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Math used in 3D programming 

● Dot / cross products, scalar triple product 

● Planes as 4D vectors 

● Homogeneous coordinates 

● Plücker coordinates for 3D lines 

● Transforming normal vectors and planes 
with the inverse transpose of a matrix 



Math used in 3D programming 

● These concepts often used without a 
complete understanding of the big picture 

● Can be used in a way that is not natural 

● Different pieces used separately without 
knowledge of the connection among them 

 



There is a bigger picture 

● All of these arise as part of a single 
mathematical system 

● Understanding the big picture provides deep 
insights into seemingly unusual properties 

● Knowledge of the relationships among these 
concepts makes better 3D programmers 



History 

● Hamilton, 1843 

● Discovered quaternion 
product 

● Applied to 3D rotations 

● Not part of Grassmann 
algebra 



History 

● Grassmann, 1844 

● Formulated progressive and 
regressive products 

● Understood geometric 
meaning 

● Published “Algebra of 
Extension” 

 



History 

● Clifford, 1878 

● Unified Hamilton’s and 
Grassmann’s work 

● Basis for modern 
geometric algebra and 
various algebras used 
in physics 



History 



Outline 

● Grassmann algebra in 3-4 dimensions 

● Wedge product, bivectors, trivectors... 

● Transformations 

● Homogeneous model 

● Geometric computation 

● Programming considerations 

 

 



The wedge product 

● Also known as: 

● The progressive product 

● The exterior product 

● Gets name from symbol: 

 

● Read “a wedge b” 

a b



The wedge product 

● Operates on scalars, vectors, and more 

● Ordinary multiplication for scalars s and t: 

 

 

 

● The square of a vector v is always zero: 

0 v v

s s s   v v v

s t t s st   



Wedge product anticommutativity 

● Zero square implies vectors anticommute 

    0

0

0

   

       

   

   

a b a b

a a a b b a b b

a b b a

a b b a



Bivectors 

● Wedge product between two vectors 
produces a “bivector” 

● A new mathematical entity 

● Distinct from a scalar or vector 

● Represents an oriented 2D area 

● Whereas a vector represents an oriented 1D direction 

● Scalars are zero-dimensional values 



Bivectors 

● Bivector is two directions and magnitude 



Bivectors 

● Order of multiplication matters 

   a b b a



Bivectors in 3D 

● Start with 3 orthonormal basis vectors: 

 

 

● Then a 3D vector a can be expressed as 

1 2 3, ,e e e

1 1 2 2 3 3a a a e e e



Bivectors in 3D 

   1 1 2 2 3 3 1 1 2 2 3 3a a a b b b      a b e e e e e e

     

     

1 2 1 2 1 3 1 3 2 1 2 1

2 3 2 3 3 1 3 1 3 2 3 2

a b a b a b

a b a b a b

      

     

a b e e e e e e

e e e e e e

     

  

2 3 3 2 2 3 3 1 1 3 3 1

1 2 2 1 1 2

a b a b a b a b

a b a b

      

  

a b e e e e

e e



Bivectors in 3D 

● The result of the wedge product has three 
components on the basis 

 

 

● Written in order of which basis vector is 
missing from the basis bivector 

2 3 3 1 1 2, ,  e e e e e e



Bivectors in 3D 

● Do the components look familiar? 

 

 

 

● These are identical to the components 
produced by the cross product a × b 

     

  

2 3 3 2 2 3 3 1 1 3 3 1

1 2 2 1 1 2

a b a b a b a b

a b a b

      

  

a b e e e e

e e



Shorthand notation 

12 1 2

23 2 3

31 3 1

123 1 2 3

 

 

 

  

e e e

e e e

e e e

e e e e



Bivectors in 3D 

   

 

2 3 3 2 23 3 1 1 3 31

1 2 2 1 12

a b a b a b a b

a b a b

    

 

a b e e

e



Comparison with cross product 

● The cross product is not associative: 

 

 

● The cross product is only defined in 3D 

● The wedge product is associative, 
and it’s defined in all dimensions 

       a b c a b c



Trivectors 

● Wedge product among three vectors 
produces a “trivector” 

● Another new mathematical entity 

● Distinct from scalars, vectors, and bivectors 

● Represents a 3D oriented volume 



Trivectors 

 a b c



Trivectors in 3D 

● A 3D trivector has one component: 

 

 

 

 

● The magnitude is 

 

 

1 2 3 2 3 1 3 1 2 1 3 2 2 1 3 3 2 1

1 2 3

a b c a b c a b c a b c a b c a b c

  

     

 

a b c

e e e

  det a b c



Trivectors in 3D 

● 3D trivector also called pseudoscalar 
or antiscalar 

● Only one component, so looks like a scalar 

● Flips sign under reflection 



Scalar Triple Product 

● The product 

 

 produces the same magnitude as 

 

 

 but also extends to higher dimensions 

  a b c

 a b c



Grading 

● The grade of an entity is the number of 
vectors wedged together to make it 

● Scalars have grade 0 

● Vectors have grade 1 

● Bivectors have grade 2 

● Trivectors have grade 3 

● Etc. 



