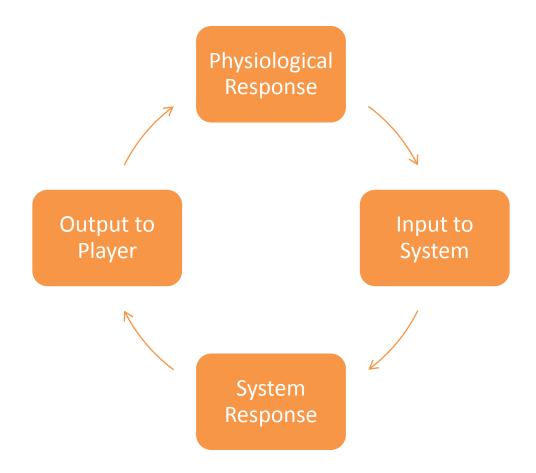
Game Developers Conference[®]

February 28 - March 4, 2011 Moscone Center, San Francisco www.GDConf.com

Biofeedback in Gameplay: How Valve Measures Physiology to Enhance Gaming Experience

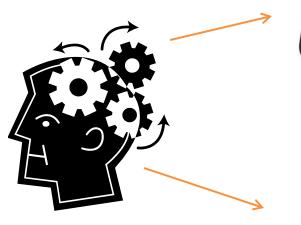
Mike Ambinder, PhD March 3rd, 2011 GDC

Goals of this Presentation


- Provide overview of biofeedback
- Discuss potential applications
- Use examples to show costs and benefits
- Discuss future directions and implications

Biofeedback Overview

- Biofeedback: measurement, display, analysis, modification, manipulation, and response of physiological signals
- Using biological indicators to index sentiment/emotion

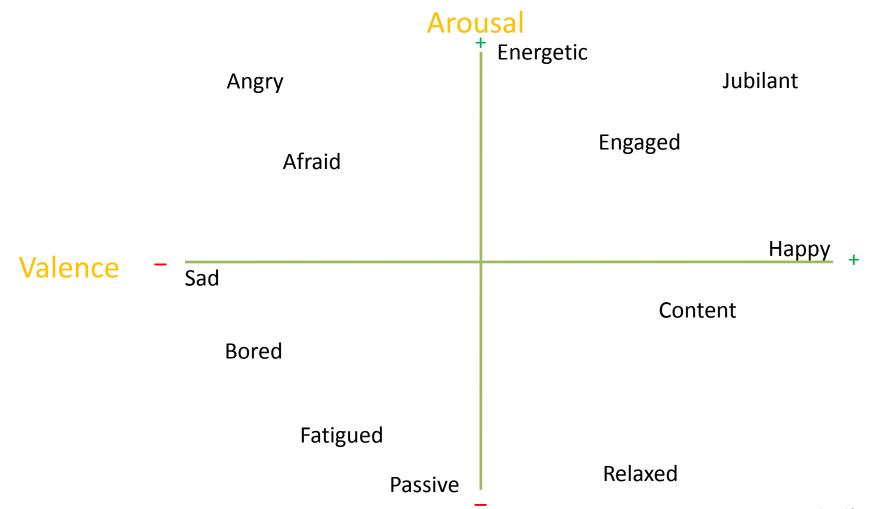

Biofeedback Overview

- Feedback loop possible where subsequent signals depend on prior states
- Emotional states not stable
 - Transient
 - Volatile
 - Subject to manipulation

Why Biofeedback?

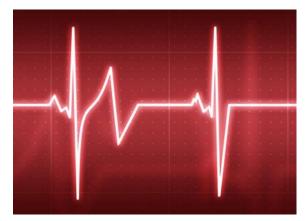
- Current control schemes
 - Provide one dimension of input
 - Map player intent to onscreen action
 - Ignore other aspects of cognition
 - Ignore player sentiment

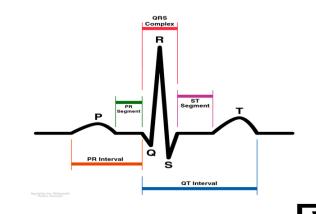
Why Biofeedback?


