
Hey everyone, I’m sure you’ve heard it a million times already, but make sure that you silence your cell phones, and make sure
to fill out those surveys!

**NOTE: Any “•” indicates advancing a bullet point. If you would like to download the full powerpoint/keynote of this
presentation, please visit the following site where you can download it and view it as it was intended to be viewed:

bit.ly/insom_rnd

Thanks,
Sean Ahern

Thank You!

First o! - thank you all for being here, I hope that we’re going to have an awesome hour together

Sean Ahern

Information Architect -
Insomniac Games

Motion Graphics -
Pharmaceutical Industry

So hey everyone, my name is Sean Ahern

•A lot of people think that I look like Kevin Bacon

•At Insomniac Games I’m an Information architect, and I’ve been doing this for about the past 2 years now.
•What is an Information Architect? In the simplest of terms, I make our tools look pretty and work as well as they can.

•Prior to Insomniac I worked for 3 1/2 years doing Motion Graphics work for the Pharmaceutical Industry

1
Chaos Philosophy Process Transition BenefitImprove

23456
So today we’re going to be talking about 6 things:

•We’re going to start out with the overall State of chaos that existed with our tools in beginning

•Then we’re going to go into Insomniac as well as my own user experience and usability philosophies

•After this we’ll talk about our process for tools development

•Next we’ll touch on how we improve tools User Experience once they’re released and into the wild

•Following this, we’ll talk about our transition from a traditional tool set to a web-based tool set

•Finally, we’ll finish up with how we’ve benefitted from focusing so heavily on the user experience and usability, as well as take
any questions that you guys may have

In the beginning…there was chaos
Programmers making
tools for programmers

Tools didn’t make sense

Icons didn’t make sense

Pun based nomenclature

Visual clutter

Downtime galore

•When I first started, there was a feeling in other departments that our tools were su!ering because it was almost as if it was
just “programmers making tools for programmers”.

This was primarily due to 5 key issues:
•Tools didn’t make sense
•Icons didn’t make sense
•Pun nomenclature
•Visual clutter
•Downtime galore

Construction
Zone

Select
Point

Fortune?

Tag
Selected

Create
Curve

Select/
Create
curve
point

…
Uhhhhhh?

So in order to help illustrate this, I want to show an example from our old tools. This was the main toolbar from our old tool set

Now there are some obvious ones up here such as select, move, rotate, scale

There are also some others that are a bit more unclear:
•So first...maybe this is a construction zone?
•Next I guess that this one is selecting a point
•A...fortune?
•I suppose this one is tagging whatever we have selected
•Creating a Curve
•Selecting/ Creating Curve /Point
•Annnnd...uhhhhhhhhh?

WTF?!
So with this one...were they reminding us not to smoke and be healthier?

•What does this thing even do?

Poll audience

Alright, well personally I guess it’s a button that makes something that gets rid of smoke e!ects or creates a volume that
doesn’t allow smoke e!ects? I don’t know, that’s my best guess

No
smoke

e!ects?

Make
Stamp

Open
Maya

Create
Header

Construction
Zone

Select
Point

Fortune?

Tag
Selected

Create
Curve

Select/
Create
curve
point

So I guess we’re going with no smoke e!ects.

Others:
•Then we’ve got making a...stamp?
•Opening Maya with what’s selected
•Finally we have Creating a Header

Duplicate Selected
Numerous Times

Place
Entity

Place
Clue

Place
Locator
Object

Create
Curve

Edit
Selected

Curve

Light
Objects
in Scene

Create
Post Vol

Open Maya
With

Selected

Flush
Symbol

Defs

Now what it really was, was something more along the lines of this:
Duplicate selected numerous times, place an entity, place a clue (whatever that is), Place a locator object (not sure what that
is), create a curve (yess! got one right), edit the selected curve.

•Now for our No smoking Sign... survey SAYS!...Light...objects in scene...And the thing about it is, I had to actually look it up in
the tools to find this out. Anyway...continuing along.

•Create a post volume, Open maya with selected, and finally Flush symbol definitions.

