
Terrain in Battlefield 3:
A modern, complete and scalable system

Mattias Widmark
Software Engineer, EA Digital Illusions (DICE), Stockholm

Overview

• Scalability – hierarchies, payloads and limitations

• Workflows – realtime in-game editing

• CPU and GPU performance

• Procedural virtual texturing – powerful GPU optimization

• Data streaming – minimizing memory footprint

• Robustness – global prioritization

• Procedural mesh generation

• Conclusions

But first...

• ... what are we talking about?

• Frostbite terrain has many aspects other than the terrain mesh itself

– Let’s look at them!

• Heightfield-based

• Mesh procedurally generated at runtime

• Surface rendering with
procedual shader splatting

– Arbitrary shaders splatted
according to painted masks

• Spline and quad decals

• Terrain decoration
– Automatic distribution of meshes

(trees, rocks, grass) according to
mask

– Billboards supported

§

• Terrain decoration
– Important as the terrain

surface itself

• Destruction/dynamic terrain
– Destruction depth map

• Controls crater depth around ie static models

– Physics material map
• Controls surface effects, audio, crater depth and width

• Rivers/lakes

– Implemented as free-floating decals

– Water depth in pixel shader

Terrain raster resources

• Multiple raster resources used

– Heightfield

– Shader splatting masks

– Colormap, used as an overlay on top of shader splatting

– Physics materials

– Destruction depth mask

– Albedo map for bounce light

– Additional mask channels

Overview

• Scalability – hierarchies, payloads and limitations

• Workflows – realtime in-game editing

• CPU and GPU performance

• Procedural virtual texturing – powerful GPU optimization

• Data streaming – minimizing memory footprint

• Robustness – global prioritization

• Procedural mesh generation

• Conclusions

Scalability

• Our definition of scalability
– Arbitrary view distance (0.06m to 30 000m)
– Arbitrary level of detail (0.0001m and lower)
– Arbitrary velocity (supercars and jets)

• Main observation
– It is all about hierarchies!
– Consistent use of hierarchies gives scalability ”for free”

• Hierarchies not new to terrain rendering
– Frostbite approach similar to flight simulators

• Quadtree hierarchies used for all spatial
representations

• Assuming knowledge of quadtrees, we jump right into
Frostbite specifics!

Quadtree node payload

• The node payload is a central concept

• A quadtree node can be attributed with a ”data blob”; the payload

• Payload is

– a tile of raster data

– a cell of terrain decoration

• A list of instances (rock, grass, trees)

– a piece of decal mesh

• All nodes have payload...

– ... but only a few have it loaded

Nodes (white circle)
Payload (red dot)

Nodes with and without payload

• Payloads are constantly in motion

– They are loaded (streamed), generated or freed evey frame

– Only a fraction of the nodes have payload resident

• Payload movement is governed by prioritization mechanisms...

– ... but more of that later

LOD payload

• Non-leaf nodes have payload too

• These payloads are used as LODs

• Detail level depends on payload depth

– Nodes closer to root represent lower detail

Increasing LOD

Payload (red dot)
LOD payload (orange dot)

View-dependent payload usage

Set of payloads (green dots) used
for a certain observer position

– Note area to the left is distant
and use lower LOD

Observer
Observer

Observer moves and another set is
used

– Area to the left now use higher
LOD

Motivation for LOD payloads

• With LOD

– cost (payload count) is mostly
independent of terrain size

– Scalable!

• Without LOD

– cost depend on terrain size

– Not scalable!

Generation of raster LOD payload

• Source data and workflows on leaf level

• LODs generated automatically by pipeline

• Requirements

– Tile overlap (borders) for rendering algorithms

– Continuity

• Recursive (reverse) depth first algorithm

– Green LOD tile is generated

– Four children (red) and up to 12 neighbor tiles
(blue) are used

Terrain decoration payloads

• Terrain decoration payload

– Is a list of instance transforms (for grass, trees, rocks)

– Is generated at runtime according to

• scattering rules

• shader splatted masks (position/density)

– Note that we allow shaders to modify masks!