3D multivector algebra 

● 1 scalar element 

● 3 vector elements 

● 3 bivector elements 

● 1 trivector element 

● No higher-grade elements 

● Total of 8 multivector basis elements 



Multivectors in general dimension 

● In n dimensions, the number of basis 
k-vector elements is 

 

 

● This produces a nice symmetry 

● Total number of basis elements always 2
n 

n

k

 
 
 



Multivectors in general dimension 

Dimension Graded elements 

1 1  1 

2 1  2  1 

3 1  3  3  1 

4 1  4  6  4  1 

5 1  5  10  10  5  1 



Four dimensions 

● Four basis vectors 

● Number of basis bivectors is 

 

 

 

● There are 4 basis trivectors 

1 2 3 4, , ,e e e e

4
6

2

 
 

 



Vector / bivector confusion 

● In 3D, vectors have three components 

● In 3D, bivectors have three components 

● Thus, vectors and bivectors look like the 
same thing! 

● This is a big reason why knowledge of the 
difference is not widespread 



Cross product peculiarities 

● Physicists noticed a long time ago that 
the cross product produces a different 
kind of vector 

● They call it an “axial vector”, “pseudovector”, 
“covector”, or “covariant vector” 

● It transforms differently than ordinary 
“polar vectors” or “contravariant vectors” 



Cross product transform 

● Simplest example is a reflection: 

1 0 0

0 1 0

0 0 1

 
 
  
 

M



Cross product transform 

 

 

 

 

 

● Not the same as 

     1,0,0 0,1,0 0,0,1 

   

     

1,0,0 0,1,0

1,0,0 0,1,0 0,0, 1



    

M M

   0,0,1 0,0,1M



Cross product transform 



Cross product transform 

● In general, for 3 x 3 matrix M, 

 1 1 2 2 3 3 1 1 2 2 3 3a a a a a a    M e e e M M M

   1 1 2 2 3 3 1 1 2 2 3 3a a a b b b

 

    

Ma Mb

M M M M M M



Cross product transform 

  

  

  

2 3 3 2 2 3

3 1 1 3 3 1

1 2 2 1 1 2

a b a b

a b a b

a b a b

 

 

  

  

Ma Mb

M M

M M

M M



Products of matrix columns 

 

 

 

 

 

● Other dot products are zero 

 

 

 

2 3 1

3 1 2

1 2 3

det

det

det

  

  

  

M M M M

M M M M

M M M M



Matrix inversion 

● Cross products as rows of matrix: 

2 3

3 1

1 2

det 0 0

0 det 0

0 0 det

   
    
   
      

M M M

M M M M

M M M



Cross product transform 

● Transforming the cross product requires 
the inverse matrix: 

 

2 3

1
3 1

1 2

det 

 
  
 
  

M M

M M M M

M M



Cross product transform 

● Transpose the inverse to get right result: 

 

     

  

2 3 3 2

3 1 1 3

1 2 2 1

2 3 3 2 2 3 3 1 1 3 3 1

1 2 2 1 1 2

det T

a b a b

a b a b

a b a b

a b a b a b a b

a b a b



 
  
 
  

    

  

M M

M M M M

M M



Cross product transform 

● Transformation formula: 

 

 

● Result of cross product must be 
transformed by inverse transpose 
times determinant 

   det T  Ma Mb M M a b



Cross product transform 

● If M is orthogonal, then inverse transpose 
is the same as M 

● If the determinant is positive, then it can 
be left out if you don’t care about length 

● Determinant times inverse transpose is 
called adjugate transpose 



Cross product transform 

● What’s really going on here? 

