
EverQuest II Extended:

Streaming a Non-Streaming Game

Joshua M. Kriegshauser

Technical Director, Sony Online Entertainment

jkriegshauser@soe.sony.com

@autenil

http://kriegshauser.blogspot.com/

== ?

Some History

• Full Download: 12.5GB

• Download Time:

– 1h 45m (2MB/s)

– 7h (512KB/s)

• Poor Free Trial stats

• Wouldn’t it be nice if…

Initial Goals

• Entire game playable

• Initial download < 200MB

• Playing within 20 minutes on 512KB/s

Timeline: 2009

Timeline: 2010-2011

Hurdles

• Serving the assets

• Getting the assets

• Storing the assets

• Maintaining frame-rate

• EQII has 507,295 client-side assets

• Initial thought: Custom Server

– Always serves the latest assets

– Understand data relationships

– Binary data over UDP

• Cons:

– Must build own infrastructure

Serving the Assets

Serving the Assets

• Alternative: Content Delivery Network (CDN)

– Infrastructure already exists

– Caching/availability

• Cons:

– Involves third party

– HTTP (text) over TCP

– Certain … quirks

– No game data knowledge

Serving the Assets
• Asset Manifest

– Unique Identifier, size and version per file

– Binary vs. Text

• Unique ID: 64-bit filename hash

• File Size: 16-bit (file size in KB)

• Version: 16-bit file data CRC

• 507,295 x 96 bits = ~6MB full manifest

LFMF: Default Arguments

CRC16::ComputeMem(data, len, startcrc=0);

CRC16::ComputeString(data, startcrc=0);

Don’t use ComputeString()
when you mean ComputeMem()

Serving the Assets: Manifests

• Initial plan: Manifest patched via Streaming

• Initially based on custom server method

– Client uploaded CRCs of 4096 manifest sections

– Server responded with updated manifest patches

• Manifest.crc always downloaded (~8KB)

– 4096 x 16-bit manifest section CRCs

– Sections patched when CRC didn’t match

• 6MB Full Manifest -> 200-300KB patch

Serving the Assets: Manifests

• Manifests sorted by filename hash (64-bit)

• Manifest divided into 4096 (212) sections

• Top 12 bits indicate section

• Each section had its own sub-manifest

0000/manifest – 0fff/manifest

• Client downloaded necessary sub-manifests

Serving the Assets: Manifests

• Current system: Controlled by Patcher

– Can be delta-patched

– No additional code support

In-Client Manifest Patching

PROs CONs

Manifest always reflects current assets Code Heavy

CDN Peculiarities

CDN Peculiarities

• Source Server

• Caching nature good… usually.

• Cache Timeout

• URL Decoration: <unique ID>?CRC=12ab

– Cache based on unique URL

– Doesn’t guarantee uniqueness

CDN Peculiarities

• Race Condition

• Fix: Unique Files including CRC: manifest-12ab

Uploading Assets

• Assets divided into 4096 “buckets”

– Same as manifest sections

• Filenames on the CDN: 64-bit name hash

Asset: ui/default/images/icons/icon_is64.dds

64-bit CRC: 3c9431aab0133431

CDN file: 03c9/3c9431aab0133431-12ab

• Full HTTP request path:
http://eq2.patch.station.sony.com/patch/eq2/assets/common/03c9/3c9431aab0133431-12ab

Uploading Assets

Getting the Assets

• Disk vs. Streaming

– Loading an asset from disk takes milliseconds

– Streaming an asset takes 1000+ times longer

– Never loading just one…

• Synchronous = locked-up

– Can’t continue until asset finishes loading

• Asynchronous Loading

– A MUST for streaming

– Most complicated part of streaming system

– It’s a Discipline

Getting the Assets

Getting the Assets: HTTP

• Well-known text protocol over TCP

• EQII Stats:

– Proprietary HTTP library

– 9 parallel connections (variable)

– 64KB new-connection bias

– Priority based

– Software low-bandwidth testing

EQII’s Priority

• Highest priority reserved for Synchronous

– Dedicated HTTP connection as well

• Higher priority for near-camera items

• Very low priority for background downloads

• Ability to change priority

Storing the Assets

• PAK Library (VPL) file format (1 file)

• PAK (VPK) file format (1000+ files)

File Header

Validation Records

Asset directory

Search info

Compressed Asset Data

Compressed Asset List

File Trailer

Storing the Assets

• Guidelines for new file format:

– Fast to update

– Minimal changes to update

– Growable

– Manage asset changes reasonably

– Shared among multiple running game instances

• Very difficult!

