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But first... 

• ... what are we talking about? 
 
 

• Frostbite terrain has many aspects other than the terrain mesh itself 

– Let’s look at them! 



• Heightfield-based 

• Mesh procedurally generated at runtime 



• Surface rendering with 
procedual shader splatting 

– Arbitrary shaders splatted 
according to painted masks 



• Spline and quad decals 



• Terrain decoration 
– Automatic distribution of  meshes 

(trees, rocks, grass) according to 
mask 

– Billboards supported 



§ 

 

• Terrain decoration 
– Important as the terrain 

surface itself 



• Destruction/dynamic terrain 
– Destruction depth map 

• Controls crater depth around ie static models 

– Physics material map 
• Controls surface effects, audio, crater depth and width 



• Rivers/lakes  

– Implemented as free-floating decals 

– Water depth in pixel shader 



Terrain raster resources 

• Multiple raster resources used 

– Heightfield 

– Shader splatting masks 

– Colormap, used as an overlay on top of shader splatting 

– Physics materials 

– Destruction depth mask 

– Albedo map for bounce light 

– Additional mask channels 
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Scalability 

• Our definition of scalability 
– Arbitrary view distance (0.06m to 30 000m) 
– Arbitrary level of detail (0.0001m and lower) 
– Arbitrary velocity (supercars and jets) 

• Main observation 
– It is all about hierarchies! 
– Consistent use of hierarchies gives scalability ”for free” 

• Hierarchies not new to terrain rendering 
– Frostbite approach similar to flight simulators 

• Quadtree hierarchies used for all spatial 
representations 
 

• Assuming knowledge of quadtrees, we jump right into 
Frostbite specifics! 



Quadtree node payload 

• The node payload is a central concept 

• A quadtree node can be attributed with a ”data blob”; the payload 

• Payload is 

– a tile of raster data 

– a cell of terrain decoration  

• A list of instances (rock, grass, trees)  

– a piece of decal mesh 

• All nodes have payload... 

– ... but only a few have it loaded 

 

Nodes (white circle) 
Payload (red dot) 



Nodes with and without payload 

• Payloads are constantly in motion 

– They are loaded (streamed), generated or freed evey frame 

– Only a fraction of the nodes have payload resident 

• Payload movement is governed by prioritization mechanisms... 

– ... but more of that later 

 



LOD payload 

• Non-leaf nodes have payload too 

• These payloads are used as LODs 

• Detail level depends on payload depth 

– Nodes closer to root represent lower detail 

Increasing LOD 

Payload (red dot) 
LOD payload (orange dot) 



View-dependent payload usage 

Set of payloads (green dots) used 
for a certain observer position 

– Note area to the left is distant 
and use lower LOD 

Observer 
Observer 

Observer moves and another set is 
used 

– Area to the left now use higher 
LOD 

 



Motivation for LOD payloads 

• With LOD 

– cost (payload count) is mostly 
independent of terrain size 

– Scalable! 
 

• Without LOD 

– cost depend on terrain size 

– Not scalable! 

 



Generation of raster LOD payload 

• Source data and workflows on leaf level 

• LODs generated automatically by pipeline 

• Requirements 

– Tile overlap (borders) for rendering algorithms 

– Continuity 

• Recursive (reverse) depth first algorithm 

– Green LOD tile is generated 

– Four children (red) and up to 12 neighbor tiles  
(blue) are used 

 

 



Terrain decoration payloads 

• Terrain decoration payload 

– Is a list of instance transforms (for grass, trees, rocks) 

– Is generated at runtime according to 

• scattering rules 

• shader splatted masks (position/density) 

– Note that we allow shaders to modify masks! 