• heightfield (ground-clamping and orientation)

Terrain decoration LOD payloads

• Quite unique (and slightly confusing) concept

• LOD payloads used for scalability

– Near-root payloads provide high view distance

– Near-leaf payloads provide high density

• Payloads can overlap

– Providing high view distance and density

• <screenshot from Frosted w/ game view>

Trees Bushes Leaves
Level N+3

More leaves added (level N+4)
and branches

High distance low density trees
Payload at level N

Medium distance medium density trees
Payload at level N+1
Adds to payload at level N for increased density

Lower distance bushes
Payload at level N+2

Overview

• Scalability – hierarchies, payloads and limitations

• Workflows – realtime in-game editing

• CPU and GPU performance

• Procedural virtual texturing – powerful GPU optimization

• Data streaming – minimizing memory footprint

• Robustness – global prioritization

• Procedural mesh generation

• Conclusions

Real time editing in FrostEd

• FrostEd is Frostbite editor

• Game View is game rendering inside editor

• Terrain editing with realtime feedback in game view

– Heightfield sculpting

– Mask and color painting

– Decal editing

– Terrain decoration

External tools

• When tools are not enough terrain can be exported and imported

– Select all or part of terrain

– Metadata + raw file

– Edit raw file and reimport

• Metadata will import to right area

– Puts WorldMachine, GeoControl in the loop

• A common workflow

Workflow issues

• Conflict between data compression and realtime editing

• Realtime editing bypass pipeline

• Clever update scheme for procedural content needed

– We already had one (destruction)

• Frostbite terrains too large for some popular tools

– GeoControl and WorldMachine do not like 8k+ rasters

Overview

• Scalability – hierarchies, payloads and limitations

• Workflows – realtime in-game editing

• CPU and GPU performance

• Procedural virtual texturing – powerful GPU optimization

• Data streaming – minimizing memory footprint

• Robustness – global prioritization

• Procedural mesh generation

• Conclusions

Efficient on CPU

• All work done in jobs, most on SPU and many wide
– Early unoptimized versions consumed 10ms+ PPU time
• BF3 final measurements (PS3)

– 1-2ms SPU (peaks at ~8ms when lots of terrain decoration is
happening)

– <1ms PPU

Efficient on GPU

• Pre-baked shader permutations to avoid multi-pass

• Procedual virtual texturing exploit frame-to-frame coherency

• Typical figures (PS3):

– Full screen GBuffer laydown (w/o detail overlay and terrain decoration):
2.5-3ms

– Full screen GBuffer laydown (w/ detail overlay): 2.5-7ms

– Terrain decoration: 1-4ms

– Virtual texture tile compositing: 0.2-0.5ms

Overview

• Scalability – hierarchies, payloads and limitations

• Workflows – realtime in-game editing

• CPU and GPU performance

• Procedural virtual texturing – powerful GPU optimization

• Data streaming – minimizing memory footprint

• Robustness – global prioritization

• Procedural mesh generation

• Conclusions

GPU optimization: Procedural virtual texturing

• Motivations

– With shader splatting, artists can create beautiful terrains…

• … rendering very slowly (10-20ms)

– Shader splatting not scalable in view distance

• Cannot afford multi-pass

• By splatting into a texture

– we leverage frame-to-frame coherency (performance)

– can render in multiple passes (scalability)

• Rendering full screen using the texture cost 2.5-3ms (PS3)

Virtual texture key values

• 32 samples per meter

• 256x256 tiles with integrated two pixel border

• Atlas storage with default size 4k x 2k

• Two DXT5 textures

• Very large, can easily reach 1M x 1M (= 1Tpixel)!
– Typical virtual textures are 64k x 64k

R G B A R G B A

Diffuse R Diffuse G Diffuse B Normal X Smoothness/

Destruction

Normal Y Specular Normal Z

Indirection texture format

• RGBA8

• Indices into virtual texture
tile atlas

• Scale factor for low-res areas...

– ... where a tile covers more than one indirection sample

• CLOD fade factor

– Used to smoothly fade in a newly composited tile (fade-to tile)

– Previous LOD (fade-from tile) is already in atlas and fetched using
indirection mips

– CLOD factor updated each frame

R G B A

Index X Index Y Scale CLOD fade

The ”Teratexture”

• How do we reach 1M x 1M?

– Indirection texture can easily go 4k x 4k

• Way too large!

• Clipmap indirection texture

– Clipmap – early virtual texture
implementation

– Replace 4k indirection texture with 6
64x64 clipmap layers

Clipmap indirection

• Clipmap level is resolved on CPU for each draw call

– Avoids additional pixel shader logic

– Requires each 64x64 map to have its own mip chain

• Texture space has to be roughly organized with world space

– Not an issue for terrain

– More generic use cases are probably better off with multiple classic
virtual textures

Tile compositing

• Tiles are composited on GPU and compressed on GPU or SPU

• Benefits (compared to streaming from disc)
– Small disc footprint – data magnification

• Source raster data magnified ~1000x

– Low latency
• Tile is ready to use next frame

– Dynamic updates
• Destruction

• Realtime editing

– Efficient workflow
• Artists don’t have to paint hundreds of square kilometers down to every last

pebble

Virtual texture issues

• Blurriness (consoles have too small tile pool)