Here’s what I thought:
Select
Translate
Rotate
Scale
Construction Zone
Measure
Select Point/Select new
Place volumes
Fortune
Place controller
Tag
New Curve
Select Curve Point
Make or select lights
No Smoke? No Smoking zones
Make stamp
Open maya
Open headers

Here’s what they are:
Select
Translate
Rotate
Scale
Duplicate selected numerous times
Measure
Place entity objects
Place volumes
Place clue objects
Place controller
Place locator objects
New Curve
Edit selected curve
Place lights
Light objects in the scene
Place post processing volume
Open maya with selected objects
Flush symbol defs to re-parse headers

So the thing is, I’ve been using a ton of di!erent engines and tool sets since I started in the 3rd grade with DoomIT. I’ve used
Source, QRadiant, UDK, etc...really a ton of di!erent tools throughout the years.

Now even with using all of these di!erent software packages throughout the years, I still only got 1/2 of them right

Something doesn’t add up here

Single icons
applied to
multiple types

So I also mentioned that we had a problem with our Icons not making sense. One of the big issues that we had was that we
were using single icons for multiple di!erent types of assets.

A number of these just don’t make sense.

We have a duck for an ally, art_shrubs, whatever a “Hale” is, Props, Entities, etc. We have an ant being used for enemies and
power ups.

I mean, my first question is: why are we even using ducks and ants to begin with? Are we making a zoo game or something
else?

Why aren’t we using appropriate icons for each thing?

Icons Making Sense
Color coded based on
categorization

Di!erent icons for
di!erent types

Icon visually represents
intended functionality

If at all possible use
known images

So what we did was completely revise the icons so that they do make sense:

•The first thing we did was make sure that things were color coded based on their categorization:
green: friendly, red: enemy

•Next, we have di!erent Icons being used for di!erent types of things. Instead of just having one lightbulb icon for all lights,
we have a di!erent icon for a spot light and a point light

•We also have the icon visually represent functionality - as you can see here, we have a single and a team spawn point, and it’s
green as well so that you can tell that its friendly.

•Finally, if we can, we want to make sure that we’re using known images so that we can convey meaning quickly and easily:
Here we have a stationary camera, we’re using a crosshair for what we’re calling a firepoint, etc

Moby

Pod

Guppy

Tie

Squadron ?
So like I mentioned, we greatly su!ered from a ton of pun based nomenclature - especially confusing for someone new to
insomniac

When I started at insomniac, I had no idea what anyone was talking about, and it took me a good seven to eight months to
really understand what people were talking about.

So we’ve got the following:

Moby – Movable object, anything that can be animated
Pod – A Group of Mobys
Guppy – A Smaller Moby

Then we’ve also got
Tie – Static Mesh/Model in a level
Squadron (or a group of tie fighters for all you star wars fans) - a group of ties

•Especially confusing for someone new to Insomniac

Models

AnimSets

Volumes

Wwise Events

Collections

Groups

Standard+ed

So we went and standardized all our asset types. No longer do we have Moby, or Tie, or anything else. Now we have things
like:

•Models, AnimSets, Volumes, etc

We wanted to make sure that we were using industry standard terminology to make sure that regardless of whether you were
new to the company, transferring departments, whatever. We wanted to make sure that people knew what everyone was
talking about without having to have any explanations required.

Asset Instance

We also further simplified everything: everything is divided into what we’re calling Assets and Instances

•Assets are our base/source file

•Instances are copies of the asset that have been placed into a level

Assets and Instances can be further classified by what type of thing they are: Model Instance/Asset, VFX Asset/Instance, etc

Visual Clutter
Seriously?

Another big problem that we su!ered from was Visual Clutter in our level editor

•What are we even looking at?

This is just an example from Resistance 3 of a tiny section of one of our levels. The first time that I loaded up the tools at
Insomniac to check out how their levels worked, it took me a good hour and asking someone else for help before I could even
work with anything in the level

Visual Clutter Reduced

With all of the changes that we’ve done, everything is now much easier to visually parse

I can actually see what I’m working with immediately without having to turn o! a bunch of wireframes and debug spheres

Now granted, I can turn on the debug info/wireframes if I want to but they’re o! by default

Downtime Galore

One of the problems we had with our old tools was a ton of ine!ciency in how the tools worked - leading to a TON of
downtime.

This particular sub-section of a level in Resistance 3 took 5-7 minutes to load up. It’s not even that immense of a level either,
there’s less than 500 entities contained within the level. When loading up a level, basically had to leave your desk as doing
anything else could freeze the program.

