supposed to be there!

So what happened here is our font had bad metrics for certain diacritics, and in this
case when we went to render the Swedish Å, the circle actually poked up out of its
memory and into the stack frame!

86

Returning to the subject of core dumps and getting them from QA. You want to have all
your core dump files end up in a central location. Consider the alternative: let’s say
each tester, on encountering a crash, enters a bug. Then to that bug she attaches a
dump file, like attaching it to an email. So you have a lot of bugs each with dumps in
them. Okay, that’s fine when you have one tester…

92

..playing one image…

93

But really you have a fresh image every day.

94

And lots of testers on different platforms.

95

Lots and lots of different platforms. Maybe PC and Mac too.

Managing each crash individually like this is the road to madness.

96

So it can help a lot to configure each of your testing endpoints so that they
automatically upload all of their dumps to a centralized place, or at least you have
some automated process that sweeps them there. Once you’ve got that level of
automation, you can add a bunch of other useful steps to it as well.

97

What’s in a dump?

Exception data: what caused the crash. Was it a segfault, an invalid instruction?

On the 360, if you have any memory mapped via “physicalalloc”, ie to get a 16mb page,
it won’t appear in a dump file even if you’ve configured for “full dump.”

99

Symbol files get invalidated whenever the output binary changes, so

Each platform has its own format of symbol file.

100

Windows uses the Program DataBase format. The symbols go into separate PDB files
that are generated alongside the main executable dlls. One consequence of this is that
the “release” configuration doesn’t omit symbols from the executable – you always
have symbols available for anything you build, so long as you keep the PDBs around.
The difficulty of optimizing release Windows builds is mostly due to optimizer
rearrangement.

101

http://dwarfstd.org/

102

http://dwarfstd.org/

On Mac, symbol info also gets cooked into the executable, but dsymutil lets you strip it
out into its own file. Also, most released executables have some light symbol info,
enough to get the function names for a call stack, though not source line numbers.

103

104

Windows/360

MSFT documentation for symbol store:
http://msdn.microsoft.com/en-us/library/ms681417(VS.85).aspx

105

http://msdn.microsoft.com/en-us/library/ms681417(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms681417(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms681417(VS.85).aspx

MSVC can connect a dump with its symbols so long as you tell it where to look for the
symbol database.

106

Doing the same on the PS3 is going to require a little more manual effort. The compiler
and linker can cook a GUID into each elf and prx by hashing the binary image (which
means the GUID will be the same if you rebuild the image from the same source). You
can extract that GUID from the binary with something like ps3bin.exe, and then store
the .self, which contains the symbols, in some kind of database.

I find a simple filesystem works pretty well as a database – just put each file under a
directory named after the GUID.

107

Once again, it’s a little harder with Sony. A crash dump will contain the GUID of the
executable that emitted it, but getting that info is tricky. You can load your dump in the
Target Manager or the debugger and then look at the Process section of the kernel
pane; that will contain the GUID, which you can then use to find wherever you put your
symbol files on a server.

108

The alternative is to use the fact that dump files are also .elfs and Sony’s
documentation of the core file format to go digging through the dump for the GUID
info. Once you have the GUID, again you use that to find your symbols in your server
and launch the debugger appropriately.

109

As mentioned before, it’s easiest if all of your minidump files end up in the same place
automatically. This isn’t hard; you can either configure your kits to all write their dump
files to a shared file server, or you can have each PC and kit emit the dumps to their
local hard drives, and then you write some scheduled task or other robot that sweeps
them over to your central location. You can get fancy with databases if you like.

110

What works for one dump doesn’t work for one hundred – as the incoming storm
scales up, you won’t have time to open each dump individually in the debugger.
Automating part of the process will free up more time to investigate each issue, and
psychologically, the easier it is to deal with a stability problem, the more likely a
programmer is to deal with it.

One good place to start is to rig a script to automatically get some basic information on
every dump, like exception type and a call stack, and put that into a .txt file next to the
dump in your repository; thus you can get basic info on each dump in five seconds
instead of waiting for ProDG to spool up.

These are individual steps you can take incrementally as your influx scales up – the
most important is the at-a-glance readout, then bucketing, etc.