- What about player sentiment?
- Adding emotional input incorporates new (and previously ignored) dimension of player input
- Tailor more immersive, dynamic, and calibrated game experience

Emotion

- Subjective, internal state induced by response to (usually) external events
- Vector
 - Magnitude (arousal)
 - Direction (valence)


Adapted from Lang (1995)

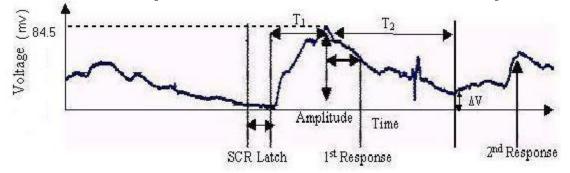

Physiological Signals

- Heart rate
- SCL (skin conductance level)
- Facial expressions
- Eye movements
- EEGs (Electroencephalography)
- Others (pupil dilation, body temperature, posture, etc.)

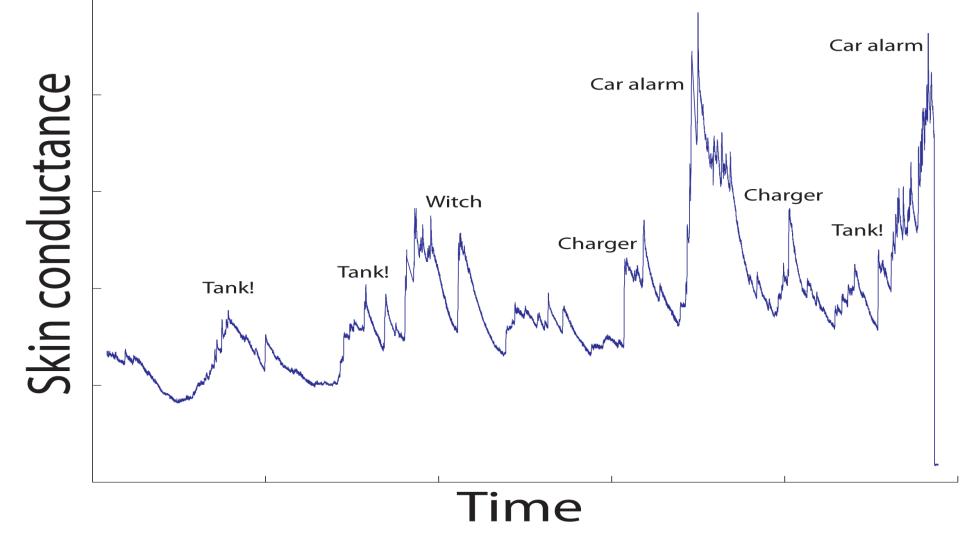
Heartrate

- Beat to beat interval of blood flow
- Measure baseline rate and deltas over time

http://modmyi.com/forums/ipod-news/711048-nike-heart-rate-monitor-ipod-set-june-1st-release.html http://en.wikipedia.org/wiki/Electrocardiography


Heart Rate

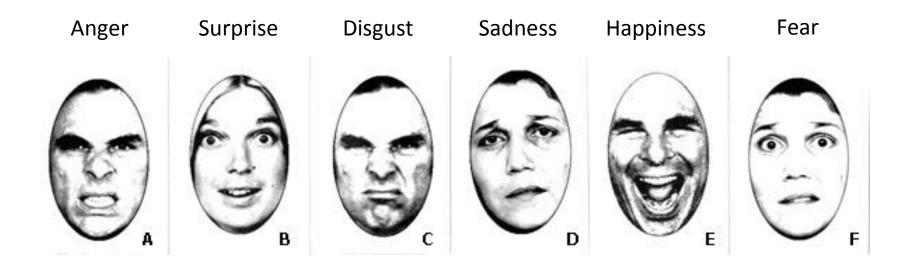
- + Index of arousal
- + Cheap
- + Easy to measure
- + Familiar
- Fourier transform to get valence?


