

Lighting & Simplifying Saints
Row: The Third

Scott Kircher
Volition, Inc.

Saints Row: The Third

Saints Row 2 vs. “The Third”

● Nighttime flight in Saints Row 2

Saints Row 2 vs. “The Third”

Main Topics

● Latest iteration of inferred lighting

● Saints Row: The Third vs. Red
Faction: Armageddon

● New optimizations and features

● Automated LOD Pipeline

● Mesh simplification

● Practical implementation issues

Main Topics

● Latest iteration of inferred lighting

● Saints Row: The Third vs. Red
Faction: Armageddon

● New optimizations and features

● Automated LOD Pipeline

● Mesh simplification

● Practical implementation issues

INFERRED LIGHTING,
 THE NEXT ITERATION

The light! It blinds me!

Inferred Lighting, Related Work

● Developed at Volition, Inc.

● Originally published in SIGGRAPH 2009

● [Kircher, Lawrance 2009]

● Version used in Red Faction: Armageddon

● Presented at GDC last year [Flavin 2011]

● Variation of Deferred Lighting/Light-prepass

● [Engel 2008]

● [Lee 2008]

● And many others

Inferred Lighting Refresher

Inferred Lighting Refresher

Normals

Depth

Low-res MRT Geometry Pass
(800x450 on consoles)

DSF ID

Inferred Lighting Refresher

Low-res Lighting Pass
(800x450)

Normals

DSF ID

Depth

Inferred Lighting Refresher

Full-res Material Pass (1280x720, 2x MSAA)

Low-res Lighting Pass
(800x450)

Normals

DSF ID

Depth

Saints Row: The Third vs. Red Faction: Armageddon

● RF:A

● Single resolution

●960x540

● Discontinuity “patching”

● SR:TT

● Multi-resolution

●800x450 for lighting

●1280x720 for main scene

● Bilinear Discontinuity Sensitive Filter

Saints Row: The Third vs. Red Faction: Armageddon

● RF:A

● Single resolution

●960x540

● Discontinuity “patching”

● SR:TT

● Multi-resolution

●800x450 for lighting

●1280x720 for main scene

● Bilinear Discontinuity Sensitive Filter

Inferred Lighting Features

● Existing (SIGGRAPH 2009 & GDC 2011)
● Lots of fully dynamic lights

● Integrated alpha lighting (no forward rendering)

● Hardware MSAA support (even on DX9)

● New

● Lit rain (IL required)

● Better foliage support (applies only to IL)

● Screen-space decals (enhanced by IL)

● Radial Ambient Occlusion (RAO) (optimized by IL)

Lit Rain

Xbox 360: 34fps

94 visible lights. 10,000 rain drops.

Dedicated rain lighting time: 0.6 ms

Lit Rain: Step 1
● Render single pixel per rain drop into G-buffers

Lit Rain: Step 2
● Lighting pass lights rain “for free”

Lit Rain: Step 3
● DSF automatically ignores rain samples

Lit Rain: Step 4
● Rain drops look up their lighting sample

Lit Rain: Normals

● Choosing a good normal for rain is difficult

● Only one per rain drop

● Water is translucent

● Decided to just use the world “up” vector

● Most city lights are up high pointing down

● Other lights still work because our lighting model is
“half-Lambert” [Mitchell et al. 2006]

● Could use special code in light shaders to remove
normal influence altogether

Lit Rain: Car Headlights

Contrast Enhanced

Foliage

● Inferred lighting assumes low scene depth
complexity to keep DSF cost bounded

● Foliage breaks that assumption

Faster DSF for Foliage

Foliage DSF Results
● Full DSF. PS3 Scene GPU time: 35.7ms

Foliage DSF Results
● 2-sample DSF. 33.7ms on PS3 (2ms saved)

Foliage DSF Artifacts

Dynamic Decals

Recent History of Decals at Volition

● Saints Row 1 & 2

● Collect decals geometry from mesh at collision

● Slow at creation, fast to render

● Problematic on PS3 due to VRAM CPU restrictions

● Red Faction: Guerrilla & Armageddon

● Re-render (sub)mesh for each decal

● Fast creation, but potentially slow to render

●Worked well with small mesh chunks created by destruction
system

Screen-space Decals

● Saints Row: The Third
● Volumetric decals applied in screen-space
● Use DSF ID to restrict decals to specific objects

Importance of DSF ID for Decals

Importance of DSF ID for Decals

Incorrectly applied
decal

Importance of DSF ID for Decals

• Existing DSF ID used as decal
discriminator

Radial Ambient Occlusion (RAO)