111

Windbg for robo-cracking on 360/windows

112

Then you can make a scheduled batch file out of this and it can just march through your
dump repository generating its report for each one in turn.

113

On the PS3 again we had to build our own tools. Let’s go through the whole chain. Our
autobuilder pulls a changelist from perforce and starts building an image from it. Once
the executables have been compiled, a script parses through the .ELF for the GUID the
linker cooked in there, and then creates a directory on a central fileserver named with
that guid. It copies the entire .elf and .prx tree (because the executables are the
symbols in the .ELF format) onto the fileserver. Later, when a test kit emits a dump, we
copy that onto the fileserver as well. We use the ELF parser on the dump file to find the
GUID, which gives us the matching directory on the fileserver. Once we have that, I
manually walk the stack found in the dump file, correlate each address on the stack
against the symbols to come up with a function name, source file, and line number,
then emit an exception report onto the fileserver adjacent to the dump.

114

This is Arthur Fellig, a famous news photographer of the early 20th century. He was
better known under the name Weegee (Oujia), because of his preternatural ability to
show up at crime scenes before the police did. (He had one of the first police radio
scanners.)
So here is my Magic Batch File that emailed me the stack trace for every 360 crash
during Left4Dead QA in real time

hint: you can use this to pretend you are psychic and know about bugs
before they are submitted

115

When in doubt about a crash, do the autopsy. You might find a surprising cause, or
reveal a core bug that hasn’t shown elsewhere.

116

117

You can't catch every issue in testing, especially on PC
umpty-bazillion possible end user configurations means someone out
there is going to hit an edge case you didn't think of
third party software updates can break your game (ie graphics card
drivers) via incompatibility

By accumulating data from your customers, you get millions of testers for free
and can quickly roll that into updates.
Built in ways:

Windows: Winqual. having the customer email you a .mdmp.
Mac: the Crash Report dialog, and asking customers to copy-and-paste
the stack from it. That doesn't sound like a good time.

118

Replacing the default exception handler lets you write your game so that it does smart
things with crashes, like emailing them to you.

119

How Valve uses Breakpad to send us data along the steam-tubes (with screenshots
each step of the way)
Breakpad is a joint Google/Mozilla effort to create a multiplatform crash-reporting
system. As used in Firefox.
We use it on all of our platforms, including our Linux dedicated game servers.

120

This is Mozilla’s public stability site. Anyone can see every crash that Firefox has
suffered recently, its call stack, many details. Moz uses this to collect stability data from
every Firefox in the world.

121

In particular, this helps Mozilla track down third party apps that suddenly cause
problems for a disproportionate number of their users – because they have data on the
actual call stack, and on all the modules loaded at the time, they can immediately
pinpoint exactly what caused the crash and take action.

122

The minidump file format is similar to core files but was developed by Microsoft for its
crash-uploading facility. A minidump file contains:
A list of the executable and shared libraries that were loaded in the process at the time
the dump was created. This list includes both file names and identifiers for the
particular versions of those files that were loaded.
A list of threads present in the process. For each thread, the minidump includes the
state of the processor registers, and the contents of the threads' stack memory. These
data are uninterpreted byte streams, as the Breakpad client generally has no debugging
information available to produce function names or line numbers, or even identify stack
frame boundaries.
Other information about the system on which the dump was collected: processor and
operating system versions, the reason for the dump, and so on.

123

Here is how we integrate the Breakpad client libraries into our games that we ship to
customers.
The client library consists of an exception handler – an OS-level structured exception
handler on Windows, not a try/catch block – and signal handler on Darwin and Linux.

http://code.google.com/p/google-breakpad/wiki/ClientDesign

124

http://code.google.com/p/google-breakpad/wiki/ClientDesign
http://code.google.com/p/google-breakpad/wiki/ClientDesign
http://code.google.com/p/google-breakpad/wiki/ClientDesign

In the case of our games, since they run inside the Steam process, what actually
happens is the game’s exception percolates up to Steam, which has Breakpad installed.
That exception then goes back to Steam, which uploads it to us!