- Prone to movement artifacts
- Delayed onset to stimuli
- Difficult to determine valence

SCL

- Electrical resistance of the skin
- Chart waveform of arousal over time
- Get responsive and anticipatory spikes

SCL


- + Index of arousal
- + Tonic/Phasic responses
- + Minimal lag to stimuli
- + Cheap
- + Robust to movement
- + Lots of measurement sites

- Difficult to associate eliciting events
- Difficult to determine valence
- Range is variable across subjects

Facial Expressions

- Record movement of facial muscles
- Classify emotion (both valence and arousal)
- Can be done remotely or via EMG

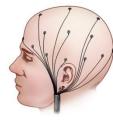
Facial Expressions

- + Index of valence
- + Index of arousal
- Measures
 instantaneous
 responses

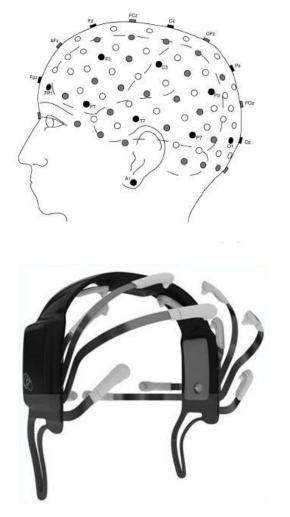
- Can be intrusive
- Expensive
 - (at the moment)
- Subject to bias
- Requires training or a black box

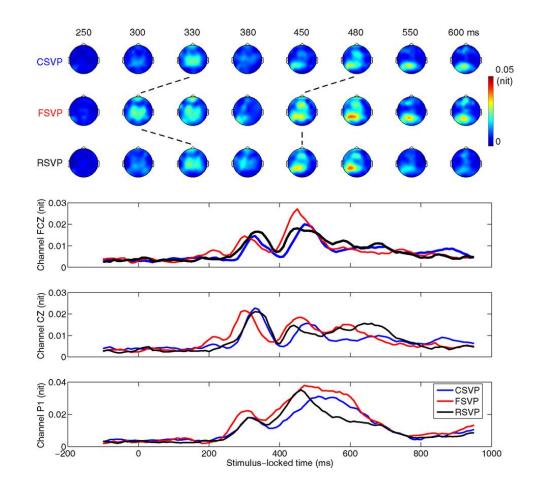
Eye Movements

- Remote (or mounted) cameras measure reflectivity off of pupils
- Record where eyes are looking in real-time
- Get saccades (movements) and fixations


Eye Movements

- + Index of attention
- Rudimentary index of thought
- + Index of arousal (with pupil dilation)
- + Unique
- + Reliable


- Very expensive
- Requires extensive analysis
- Can be intrusive→ lead to subject biasing eye movements

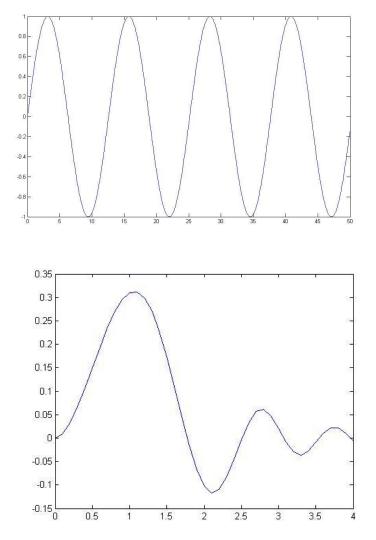

EEGs

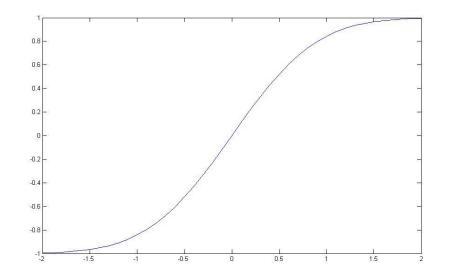
- Measure electrical potentials of the brain
- Primarily time-based signals
- Coarse measures of location
- Get frequency spectra and spike latency

http://www.riversideonline.com/health_reference/Test-Procedure/MY00296.cfm

EEGs

- + Index of arousal
- + Index of engagement
- Rudimentary
 insight into
 thought


- Very expensive
- Very intrusive
- Very noisy
- Difficult to validate



Others

- Pupil Dilation arousal
- Body temperature arousal
- Body posture valence
 - Couple with pupil dilation to get frustration
- Lots of stuff we haven't thought about

- Passive viewing of biofeedback data
- Modify game experience based upon player sentiment/emotion/internal state
 - L4D director with biofeedback
 - Adaptive realtime difficulty adjustment
 - Detect and respond to disengaged players
- Determine optimal arousal patterns
 - Can manipulate gameplay to induce