Without Radial Ambient Occlusion

RAO Details

● Based loosely on [Shanmugam & Arikan 2007]

● Occlusion factor is based on normal and distance
to box or ellipsoid

● Very much like a regular light

● Occlusion factor used to modulate lighting

● For vehicles, artist places box approximating
vehicle body

● For humans, ellipsoids placed automatically at
feet

MESH SIMPLIFICATION

And now for something (almost) completely different…

Levels of Detail
● Xbox 360. GPU time: 33.6ms, CPU time: 24ms

High Medium

Low
Supplemental

Highest Loaded LOD
● Xbox 360. GPU time: 40.6ms, CPU time: 29ms

LOD Generation, the Old Way

● Saints Row 2 LOD generation

● Mostly artist authored

● Time consuming for artists

●Not many LODs actually created

●Mostly opted for fading in “detail sets”

LOD Generation, the New Way
● Saints Row: The Third style:

● Implemented our own full featured mesh simplifier

● Runs in crunchers, not in DCC application

(Results can be previewed in
3D Studio Max)

What We Used It For

● Mostly auto generated LODs, but artist tweakable:

● Buildings

● Characters

● Vehicles

● Completely automated (no artist intervention):

● Terrain

● Also used simplifier for generating:

● Terrain collision hull

● Building shadow proxies

Mesh Simplification
● Iterative Edge Contraction

● Garland’s Quadric Error Metric (QEM)

●[Garland & Heckbert 1997]

● Attribute Preservation

●[Hoppe 1999]

u
v

uv

Error Metric

● An error metric measures how “bad” the mesh
approximation is.

● Used to compute the contraction error

● Determines

● Which edge to contract first

● Where to place resultant vertex

Quadric Error Metric Overview

p

a

b

c

d

n P = (px, py, pz, 1)
Π = (nx, ny, nz, -a∙n)

Homogeneous coordinates

d2 = (P∙Π)2
 = P(ΠTΠ)PT

 = PQPT

“Quadric” matrix

Mommy, Where Do Quadrics Come From?

● Each original triangle defines a plane

Mommy, Where Do Quadrics Come From?

● Each plane defines a quadric

Quadrics associated with
neighboring vertices

Using the Quadric Matrix

● Matrix Q can represent an entire set of planes

● At each edge contraction, quadrics are summed
to get new quadric

E = P(∑Qi)P
T

p

Vertex placement

● Consider contracting edge (u,v)

● “Edge-on” view of triangle planes

u v

p

Optimal Vertex Position

● After contracting edge (u,v):

● Want to place vertex p to minimize error

u v

p E = PQPT

Minimize E

P = OQ-1
Where O = (0,0,0,1)

Practical Implementation Issue #1
● Numerical precision & stability

● Use double precision floats

Practical Implementation Issue #1
● Numerical precision & stability

● Use double precision floats

● But double precision doesn’t help with this:

Singular Quadrics
● Cannot always invert Q

● Such singular matrices are obvious

●Inversion algorithm will fail or produce NANs

● Caused by flat or cylindrical areas

Q-1

Ill-Conditioned Quadrics
● Even if Q-1 exists, result might be bad

● if Q is “nearly-singular”

● Can detect by checking condition number of Q

condition number =||Q||*||Q-1||

condition number > threshold ?

Handling Bad Conditioning
● Select best position from “candidates”

● Lowest quadric error

Practical Implementation Issue #2
● Texture coordinate (UV) preservation

● See [Hoppe 1999]

● Practical issues have to do with boundaries

UV boundary problems

Stretched UVs

UV Boundary Types

● Obvious: UV Discontinuities

UV Boundary Types

● Not-so-obvious: UV Mirroring

Gradient Gradient

Preserving Boundaries

● Boundaries of any type preserved same way

● Add “virtual” plane through boundary edge

Continuous Regions
● At each vertex

● Track regions that have continuous UVs

Region 1 Region 2

Region 2

Region 3

Region 1

Continuous Regions Gotcha
● UVs may be continuous at a vertex…

● Even though the regions are separate

Practical Implementation Issue #3
● Material counts

● As LODs get simpler, material costs dominate

100% vertices
100% materials

50% vertices
69% materials

20% vertices
48% materials

Reducing Material Counts
● Actively look for “small” area materials

● Replace with larger material used on same mesh

● Reduces count a bit, but not huge savings

High LOD Low LOD

Supplemental LOD
● Bake each streamable zone into single mesh

● Simplify even more (around 5% of original verts)