125

The dumps all come in (at a very high rate) to a simple Apache server, which just
accepts the uploads and queues them up. They are fed at a slower pace to our
processor machine, which calls the Breakpad processor encapsulated as a
MinidumpProcessor C++ class. Using the filename and timestamp of the modules the
user was running, it finds the relevant symbol files on our server (the big flat filesystem
again) and produces a call stack, which then gets uploaded to a crash database. This
whole backend is actually another open source project from Mozilla called Socorro,
which is what they use for their stability website.

126

Storing hundreds of thousands of customer crash reports in a database. This is what
our database looks like. As you can see, we’re just using Mozilla’s back end, called
Socorro.

127

Here’s what you get if you click go; you can see here the list of crashes and their causes
by count. Notice also that we have some crashes that occur only on Mac and another
that’s only on Linux.

128

129

I can drill into a single crash cause, which is all the dumps that share the same call
stack. Here you can see all those dumps.

130

Drill into an individual dump and you can see data on the machine that suffered it, and
the whole call stack.

131

You can see all the DLLs that were loaded and their version.

132

And, if you remember that I mentioned earlier that you can add any blob of “comment”
data that you like to a minidump, we use ours to store useful telemetry, like the OS
configuration the user had, how much free memory, and so on.

133

So let’s see what caused this particular issue.

134

In this case it looks like the issue is due to missing shader parameters. So we ought to
build a machine with that same configuration of graphics card and video driver and see
why this shader isn’t initializing properly.

135

136

137

138

139

140

141

By the way, did you ever wonder why it is called a core dump? I thought it was because
the people who invented Unix were big nerds and made some kind of Star Trek
reference, but not so. In fact it’s because before computers used capacitors for their
RAM, they used ferrite cores – little donuts of iron – to store bits magnetically. So,
memory was literally called core, and if the computer crashed, it would dump the
entire contents of core memory to disk, or the punchcard writer. Hence, core dump.

142

And if you think that’s bad, when the 1951 Whirlwind I computer crashed, it would
output the entire core memory to a CRT, in octal. Then an automated camera would
take a picture of the CRT on microfilm, which would be developed and sent over to the
poor sap debugging it.

143

A web front-end to your crash database: Socorro.
Another open-source tool from Mozilla.
There are pros and cons to using it; you could also write your own front
end.

we've made minor modifications to the socorro code - it's PHP + Postgres. We've
added things like steam universe so we can filter on it. we're *NOT* using the hadoop
crap - we tried, and gave up - their current trunk version is overly complex to setup and
administer. we backed off to the last "stable" version where they used NFS for dump
transmission and didn't rely on hadoop, and the system has been maintenance free
(knock on wood) since.

http://code.google.com/p/socorro/wiki/SocorroOverview

144

http://code.google.com/p/socorro/wiki/SocorroOverview

No nonvolatile registers on x86, but debugger is good about moving the stack pointer
around properly. If you see that the EBP pointer here is redundant, you’re right:
enabling “Frame Pointer Omission” in the compiler does away with it, using just the ESP
pointer instead. The trouble with that is you lose your backchain – the compiler has to
know how much to move the stack pointer when returning from each function, and the
debugger doesn’t always have that info – and it complicates finding data since the ESP
pointer tends to move about spastically as a consequence of push/pop.

145

A quirk of MSVC is that when your stack frame thinks it’s at address 0x00, it may fail to
give you a memory window altogether. The solution is simply to switch to a different
thread that still has a valid context, and then memory will come back.

146

147

3c32566u.tif
Title: United States Volunteers attacked by the mob, corner of Fifth and Walnut Streets, St. Louis, Missouri / sketched by M. Hastings, Esq.
Date Created/Published: 1861.
Medium: 1 print : wood engraving.
Summary: Soldiers firing at crowd of people attacking them.
Reproduction Number: LC-USZ62-132566 (b&w film copy neg.)
Rights Advisory: No known restrictions on publication.
Call Number: Illus. in AP2.H32 1861 (Case Y) [P&P]
Repository: Library of Congress Prints and Photographs Division Washington, D.C. 20540 USA
Notes:
Illus. in: Harper's weekly, v. 5, no. 231 (1861 June 1), p. 349 (botttom).