- Physiological data as direct input
 - Tie health to arousal
 - In-game prompts tied to emotional state
 - NPCs respond dynamically
 - Required valence/arousal to proceed

- Matchmaking/Profiling
- Spectate competitive matches
- Multiplayer Mechanics
 - Detect teammate in trouble
 - Earn points for eliciting responses
- Biometric ID

Playtesting

- Aggregate emotional response to game events
- Get objective measurements of player sentiment
- Create emotional heatmaps

Current Experiments

- Modification of AI Director in Left 4 Dead 2
- Addition of physiological input to Alien Swarm
- Eye movements as active controls in Portal 2
 - Classification of scan patterns

Current Experiments

- Passive viewing of physiological inputs
 Implications for multi-player
- Playtesting Applications

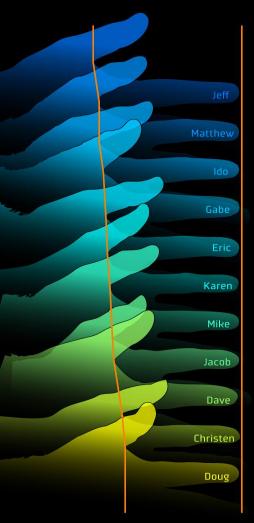
Modification of AI Director

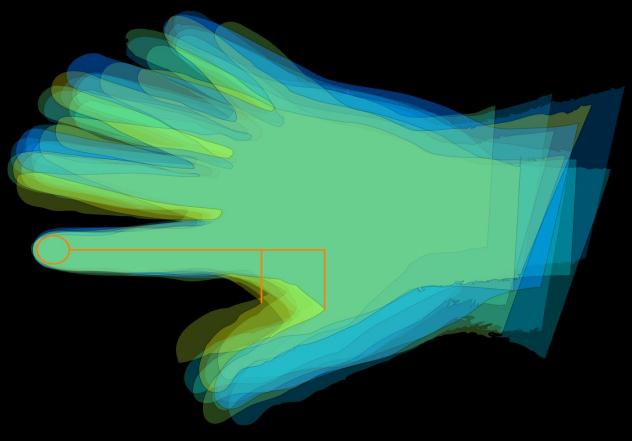
- Director creates dynamic, variable experience in Left 4 Dead series
 - Modifies enemy spawns, health and weapon placement, boss appearances, etc.
- In-game encounters determined by estimated arousal level

Modification of AI Director

- Will replacing estimated arousal with actual arousal create a more enjoyable experience?
- Can we determine optimal arousal patterns?

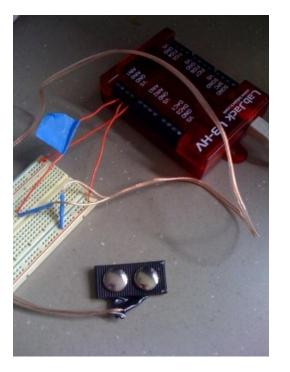
Director Algorithm

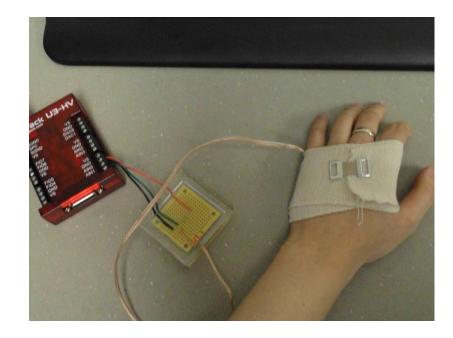

- Represent Survivor intensity as single value
- Increase it in response to in-game trauma
- Decay intensity to zero over time
- Create peaks and valleys


Initial Attempt with Heart Rate

- Use universal, intuitive measure of arousal
- Problems:
 - Few viable (non-intrusive) sites to acquire signal
 - Sensor sensitive to motion and pressure
- Problems were solvable but a time-sink