 

● When we take a cross product, 
we are really creating a bivector 

● Bivectors are not vectors, and they 
don’t behave like vectors 



Normal “vectors” 

● A triangle normal is created by taking 
the cross product between two tangent 
vectors 

● A normal is a bivector and transforms 
as such 



Normal “vector” transformation 



Classical derivation 

● Standard proof for 
inverse transpose for 
transforming normals: 

● Preserve zero dot 
product with tangent 

● Misses extra factor of 
det M 

1

0

0

0T T

T

T





 

 







N T

UN MT

N U MT

U M

U M



Matrix inverses 

● In general, the i-th row of the inverse of 
M is 1/det M times the wedge product of 
all columns of M except column i. 



Higher dimensions 

● In n dimensions, the (n−1)-vectors 
have n components, just as 1-vectors do 

● Each 1-vector basis element uses exactly 
one of the spatial directions e1...en 

● Each (n−1)-vector basis element uses all 
except one of the spatial directions e1...en 



Symmetry in three dimensions 

● Vector basis and bivector (n−1) basis 

1

2

3

e

e

e

2 3

3 1

1 2







e e

e e

e e



Symmetry in four dimensions 

● Vector basis and trivector (n−1) basis 

 
2 3 4

1 4 3

1 2 4

1 3 2

 

 

 

 

e e e

e e e

e e e

e e e

1

2

3

4

e

e

e

e



Dual basis 

● Use special notation for wedge product of 
all but one basis vector: 

1 2 3 4

2 1 4 3

3 1 2 4

4 1 3 2

  

  

  

  

e e e e

e e e e

e e e e

e e e e



Dual basis 

● Instead of saying (n−1)-vector, 
we call these “antivectors” 

● In n dimensions, antivector always means 
a quantity expressed on the basis with 
grade n−1 

 



Vector / antivector product 

● Wedge product between vector and 
antivector is the origin of the dot product 

 

 

 

● They complement each other, and “fill in” 
the volume element 

   

  

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 1 2 3

a a a b b b

a b a b a b

    

    

e e e e e e

e e e



Vector / antivector product 

● Many of the dot products you take 
are actually vector / antivector wedge 
products 

● For instance, N • L in diffuse lighting 

● N is an antivector 

● Calculating volume of extruded bivector 



Diffuse Lighting 



The regressive product 

● Grassmann realized there is another 
product symmetric to the wedge product 

● Not well-known at all 

● Most books on geometric algebra leave 
it out completely 

● Very important product, though! 



The regressive product 

● Operates on antivectors in a manner 
symmetric to how the wedge product 
operates on vectors 

● Uses an upside-down wedge: 

 

 

● We call it the “antiwedge” product 

1 2e e



The antiwedge product 

● Has same properties as wedge product, 
but for antivectors 

● Operates in complementary space on 
dual basis or “antibasis” 



The antiwedge product 

● Whereas the wedge product increases 
grade, the antiwedge product decreases it 

● Suppose, in n-dimensional Grassmann 
algebra, A has grade r and B has grade s 

● Then           has grade r + s 

● And           has grade 

n − (n − r) − (n − s) = r + s − n 

A B

A B



Antiwedge product in 3D 

   

   

   

1 2 2 3 3 1 3

2 3 3 1 1 2 1

3 1 1 2 2 3 2

     

     

     

e e e e e e e

e e e e e e e

e e e e e e e



Similar shorthand notation 

12 1 2

23 2 3

31 3 1

123 1 2 3

 

 

 

  

e e e

e e e

e e e

e e e e



Join and meet 

● Wedge product joins vectors together 

● Analogous to union 

● Antiwedge product joins antivectors 

● Antivectors represent absence of geometry 

● Joining antivectors is like removing vectors 

● Analogous to intersection 

● Called a meet operation 



Homogeneous coordinates 

● Points have a 4D representation: 

 

 

● Conveniently allows affine transformation 
through 4 x 4 matrix 

● Used throughout 3D graphics 

 , , ,x y z wP



Homogeneous points 

● To project onto 3D space, find where 4D 
vector intersects subspace where w = 1 

 

3D

, , ,

, ,

x y z w

x y z

w w w



 
  
 

P

P



Homogeneous model 

● With Grassmann algebra, homogeneous 
model can be extended to include 3D 
points, lines, and planes 

● Wedge and antiwedge products naturally 
perform union and intersection operations 
among all of these 



4D Grassmann Algebra 

● Scalar unit 

● Four vectors: 

● Six bivectors: 

● Four antivectors: 

● Antiscalar unit (quadvector) 