F2A_Thach_Accident.jpg
Description
English: On 19 March 1940 U.S. Navy Lt. John Smith "Jimmy" Thach tipped this Brewster F2A-1 Buffalo (BuNo 1393) onto its nose on the flight deck of the circraft carrier USS Saratoga [CV-3) Ensign Edward Butch O'Hare also flew this aircraft several times during the summer and fall of 1940.
Date
19 March 1940
Source
broadcast.illuminatedtech.comTransferred from en.wikipedia
Author
USN; Original uploader was Felix c at en.wikipedia, 25 June 2006 (original upload date)
Permission
(Reusing this file)
PD-USGOV-MILITARY-NAVY.

chalk_outline.jpg
Flickr cc-nc
user rbeiber
http://www.flickr.com/photos/rbieber/155102957/

nih_nyc_crime_scene.jpg
NIH web site
New York City crime scene, 1914-1918
New York City Municipal Archives
http://www.nlm.nih.gov/visibleproofs/exhibition/views.html

af_c141_ramp_crash
US Air Force
http://www.af.mil/photos/media_search.asp?q=crash&page=14

Ferrite_core_memory
Wikipedia public domain
Description
English: Random access ferrite core memory (RAM) from 1961. Size of the card : 10.8cm x 10.8cm (6.5 inch), capacity : 1024 bits.
Date: 5 June 2009
Source: Combined from Magnetic core memory card.jpg and Magnetic core.jpg.
Author: Orion 8

preliminary_incision
Upon A View of the Body
NIH Visible Proofs exhibition
"Fig. 5: Reflexion of Thoracic Coverings: Take up a position on the right side of the body. The head of the corpse should be extended and the chin steadied with the left hand. Grasping the post-mortem knife firmly in the palm of the right hand and cutting with the belly, not the point, of the knife, make a median incision from the chin to the pubes."
Charles Richard Box, M.D., Post-mortem Manual: A Handbook of Morbid Anatomy and Post-mortem Technique, London
National Library of Medicine
http://www.nlm.nih.gov/visibleproofs/galleries/exhibition/body.html

lying_rat
flickr user niznoz
http://www.flickr.com/photos/niznoz/4233333

Euklid
Justus of Ghent, 1474

whirlwind_control_room
Museum Of Science, Boston, MA
credit: Wikipedia

886?-Project-Whirlwind
credit: Wikipedia

KL_microsoft_xbox_360
credit: Wikipedia

nih_forensic_anthropology
Ethiopia, 1990s.
Doctors and personnel at the Black Lion Hospital in Addis Ababa work in the laboratory with members of the argentine Forensic Anthropology Team as part of their training in forensic anthropology.
National Library of Medicine
Credit: Stephen Ferry
http://www.nlm.nih.gov/news/press_releases/visibleproofphotos.html

nih_forensic_vials
Vials and Evidence, July 2004.
Dr. Andresen tested the soil around the caskets, and every type of embalming fluid used on the victims' bodies, to make sure there was no crosscontamination. Six exhumed patients tested positive for Pavulon. The proof was definitive—homicide had taken place. Saldivar had poisoned his victims.
National Library of Medicine
Credit: Courtesy of Anthony Pidgeon
http://www.nlm.nih.gov/news/press_releases/visibleproofphotos.html

nih_forensic_guy
Brian Andresen with a sample vial, July 2004. Dr. Andresen had to find some way to detect minute concentrations of Pavulon in long-buried victims—a method of teasing the drug out of decomposed tissue.
National Library of Medicine
Credit: Courtesy of Anthony Pidgeon
http://www.nlm.nih.gov/news/press_releases/visibleproofphotos.html

nih_fingerprint_diagram_iii_c_204
Fingerprint diagram, 1940
Frederick Kuhne, The Finger Print Instructor…Based upon the Sir E. R. Henry System of Classifying and Filing…, New York
National Library of Medicine
http://www.nlm.nih.gov/visibleproofs/galleries/exhibition/views_image_11.html

memphis_sewer.jpg
Creative Commmons
Flickr user mojorider2 / Paul Everett
http://www.flickr.com/photos/mojorider2/4670627480/

mars_spirit_rover_artists_rendition.jgp
NASA

148