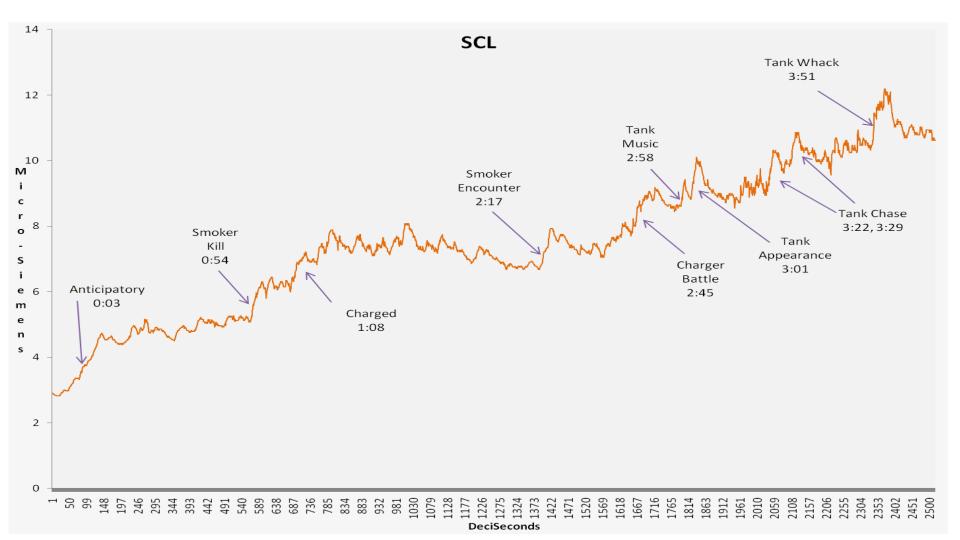
hand size – scaled by index/thumb size




Take 2: SCL

- Highly correlated with arousal
- Robust, consistent signal
- Many viable measurement sites
- Get phasic (spike) responses in addition to tonic changes in arousal over time

Current Hardware Solution



Current Software Solution

- VBIO The Valve Biofeedback API
- Supports multiple devices and signal types
- Integrated into Source engine
 - Real-time display of physiological response
 - Networked: see team or opponent responses
- Performs basic signal analysis

Analysis of SCL Data

- Categorize game events
- Record survey responses
 - Enjoyment, frustration, etc.
- Quantify waveform
 - Spike frequency, size of range, average lag, etc.
- Data-mine (correlation, regression, frequency analysis, PCA, etc.)

1290891060 player_biofeedback_scl	1.161238	228
1290891060 player_biofeedback_scl	1.161238	229
1290891061 item_pickup	63 first_aid_kit	
1290891061 spawner_give_item	63 weapon_first_aid_kit	
1290891061 player_use	63	407
1290891061 item_pickup	63 first_aid_kit	
1290891061 spawner_give_item	63 weapon_first_aid_kit	
1290891061 player_use	63	407
1290891061 player_biofeedback_scl	1.145869	230
1290891061 player_biofeedback_scl	1.156099	231
1290891061 player_biofeedback_scl	1.140777	232
1290891061 player_biofeedback_scl	1.156099	233
1290891061 item_pickup	65 first_aid_kit	
1290891061 spawner_give_item	65 weapon_first_aid_kit	
1290891061 player_use	65	406
1290891061 item_pickup	65 first_aid_kit	
1290891061 spawner_give_item	65 weapon_first_aid_kit	
1290891061 player_use	65	406
1290891061 player_biofeedback_scl	1.145869	234
1290891061 use_target	411 C_WeaponSpawn	