• heightfield (ground-clamping and orientation) 

 



Terrain decoration LOD payloads 

• Quite unique (and slightly confusing) concept 

• LOD payloads used for scalability 

– Near-root payloads provide high view distance 

– Near-leaf payloads provide high density 

• Payloads can overlap 

– Providing high view distance and density 

 



• <screenshot from Frosted w/ game view> 

Trees Bushes Leaves  
Level N+3 

More leaves added (level N+4)  
and branches 

High distance low density trees  
Payload at level N 

Medium distance medium density trees  
Payload at level N+1 
Adds to payload at level N for increased density 

Lower distance bushes 
Payload at level N+2 
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Real time editing in FrostEd 

• FrostEd is Frostbite editor 

• Game View is game rendering inside editor 

• Terrain editing with realtime feedback in game view 

– Heightfield sculpting 

– Mask and color painting 

– Decal editing 

– Terrain decoration 
 



External tools 

• When tools are not enough terrain can be exported and imported 

– Select all or part of terrain 

– Metadata + raw file 

– Edit raw file and reimport 

• Metadata will import to right area 

– Puts WorldMachine, GeoControl in the loop 

• A common workflow 



Workflow issues 

• Conflict between data compression and realtime editing 

• Realtime editing bypass pipeline 

• Clever update scheme for procedural content needed 

– We already had one (destruction) 

• Frostbite terrains too large for some popular tools 

– GeoControl and WorldMachine do not like 8k+ rasters 
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Efficient on CPU 

• All work done in jobs, most on SPU and many wide 
– Early unoptimized versions consumed 10ms+ PPU time 
• BF3 final measurements (PS3) 

– 1-2ms SPU (peaks at ~8ms when lots of terrain decoration is 
happening) 

– <1ms PPU 

 
 



Efficient on GPU 

• Pre-baked shader permutations to avoid multi-pass 

• Procedual virtual texturing exploit frame-to-frame coherency 

• Typical figures (PS3): 

– Full screen GBuffer laydown (w/o detail overlay and terrain decoration): 
2.5-3ms 

– Full screen GBuffer laydown (w/ detail overlay): 2.5-7ms 

– Terrain decoration: 1-4ms 

– Virtual texture tile compositing: 0.2-0.5ms 
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GPU optimization: Procedural virtual texturing 

• Motivations 

– With shader splatting, artists can create beautiful terrains… 

• … rendering very slowly (10-20ms) 

– Shader splatting not scalable in view distance 

• Cannot afford multi-pass 

• By splatting into a texture 

– we leverage frame-to-frame coherency (performance) 

– can render in multiple passes (scalability) 

• Rendering full screen using the texture cost 2.5-3ms (PS3) 

 



Virtual texture key values 

• 32 samples per meter 

• 256x256 tiles with integrated two pixel border 

• Atlas storage with default size 4k x 2k 

• Two DXT5 textures 
 
 
 
 

• Very large, can easily reach 1M x 1M (= 1Tpixel)! 
– Typical virtual textures are 64k x 64k 

R G B A R G B A 

Diffuse R Diffuse G Diffuse B Normal X Smoothness/ 

Destruction 

Normal Y Specular Normal Z 



Indirection texture format 

• RGBA8 

• Indices into virtual texture  
tile atlas 

• Scale factor for low-res areas...  

– ... where a tile covers more than one indirection sample 

• CLOD fade factor 

– Used to smoothly fade in a newly composited tile (fade-to tile) 

– Previous LOD (fade-from tile) is already in atlas and fetched using 
indirection mips 

– CLOD factor updated each frame 

R G B A 

Index X Index Y Scale CLOD fade 



The ”Teratexture” 

• How do we reach 1M x 1M? 

– Indirection texture can easily go 4k x 4k 

• Way too large! 

• Clipmap indirection texture 

– Clipmap – early virtual texture 
implementation 

– Replace 4k indirection texture with 6 
64x64 clipmap layers 



Clipmap indirection 

• Clipmap level is resolved on CPU for each draw call 

– Avoids additional pixel shader logic 

– Requires each 64x64 map to have its own mip chain 

• Texture space has to be roughly organized with world space 

– Not an issue for terrain 

– More generic use cases are probably better off with multiple classic 
virtual textures 

 



Tile compositing 

• Tiles are composited on GPU and compressed on GPU or SPU 

• Benefits (compared to streaming from disc) 
– Small disc footprint – data magnification 

• Source raster data magnified ~1000x 

– Low latency  
• Tile is ready to use next frame 

– Dynamic updates  
• Destruction 

• Realtime editing 

– Efficient workflow 
• Artists don’t have to paint hundreds of square kilometers down to every last 

pebble 



Virtual texture issues 

• Blurriness (consoles have too small tile pool) 