1 2 3 4, , ,e e e e

12 23 31 41 42 43, , , , ,e e e e e e

1 2 3 4, , ,e e e e



Homogeneous lines 

● Take wedge product of two 4D points 

  1 2 3 4, , ,1x y z x y zP P P P P P    P e e e e

  1 2 3 4, , ,1x y z x y zQ Q Q Q Q Q    Q e e e e



Homogeneous lines 

 

 

 

● This bivector spans a 2D plane in 4D 

● In subspace where w = 1, this is a 3D line 

     

     

41 42 43

23 31 12

x x y y z z

y z z y z x x z x y y x

Q P Q P Q P

P Q P Q P Q P Q P Q P Q

      

     

P Q e e e

e e e



Homogeneous lines 

● The 4D bivector no longer contains any 
information about the two points used 
to create it 

● Contrary to parametric origin / direction 
representation 



Homogeneous lines 

● The 4D bivector can be decomposed into 
two 3D components: 

● A tangent vector and a moment bivector 

● These are perpendicular 

     

     

41 42 43

23 31 12

x x y y z z

y z z y z x x z x y y x

Q P Q P Q P

P Q P Q P Q P Q P Q P Q

      

     

P Q e e e

e e e



Homogeneous lines 

● Tangent T vector is 

● Moment M bivector is 

3D 3DQ P

3D 3DP Q

     

     

41 42 43

23 31 12

x x y y z z

y z z y z x x z x y y x

Q P Q P Q P

P Q P Q P Q P Q P Q P Q

      

     

P Q e e e

e e e



Moment bivector 



Plücker coordinates 

● Origin of Plücker coordinates revealed! 

● They are the coefficients of a 4D bivector 

● A line L in Plücker coordinates is 

 

 

● A bunch of seemingly arbitrary formulas 
in Plücker coordinates will become clear 

 :  L Q P P Q



Homogeneous planes 

● Take wedge product of three 4D points 

  1 2 3 4, , ,1x y z x y zP P P P P P    P e e e e

  1 2 3 4, , ,1x y z x y zQ Q Q Q Q Q    Q e e e e

  1 2 3 4, , ,1x y z x y zR R R R R R    R e e e e



Homogeneous planes 

 

 

● N is the 3D normal bivector 

● D is the offset from origin in units of N 

1 2 3 4x y zN N N D     P Q R e e e e

3D 3D 3D 3D 3D 3D

3D 3D 3DD

     

   

N P Q Q R R P

P Q R



Plane transformation 

● A homogeneous plane is a 4D antivector 

● It transforms by the inverse of a 
4 x 4 matrix 

● Just like a 3D antivector transforms by the 
inverse of a 3 x 3 matrix 

● Orthogonality not common here due to 
translation in the matrix 



Projective geometry 

 

 

 

 

● We always project onto the 3D subspace 
where w = 1 

4D Entity 3D Geometry 

Vector (1-space) Point (0-space) 

Bivector (2-space) Line (1-space) 

Trivector (3-space) Plane (2-space) 



Geometric computation in 4D 

● Wedge product 

● Multiply two points to get the line containing 
both points 

● Multiply three points to get the plane 
containing all three points 

● Multiply a line and a point to get the plane 
containing the line and the point 

 

 



Geometric computation in 4D 

● Antiwedge product 

● Multiply two planes to get the line where 
they intersect 

● Multiply three planes to get the point 
common to all three planes 

● Multiply a line and a plane to get the point 
where the line intersects the plane 



Geometric computation in 4D 

● Wedge or antiwedge product 

● Multiply a point and a plane to get the 
signed minimum distance between them in 
units of the normal magnitude 

● Multiply two lines to get a special signed 
crossing value 



Product of two lines 

● Wedge product gives an antiscalar 
(quadvector or 4D volume element) 

● Antiwedge product gives a scalar 

● Both have same sign and magnitude 

● Grassmann treated scalars and 
antiscalars as the same thing 



Product of two lines 

● Let L1 have tangent T1 and moment M1 

● Let L2 have tangent T2 and moment M2 

● Then, 

 
 1 2 1 2 2 1     L L T M T M

 1 2 1 2 2 1     L L T M T M



Product of two lines 

● The product of two lines gives a 
“crossing” relation 

● Positive value means clockwise crossing 

● Negative value means counterclockwise 

● Zero if lines intersect 



Crossing relation 



Distance between lines 

● Product of two lines also relates to signed 
minimum distance between them 

 

 

 

● (Here, numerator is 4D antiwedge product, 
and denominator is 3D wedge product.) 