3. Overall, I found today's experience enjoyable.

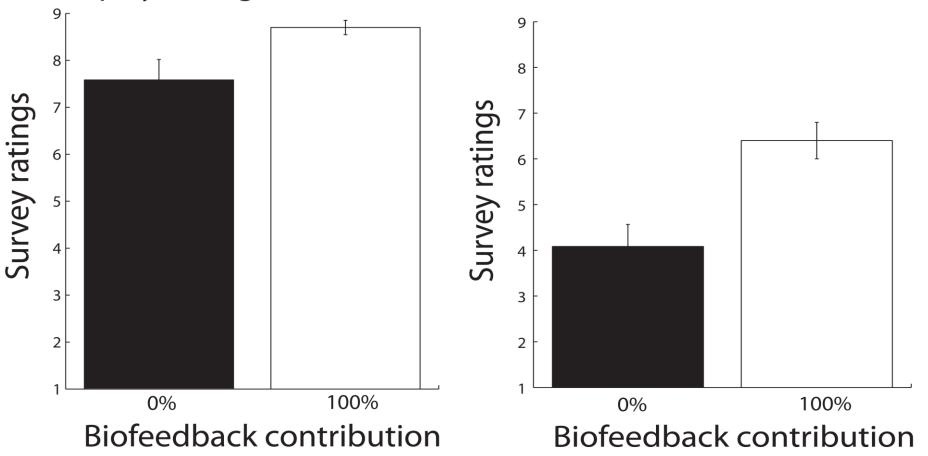
 1
 2
 3
 4
 5
 6
 7
 8
 9

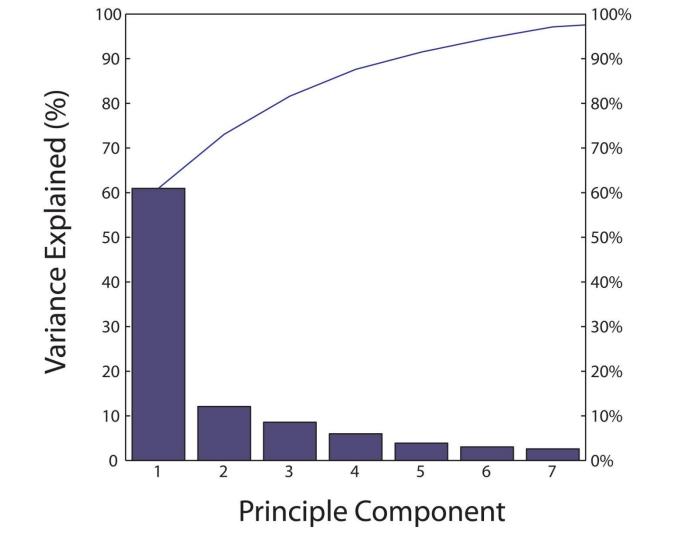
 (strongly disagree)
 (strongly agree)
 (strongly agree)

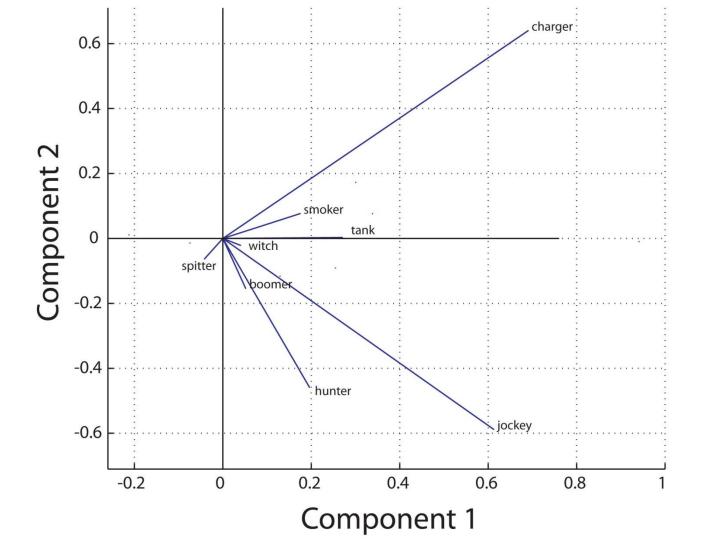
4. Overall, today's experience was frustrating.

 1
 2
 3
 4
 5
 6
 7
 8
 9

 (strongly disagree)
 (strongly agree)


5. Overall, today's play session was challenging.


 1
 2
 3
 4
 5
 6
 7
 8
 9


 (strongly disagree)
 (strongly agree)

How enjoyable was the playtesting session?

How challenging was the playtesting session today?

			Std	Spike		Max		
		Mean SCR	Spike	Amp	Min Spike	Spike	Mean Spike	
SCLs	nSCR	Amplitude	Amp	Range	Amp	Amp	AreaSum	
Question4	-0.10	-0.09	0.00	-0.07	-0.08	-0.07	0.07	%Average excitement
Question5	-0.09	0.25	0.15	0.22	-0.07	0.22	-0.22	%Average frustration
Question6	-0.39	-0.03	0.02	0.01	-0.13	0.00	0.06	%Average challenge factor

Results

- Measured arousal produces greater enjoyment than estimated arousal
- Have rudimentary insight into events which elicit enjoyment
- Progress on optimal arousal patterns

Experiment Summary

- Physiological signals are viable inputs
- More work needed to `quantify' enjoyment
- How well can we shape the arousal curve?