• Runtime texture compression quality 

• GPU tile compositing cost offset some of the gain 

– ~0.25ms/frame on Xenon 

• Limited hardware filtering support  

– Expensive software and/or lower-quality filtering  

• Compositing latency 

• Tile compositing render target memory usage 

 



Virtual texture issues 

• Virtual texture has practical limit at around 32 
samples per meter 
– Detail shader splatting fills in to required 

sharpness (500-1000 samples per meter) 

• We now have two shader splatting methods 
– Diffuse/Normal/Specular/Smoothness splats 

into virtual texture 

– Direct* splats details into Gbuffer 

• Performance concerns 
– Have to limit detail view distance 

– Typically 50m-100m 



Virtual texture issues 

• Indirection update performance 
– Updating indirection maps is expensive 

• 4-6 64x64 maps with mips 

– Do in job (SPU) 

– Update only dirty areas 
• New tile 

• CLOD fade factor 

• Recentering when clipmap region moves 

– Wraparound 
• Only edges affected on  

recentering (bottom image) 

Updated  
clipmap  
area 

Observer 

Clipmap 



Overview 

• Scalability – hierarchies, payloads and limitations 

• Workflows – realtime in-game editing 

• CPU and GPU performance 

• Procedural virtual texturing – powerful GPU optimization 

• Data streaming – minimizing memory footprint 

• Robustness – global prioritization 

• Procedural mesh generation 

• Conclusions 



Data streaming 

• Frostbite 1 did not stream terrain 

• Streaming required for larger Battlefield 3 and NFS: The Run 
levels 



Streaming basics 

• Streaming unit: Raster tiles (aka node payloads) 

– Typical tile sizes 

• Heightfield: 133x133x2 bytes 

• Mask: 66x66x1 bytes x 0-50 tiles per payload 

• Color: 264x264x0.5 bytes 

• Fixed-size tile pools (atlases) 

– Typical atlas sizes 

• Heightfield: 2048x2048 

• Mask: 2048x1024 

• Color: 2048x2048 

 



Streaming modes 

• Tile-by-tile (aka free) streaming 

– For slower gameplay 

• Tile bundle (aka push-based) streaming 

– For faster games 

– Tiles associated with a layout are bundled 

– Based on terrain resolution layouts 

• Hybrid streaming (most common) 

– Bundles used at selected spawn points and transitions 

– Free streaming fill in the rest 

 



Layout of all data on level 
Data subset loaded at spawn point 
A Terrain resolution layout defines the subset 

Subsets loaded (and unloaded) as user progresses 

through level 

 

Spawn point 



Resident set size: Powerful blurriness 

• Streaming does not remove memory footprint 

– A resident set is still needed 

• Resident set can be huge 

– Theoretical value for BF3 level on PS3: 70+Mb! 

• Blurriness feature shrinks resident set significantly 

– Increase blurriness by one and save around 70% 

– Very important memory saver for BF3  

– Shipped with 32Mb terrain resident set 

 

 



Blurriness 

• Blurriness is mip bias applied to terrain raster streaming 

– Blurriness = 0:  

• Streaming continues until raster is sharp 

– Blurriness = 1: 

• Streaming stops when raster is slightly blurry (texel covers 2x2 pixels) 

– Blurriness = 2:  

• Streaming stops when raster is significantly blurry (texel covers 4x4 pixels) 

 



Blurriness: Implementation by pipeline trick 

• For each level of blurriness 

– cut tile size in half 

– add one leaf level  

• No data is lost – it is only shifted downwards 

 

Blurriness 0 
  256x256-sized tiles 
  8 resident tiles (500kpixel) 
  13 nodes 

Blurriness 1 
  128x128-sized tiles 
  14 nodes added 
  10 resident tiles (164kpixel, saves 68%) 
  27 nodes 



BF3 blurriness use case 

• Blur expensive rasters  

– Heightfield (2 bytes per sample)  

– Mask (1 byte per sample) 

• Keep cheap rasters 

– Colormap (DXT1, 0.5byte per sample) 

• Put detail (for example occlusion) in colormap to hide blurry 
heightfield/normal map 

 



 

• Physics 
– Wrong streaming setup gives strange artifacts 

• Vehicles spawning in air or in ground 
• Invisible and disappearing walls and holes 

 

 



Reducing disc seeks 

• Often main reason for latency 

– Can seek maybe four files per second 

– A terrain can have hundreds of files (tiles/payloads) 

• Methods to reduce the number of seeks 

– Use terrain resolution layouts at spawn  

• Otherwise minutes can pass before stabilization (waiting for file seeks)! 