Storing the Assets

• Asset Database (VDB) Version 0

– Multiple files growable to 2GB (identical format)

– Files could contain up to 512K entries (theoretical)

– Open Addressing hashtable

– Free List

– Unique per game instance (no sharing)

Open Addressing

• Suited for contiguous memory (i.e. files)

• Start = FileHash mod NumSlots

• Index+1 until found or empty (or rollaround)

File 0

File 8 File 11

File 26 File 28

File 0

File 8 File 44 File 11

File 26 File 28

File 0

File 8 File 44 File 11

File 12

File 26 File 28

File 0

File 8 File 44 File 11

File 12 File 47

File 26 File 28

File 0

File 8 File 44 File 11

 File 47

File 26 File 28

Storing the Assets

• Asset Database (VDB) Version 0 Format:

• Hashtable: 64K entries initially, 512K max

– Relocate File Data

– Remove entries

– Recompute new hash locations

File Header

Hashtable entries

Compressed File
Data

Storing the Assets
• Version 0 Drawbacks:

– Must search each file’s hashtable

– No sharing across processes

• Multiple copies of same assets

– Inefficient file/mutex locking

• Single-threaded access

Storing the Assets
• Testing Considerations

– Size limit (EQII uses 2GB limit)

– Potentially very large files

– Each file created differently

• Issues are difficult to track without having the file

– Unit test!

• Create test cases for all code paths

• Hard to find/diagnose issues: corruption, load failures

Storing the Assets

• Asset Database (VDB) Version 1 Improvements

– Sharing!

– Multithread support

– Single writer/multiple reader

– Memory-mapped hashtable (separate file)

Asset Database V1 File Format

• Master file (single)

• Data files (multiple)

File Header

Hashtable entries

Minimal File Header

Compressed File
Data

Sharing Considerations

• Shared Free List

– Sorted arrays in shared memory

• System-wide Read/Write Mutex

– 2 Named Semaphores, a Named Mutex, Shared
Memory, Thread-Local storage

– And a Partridge in a pear tree.

Sharing Considerations

• Hashtable reloading

– Another process can change hashtable

– Detect change and reload

• Security

– Global shared memory on Win7/Vista

• ERROR_ACCESS_DENIED if UAC is active

Optimizations

• Background downloading

• Pre-built Asset Packs

• Bundles

• Entire game?

– File list is present in the manifest

– Some optimization considerations

• File order

• Zone-based

– Download assets for adjacent zones

– Other related zones

– Beware CPU cost

Background Downloading

Background Downloading

• Asset Lists

– Files that describe related assets

– Maintenance?

• Other Users

– Client uploads list of assets

– Other clients can use list

– CDN solution: requires game server

– Custom server solution: easier

Pre-built Asset Packs

• Some asset types reference other types:

Pre-built Asset Packs

• Additive download time

• Small files have higher download cost

• Assets everyone needs

• Starting areas

Pre-built Asset Packs

• Considerations for delta patching

– Distribute assets among several pack files

– Asset files in same pack file each build

– Asset files in the same order

Bundles

• Groups of related assets

• Streamed down instead of individual assets

• May duplicate assets

• Possibly improve download/loading time

Conclusions

• Mixed Player Response:

– “I think this is a brilliant move!”

– “Great! Allows you to start playing in minutes!”

– “I’d rather download the full game… EQ2 hung on
starting.”

– “I get kicked from groups for not zoning fast”

– “Created a character in 5 minutes!”

Conclusions

• Lessons Learned

– Small idea; Big HUGE project

– Needs wide testing exposure

– Changing data formats might be
worth it.

– Much better Trial stats

Hiring!

Senior UI Programmer
Senior AI Programmer

Senior Client Programmer
Senior Tools Programmer

Brand New EverQuest Title!

Email résumés to: jkriegshauser@soe.sony.com

Questions?

http://www.everquest2.com/