Alien Swarm + Biological Input

- Top-down, team-based action shooter
- Create mod with time-based constraint
 - Kill **100** enemies in **240** seconds
 - Timer indexed to arousal (SCL)
 - Highly aroused-> timer speeds up
 - Relax \rightarrow timer reverts to baseline

Alien Swarm + Biological Input

- Can you create a compelling gameplay experience using physiological signals as direct input?
- What kind of problems will arise?
 - Feedback loop?
 - Delayed responses?
 - Possible manipulations of signal?

Alien Swarm Algorithm

- Excitement level indexed as single value
- Timer clamped to arousal
 - Double speed at max value over time scale
 - Regular speed at median value over time scale
 - Quarter speed at min value over time scale

Problems

- Positive feedback loop exists
 - Increase in arousal leads to increase in arousal . . .
 - Decay factor helps
- Clarity of relationship between arousal and in-game events not always clear

Experiment Summary

- Novel gameplay experiences possible
- Experience qualitatively different
 - Aware of both gameplay and emotional response
- LOTS of work required to tweak algorithm

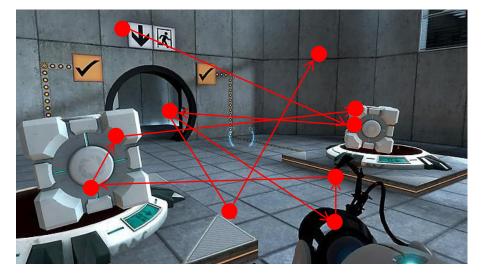
Play Portal 2 With Your Eyes

- Puzzle-based FPS
- Traditional control schemes use single control to shift viewpoint AND crosshair
- Decouple viewing and aiming
 - Use hand to move
 - Use eyes to aim

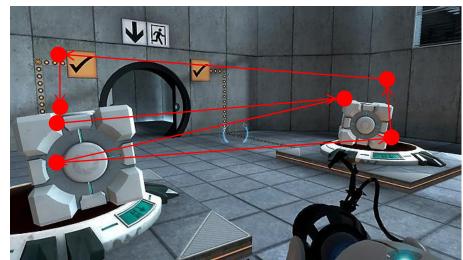
Play Portal 2 With Your Eyes

- Is it enjoyable to use your eyes to aim?
- How do you change gameplay if you add more degrees of freedom to aiming?
- Since the eyes move faster than the wrist, is speed of movement correlated with enjoyment?

VALVE


Portal 2 Eyetracker Algorithm

- Use eyetracker to extract eye's X,Y position
- Feed those coordinates into game engine
- Redraw cross-hair at current eye position
- Update at 60 Hz


Classification of Scan Patterns

- Eye movements indicate cognition
 - Scanning (free-form)
 - Searching (focused movements)
 - Problem-solving (goal-directed)

Problem-Solving

Scanning

Experiment Summary

- Eyes are viable aiming controllers
- Decoupling aiming/viewpoint is a plus
- Interesting question of how to use blinks?
- Best suited to more action-oriented games
- Consumer-grade eye trackers are far away

Multiplayer

- Show representations of other player's emotional state?
- Is it engaging to view vital signs of teammates/opponents?
- Is it a useful game mechanic?
 - Detect distress?

Multiplayer Summary

- Most enjoyable thing we've done so far
 - High sense of satisfaction when opponents spike
- Entertaining to view teammates response
 - Not useful (yet)

Playtesting Applications

- Create more objective responses
 - Lots of biases in current playtesting procedures
- Quantify responses
- Encourages rapid iteration on player state

Overall Summary

- Adding physiological signals opens up new dimensions of gameplay
- Novel control schemes worth exploring
- Consumer-grade devices to track both valence and emotion are needed

Future Directions

- Matchmaking on physiological profiles
- Experimentation with gameplay mechanics
- Quantify optimal arousal patterns
- Investigate other hardware platforms
- Incorporate techniques into playtesting

Acknowledgements

- Steve Bond
- Jeff Lin
- Mike Durand
- Charlie Burgin
- Jonathan Sutton
- Lars Jenvold
- Chandler Murch

Thanks!!!!

mikea@valvesoftware.com