– Co-locate overlapping tiles of different types 

• Store heightfield tile together with color and mask tiles 

 



Reducing disc seeks 

• Methods to reduce the number of seeks (cont’d) 

– Co-locate nearby tiles 

• Group leaf node payloads as second LOD in ancestor node 

• Saves 20-50% seeks in typical scenario 

 

Full dataset require 13 seeks 
Leaf nodes subject for move in red 
 

Second LOD stored in parent nodes 
Full dataset is now 10 seeks 



Improving throughput 

• Data tiles are compressed by pipeline 

– Color tiles are optionally DXT1-compressed 

– Mask compression 

• Source tiles (256x256) are chopped up into smaller pieces (66x66) 

• Empty tile culling 

• Identical (constant value) tile merging 

– Physics materials and destruction depth are packed to four bits and 
RLE-compressed 

– All tiles are z-compressed 



Improving throughput 

• A quadtree node has zero or four children 

• Incomplete quadtree 
– We allow zero through four payload children 

– Reduces bundle size by some 20%+ 

 

Complete quadtree with 32 
tiles at red LOD 

Incomplete quadtree with only 
20 tiles. Incompleteness saves 
12 tiles (37%) 



Latency under the rug 

• Even with mentioned improvements, streaming is not instant 

• General ways of hiding latency 

– CLOD to smooth most streaming LOD transitions 

– Global prioritization helps distribute punishment 
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Global prioritization 

• Compute priority for each frame and each quadtree node 

• Update streaming, virtual texturing and terrain decoration 

– According to priority 

• Priority value 

– 1.0: On target 

• One pixel per texel 

• Terrain decoration at specified view distance 

– < 1.0: Node doesn’t need payload 

– > 1.0: Node need payload 

 



Observer 

Priority 
• Red > 1 
• Green = 1 
• Blue < 1 

Priority depends on distance and size 
• Closer nodes have higher priority 

• Larger nodes have higher priority 



Observer 
Occluder Node being updated (crater added) 

Node in motion 

Priority modified by culling, updates and speed 

Priority 
• Red > 1 
• Green = 1 
• Blue < 1 

Normal node 

Occluded node 

Node outside frustum 



Low prio High prio 

Frame 0: 
Steady state 

Frame 1: 
Observer moved 

Look for payloads to fetch Look for payloads to release 

Frame 1: 
Payload released 

Frame 2: 
New payload fetched 

Nodes 

Pool size (keep pool full) Prioritized update algorithm 

Bidirectional  
update  



Prioritized update cost 

• Priority evaluation and sorting done on SPU 

– <1ms 

• Update done on PPU 

– <0.5ms 
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Mesh 

• Mesh generated from heightfield 
• Straight-forward tessellation 

– Rendered in patches of 16x16 triangle pairs 

– Projected triangle size rougly constant - support destruction everywhere 

– Blocky crestlines (on console)  

• PC, Xenon:  
– Heightfield sampled in vertex shader 

• PS3: 
– Vertex shader texture fetch is too slow 

• Heightfield samples stored in vertex attribute 

• Heightfield sampled in pixel shader  

 



Mesh stitching 

• A job analyze mesh quadtree and detect LOD switch edges 

• Edges are stitched by index permutations 

– Vertices are unchanged 

No stitch Stitch left Stitch left and bottom 



DX11 tessellation 

• Displacement mapping from heightfield 
– No additional memory needs (heightfield used as normal map) 

• Straightforward hull and domain shaders 
• Tessellation factor derived from projected patch edge bounding sphere 

– Tries to maintain a constant screen-space triangle width 



 

Displacement mapping OFF Displacement mapping ON 
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Conclusions 

• Frostbite 2 has a robust and competent terrain system 

– Heightfield, shading, decals, water, terrain decoration 

• Most aspects scale well 

– View distance, data resolution, decoration density and distance 

• Slick workflow 

– In-game editing 

– Good range of tools 

• Good performance (CPU, GPU, memory) 

– Parallelized, streaming, procedural virtual texture 
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