• Runtime texture compression quality

• GPU tile compositing cost offset some of the gain

– ~0.25ms/frame on Xenon

• Limited hardware filtering support

– Expensive software and/or lower-quality filtering

• Compositing latency

• Tile compositing render target memory usage

Virtual texture issues

• Virtual texture has practical limit at around 32
samples per meter
– Detail shader splatting fills in to required

sharpness (500-1000 samples per meter)

• We now have two shader splatting methods
– Diffuse/Normal/Specular/Smoothness splats

into virtual texture

– Direct* splats details into Gbuffer

• Performance concerns
– Have to limit detail view distance

– Typically 50m-100m

Virtual texture issues

• Indirection update performance
– Updating indirection maps is expensive

• 4-6 64x64 maps with mips

– Do in job (SPU)

– Update only dirty areas
• New tile

• CLOD fade factor

• Recentering when clipmap region moves

– Wraparound
• Only edges affected on

recentering (bottom image)

Updated
clipmap
area

Observer

Clipmap

Overview

• Scalability – hierarchies, payloads and limitations

• Workflows – realtime in-game editing

• CPU and GPU performance

• Procedural virtual texturing – powerful GPU optimization

• Data streaming – minimizing memory footprint

• Robustness – global prioritization

• Procedural mesh generation

• Conclusions

Data streaming

• Frostbite 1 did not stream terrain

• Streaming required for larger Battlefield 3 and NFS: The Run
levels

Streaming basics

• Streaming unit: Raster tiles (aka node payloads)

– Typical tile sizes

• Heightfield: 133x133x2 bytes

• Mask: 66x66x1 bytes x 0-50 tiles per payload

• Color: 264x264x0.5 bytes

• Fixed-size tile pools (atlases)

– Typical atlas sizes

• Heightfield: 2048x2048

• Mask: 2048x1024

• Color: 2048x2048

Streaming modes

• Tile-by-tile (aka free) streaming

– For slower gameplay

• Tile bundle (aka push-based) streaming

– For faster games

– Tiles associated with a layout are bundled

– Based on terrain resolution layouts

• Hybrid streaming (most common)

– Bundles used at selected spawn points and transitions

– Free streaming fill in the rest

Layout of all data on level
Data subset loaded at spawn point
A Terrain resolution layout defines the subset

Subsets loaded (and unloaded) as user progresses

through level

Spawn point

Resident set size: Powerful blurriness

• Streaming does not remove memory footprint

– A resident set is still needed

• Resident set can be huge

– Theoretical value for BF3 level on PS3: 70+Mb!

• Blurriness feature shrinks resident set significantly

– Increase blurriness by one and save around 70%

– Very important memory saver for BF3

– Shipped with 32Mb terrain resident set

Blurriness

• Blurriness is mip bias applied to terrain raster streaming

– Blurriness = 0:

• Streaming continues until raster is sharp

– Blurriness = 1:

• Streaming stops when raster is slightly blurry (texel covers 2x2 pixels)

– Blurriness = 2:

• Streaming stops when raster is significantly blurry (texel covers 4x4 pixels)

Blurriness: Implementation by pipeline trick

• For each level of blurriness

– cut tile size in half

– add one leaf level

• No data is lost – it is only shifted downwards

Blurriness 0
 256x256-sized tiles
 8 resident tiles (500kpixel)
 13 nodes

Blurriness 1
 128x128-sized tiles
 14 nodes added
 10 resident tiles (164kpixel, saves 68%)
 27 nodes

BF3 blurriness use case

• Blur expensive rasters

– Heightfield (2 bytes per sample)

– Mask (1 byte per sample)

• Keep cheap rasters

– Colormap (DXT1, 0.5byte per sample)

• Put detail (for example occlusion) in colormap to hide blurry
heightfield/normal map

• Physics
– Wrong streaming setup gives strange artifacts

• Vehicles spawning in air or in ground
• Invisible and disappearing walls and holes

Reducing disc seeks

• Often main reason for latency

– Can seek maybe four files per second

– A terrain can have hundreds of files (tiles/payloads)

• Methods to reduce the number of seeks

– Use terrain resolution layouts at spawn

• Otherwise minutes can pass before stabilization (waiting for file seeks)!