1 2

1 2

d





L L

T T



Ray-triangle intersection 

● Application of line-line product 

● Classic barycentric calculation difficult 
due to floating-point round-off error 

● Along edge between two triangles, ray can 
miss both or hit both 

● Typical solution involves use of ugly epsilons  



Ray-triangle intersection 

● Calculate 4D bivectors for triangle edges 
and ray 

● Take antiwedge products between ray 
and three edges 

● Same sign for all three edges is a hit 

● Impossible to hit or miss both triangles 
sharing edge 

● Need to handle zero in consistent way 



Weighting 

● Points, lines, and planes have “weights” in 
homogeneous coordinates 

Entity Weight 

Point w coordinate 

Line Tangent component T 

Plane x, y, z component 



Weighting 

● Mathematically, the weight components 
can be found by taking the antiwedge 
product with the antivector (0,0,0,1) 

● We would never really do that, though, 
because we can just look at the right 
coefficients 



Normalized lines 

● Tangent component has unit length 

● Magnitude of moment component is 
perpendicular distance to the origin 



Normalized planes 

● (x,y,z) component has unit length 

● Wedge product with (normalized) point is 
perpendicular distance to plane 



Programming considerations 

● Convenient to create classes to represent 
entities of each grade 

● Vector4D 

● Bivector4D 

● Antivector4D 



Programming considerations 

● Fortunate happenstance that C++ has 
an overloadable operator ^ that looks like 
a wedge 

● But be careful with operator precedence if 
you overload ^ to perform wedge product 

● Has lowest operator precedence, so get used 
to enclosing wedge products in parentheses 



Combining wedge and antiwedge 

● The same operator can be used for 
wedge product and antiwedge product 

● Either they both produce the same scalar and 
antiscalar magnitudes with the same sign 

● Or one of the products is identically zero 

● For example, you would always want the 
antiwedge product for two planes because the 
wedge product is zero for all inputs 



Summary 

Old school New school 

Cross product  axial vector Wedge product  bivector 

Dot product Antiwedge vector / antivector 

Scalar triple product Triple wedge product 

Plücker coordinates 4D bivectors 

Operations in Plücker coordinates 4D wedge / antiwedge products 

Transform normals with 
inverse transpose 

Transform antivectors with 
adjugate transpose 



● Slides available online at 

● http://www.terathon.com/lengyel/ 

 

● Contact 

● lengyel@terathon.com 



Supplemental Slides 



Example application 

● Calculation of shadow 
region planes from 
light position and 
frustum edges 

 

● Simply a wedge product 



Points of closest approach 

● Wedge product of line tangents gives complement 
of direction between closest points 



Points of closest approach 

● Plane containing this direction and first line also 
contains closest point on second line 



Two dimensions 

● 1 scalar unit 

● 2 basis vectors 

● 1 bivector / antiscalar unit 

● No cross product 

● All rotations occur in plane of 1 bivector 



One dimension 

● 1 scalar unit 

● 1 single-component basis vector 

● Also antiscalar unit 

● Equivalent to “dual numbers” 

● All numbers have form a + be 

● Where e2 = 0 



Explicit formulas 

● Define points P, Q and planes E, F, 
and line L 

  1 2 3 4, , ,1x y z x y zP P P P P P    P e e e e

  1 2 3 4, , ,1x y z x y zQ Q Q Q Q Q    Q e e e e

  1 2 3 4, , ,x y z w x y z wE E E E E E E E    E e e e e

  1 2 3 4, , ,x y z w x y z wF F F F F F F F    F e e e e

41 42 43 23 31 12x y z x y zT T T M M M     L e e e e e e



Explicit formulas 

● Product of two points 

     

     

41 42 43

23 31 12

x x y y z z

y z z y z x x z x y y x

Q P Q P Q P

P Q P Q P Q P Q P Q P Q

      

     

P Q e e e

e e e



Explicit formulas 

● Product of two planes 

     

     

41 42 43

23 31 12

z y y z x z z x y x x y

x w w x y w w y z w w z

E F E F E F E F E F E F

E F E F E F E F E F E F

      

     

E F e e e

e e e



Explicit formulas 

● Product of line and point 

   

   

1 2

3 4

y z z y x z x x z y

x y y x z x x y y z z

T P T P M T P T P M

T P T P M P M P M P M

      

      

L P e e

e e



Explicit formulas 

● Product of line and plane 

   

   

1 2

3 4

z y y z x w x z z x y w

y x x y z w x x y y z z

M E M E T E M E M E T E

M E M E T E E T E T E T

      

     

L E e e

e e