● Replace almost all materials with vertex coloring

Without Supplemental LOD
● Xbox 360. GPU time: 40.8ms, CPU time: 52ms

With Supplemental LOD
● Xbox 360. GPU time: 33.6ms, CPU time: 24ms

Practical Implementation Issue #4: Artists

● LODs for SR:TT are almost entirely automatic

● Some intervention by artists may be necessary

Unhappy Artist

Artist Intervention
● Adjust simplifier settings (target count, etc…)

Artist Intervention
● Paint weights or “hints” to help simplifier

Artist Intervention
● Replace a particular LOD wholesale

●Used sparingly, only on the “low” LOD for buildings

Artist Intervention

● No direct artist control over:

● Supplemental LOD

● Terrain LODs

● Terrain collision proxy

Summary

● New inferred lighting features

● Lit rain

● Faster Discontinuity Sensitive Filter for foliage

● Object-specific screen-space decals

● Radial Ambient Occlusion

● Automatic LOD generation practical issues

● Ill-conditioned quadric matrices

● UV boundaries

● Material count reduction

● Artist intervention

Q
u
e
s
ti
o
n
s
?

References
● Scott Kircher, Alan Lawrance, Inferred lighting: Fast dynamic lighting and shadows for opaque
and translucent objects, Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games

● http://dl.acm.org/citation.cfm?id=1581080

● Mike Flavin, Lighting the Apocalypse: Rendering Techniques in Red Faction: Armageddon, GDC
2011

● http://www.gdcvault.com/play/1014525/Lighting-the-Apocalypse-Rendering-Techniques

● Wolfgang Engel, Light Pre-Pass Renderer, Blog post in 2008
● http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html

● Mark Lee, Prelighting, R&D post in 2008
● http://www.insomniacgames.com/prelighting/

● Jason Mitchell, Gary McTaggart, Chris Green, Shading in Valve’s Source Engine, Advanced Real-
Time Rendering in 3D Graphics and Games Source – SIGGRAPH 2006

● http://www.valvesoftware.com/publications/2006/SIGGRAPH06_Course_ShadingInValvesSourceEngine.pdf

● Perumaal Shanmugam, Okan Arikan, Hardware accelerated ambient occlusion techniques on
GPUs, Proceedings of the 2007 symposium on Interactive 3D graphics and games

● http://www.okanarikan.com/Papers/Entries/2007/5/23_Hardware_Accelerated_Ambient_Occlusion_Techniques_on_GPUs.html

● Michael Garland, Paul Heckbert, Surface Simplification Using Quadric Error Metrics, Proceedings
of SIGGRAPH 1997

● http://www.mgarland.org/papers/quadrics.pdf

● Hugues Hoppe, New Quadric Metric for Simplifying Meshes with Appearance Attributes, IEEE
Visualization 1999 Conference

● http://research.microsoft.com/en-us/um/people/hoppe/proj/newqem/

http://dl.acm.org/citation.cfm?id=1581080
http://www.gdcvault.com/play/1014525/Lighting-the-Apocalypse-Rendering-Techniques
http://www.gdcvault.com/play/1014525/Lighting-the-Apocalypse-Rendering-Techniques
http://www.gdcvault.com/play/1014525/Lighting-the-Apocalypse-Rendering-Techniques
http://www.gdcvault.com/play/1014525/Lighting-the-Apocalypse-Rendering-Techniques
http://www.gdcvault.com/play/1014525/Lighting-the-Apocalypse-Rendering-Techniques
http://www.gdcvault.com/play/1014525/Lighting-the-Apocalypse-Rendering-Techniques
http://www.gdcvault.com/play/1014525/Lighting-the-Apocalypse-Rendering-Techniques
http://www.gdcvault.com/play/1014525/Lighting-the-Apocalypse-Rendering-Techniques
http://www.gdcvault.com/play/1014525/Lighting-the-Apocalypse-Rendering-Techniques
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-pre-pass-renderer.html
http://www.insomniacgames.com/prelighting/
http://www.valvesoftware.com/publications/2006/SIGGRAPH06_Course_ShadingInValvesSourceEngine.pdf
http://www.okanarikan.com/Papers/Entries/2007/5/23_Hardware_Accelerated_Ambient_Occlusion_Techniques_on_GPUs.html
http://www.mgarland.org/papers/quadrics.pdf
http://research.microsoft.com/en-us/um/people/hoppe/proj/newqem/
http://research.microsoft.com/en-us/um/people/hoppe/proj/newqem/
http://research.microsoft.com/en-us/um/people/hoppe/proj/newqem/