– Co-locate overlapping tiles of different types

• Store heightfield tile together with color and mask tiles

Reducing disc seeks

• Methods to reduce the number of seeks (cont’d)

– Co-locate nearby tiles

• Group leaf node payloads as second LOD in ancestor node

• Saves 20-50% seeks in typical scenario

Full dataset require 13 seeks
Leaf nodes subject for move in red

Second LOD stored in parent nodes
Full dataset is now 10 seeks

Improving throughput

• Data tiles are compressed by pipeline

– Color tiles are optionally DXT1-compressed

– Mask compression

• Source tiles (256x256) are chopped up into smaller pieces (66x66)

• Empty tile culling

• Identical (constant value) tile merging

– Physics materials and destruction depth are packed to four bits and
RLE-compressed

– All tiles are z-compressed

Improving throughput

• A quadtree node has zero or four children

• Incomplete quadtree
– We allow zero through four payload children

– Reduces bundle size by some 20%+

Complete quadtree with 32
tiles at red LOD

Incomplete quadtree with only
20 tiles. Incompleteness saves
12 tiles (37%)

Latency under the rug

• Even with mentioned improvements, streaming is not instant

• General ways of hiding latency

– CLOD to smooth most streaming LOD transitions

– Global prioritization helps distribute punishment

Overview

• Scalability – hierarchies, payloads and limitations

• Workflows – realtime in-game editing

• CPU and GPU performance

• Procedural virtual texturing – powerful GPU optimization

• Data streaming – minimizing memory footprint

• Robustness – global prioritization

• Procedural mesh generation

• Conclusions

Global prioritization

• Compute priority for each frame and each quadtree node

• Update streaming, virtual texturing and terrain decoration

– According to priority

• Priority value

– 1.0: On target

• One pixel per texel

• Terrain decoration at specified view distance

– < 1.0: Node doesn’t need payload

– > 1.0: Node need payload

Observer

Priority
• Red > 1
• Green = 1
• Blue < 1

Priority depends on distance and size
• Closer nodes have higher priority

• Larger nodes have higher priority

Observer
Occluder Node being updated (crater added)

Node in motion

Priority modified by culling, updates and speed

Priority
• Red > 1
• Green = 1
• Blue < 1

Normal node

Occluded node

Node outside frustum

Low prio High prio

Frame 0:
Steady state

Frame 1:
Observer moved

Look for payloads to fetch Look for payloads to release

Frame 1:
Payload released

Frame 2:
New payload fetched

Nodes

Pool size (keep pool full) Prioritized update algorithm

Bidirectional
update

Prioritized update cost

• Priority evaluation and sorting done on SPU

– <1ms

• Update done on PPU

– <0.5ms

Overview

• Scalability – hierarchies, payloads and limitations

• Workflows – realtime in-game editing

• CPU and GPU performance

• Procedural virtual texturing – powerful GPU optimization

• Data streaming – minimizing memory footprint

• Robustness – global prioritization

• Procedural mesh generation

• Conclusions

Mesh

• Mesh generated from heightfield
• Straight-forward tessellation

– Rendered in patches of 16x16 triangle pairs

– Projected triangle size rougly constant - support destruction everywhere

– Blocky crestlines (on console)

• PC, Xenon:
– Heightfield sampled in vertex shader

• PS3:
– Vertex shader texture fetch is too slow

• Heightfield samples stored in vertex attribute

• Heightfield sampled in pixel shader

Mesh stitching

• A job analyze mesh quadtree and detect LOD switch edges

• Edges are stitched by index permutations

– Vertices are unchanged

No stitch Stitch left Stitch left and bottom

DX11 tessellation

• Displacement mapping from heightfield
– No additional memory needs (heightfield used as normal map)

• Straightforward hull and domain shaders
• Tessellation factor derived from projected patch edge bounding sphere

– Tries to maintain a constant screen-space triangle width

Displacement mapping OFF Displacement mapping ON

Overview

• Scalability – hierarchies, payloads and limitations

• Workflows – realtime in-game editing

• CPU and GPU performance

• Procedural virtual texturing – powerful GPU optimization

• Data streaming – minimizing memory footprint

• Robustness – global prioritization

• Procedural mesh generation

• Conclusions

Conclusions

• Frostbite 2 has a robust and competent terrain system

– Heightfield, shading, decals, water, terrain decoration

• Most aspects scale well

– View distance, data resolution, decoration density and distance

• Slick workflow

– In-game editing

– Good range of tools

• Good performance (CPU, GPU, memory)

– Parallelized, streaming, procedural virtual texture

Special thanks

• The Frostbite team

• Black Box
– Andy Routledge

– Cody Ritchie

– Brad Gour

• Criterion
– Tad Swift

– Matthew Jones

– Richard Parr

• Dice
– Andrew Hamilton

Questions?

mattias.widmark@dice.se

EA Digital Illusions (DICE)