Downtime Galore
6

Load A

Level

3 -4
MINUTES

Changes In

Visibility

5 -7
MINUTES

5-10
MINUTES

Load Any

Changes

•So on average, it took 5-7 minutes to load up a level
•If we then wanted to turn visibility of a section of a level on or o!, that usually took about 3-4 minutes
•Then finally, if we wanted to make a change and then wanted to see it in the game, that took about 5-10 minutes
One thing to keep in mind was, the change may not have worked how you wanted, so yo would have to redo whole thing and
wait another 5-10 minutes again.

The reason why was primarily due to how our old tools were structured. We used a packed build system. Everything that
could possibly be loaded was packed into single giant Wad file. Game loads everything from single wad - no partial builds, so
that it would always have to rebuild from scratch each time.

Downtime

5-7 Minutes
5-10 Seconds

3-4 Minutes
4-6 Seconds

5-10 Minutes
15-30 Seconds

Loading Visibility Changes

…No-More

We then changed our asset building system from Packed Build to more of a Loose Loading system. This allows each asset to
be built individually and loaded into the game separately. Because of this, we have much less downtime compared to how
things used to be.

Everything that used to take minutes before is now only taking seconds

•Levels: 5-7 mins to 5-10 secs
•Vis on/o!: 3-4 Mins to 4-6 secs
•Changes: 5-10 mins to 15-30 secs *if that*

The one thing that I want to stress is this: The tools weren’t always like this, it’s just how things were when I started at
Insomniac. We didn’t decide to make property panels really cluttered right o! the bat, it was due to a number of additions
over the course of a number of games

•If you’re at all familiar with Insomniac, you know that we’ve made a number of very successful games with the old tools

The problem was that previously we didn’t have an artist on the team to design the UI, check consistency, etc
The tools were built for runtime speed/e"ciency rather than being able to look pretty

In the beginning…there was chaos

Programmers making
tools for programmers

Tools didn’t make sense

Icons didn’t make sense

Pun based nomenclature

Visual clutter

Downtime galore

How can we
make sure that
we’re correctly
developing the
tools for our
users?

So with this in mind, I can’t fault tools programmers because of all of this

•We just need to keep this in mind in the future so that we can make the right decisions going forward & minimize any and all
feature creep

Truly understand the culture
of the company and tools

Have to truly understand the “culture” of the tools and how people work with them

Now what I mean by “culture” is this - Companies often have di!erent ways of working, di!erent workflows, and even di!erent
personalities. It’s important to understand how a company works, as well as the di!erent departments work in order to get the
best results.

You also need to be very cognizant of workflows and habits with di!erent groups of developers. It’s all well and good to make
something that you think is awesome (and it very well may be really awesome), but if it isn’t awesome for the people that are
using the tools, it’s basically worthless.

Because of this you have to have a deep-seeded understanding of not only what was great with the old tools, but you also
want to be aware of the primary hindrances to development and the things that could be improved upon

Everything is a usability problem

E1ier Better More
E2cient

Insomniac’s has a number of usability and user experience philosophies, but we do have a core user experience philosophy:

•Everything, regardless of what it is, is a usability problem. It doesn’t matter if it’s an email, this presentation, a new level editor,
every single thing that we do is a usability problem to be solved.

•We want to make sure that we design any new systems/tools to make both the lives and work of everyone easier, better, and
more e"cient

This all very much falls in line with my own usability goals and philosophies of streamlining the process with more e"cient
tools

More time for
more aw3ome

What I want to do is have more time for more awesome. I want to take all of the time that you spend fiddling with the tools/
details of game development and put it towards making awesome content

Jim Brown who’s the Lead Level Designer over at Epic gave a presentation at the 2010 GDC, and one of the main points that
he gave was this: Say you have a company of 200 people, and you do one thing that saves everyone just five minutes a day.
Well when you add that up, you end up saving two months of time. As he mentions, what can your team do with two extra
months that you didn’t have before?

Make the tools so
straightforward
that anyone can
use them

I really want to have the tools be so intuitive that anyone – regardless of their specialization, can go in and make something
cool. I want a level designer to be able to *roughly* get their idea across with lighting/gameplay events, so that the lighting
guy can come in and say “Oh, ok, I see what you were trying to get across here. Now let me go in and do my thing to make
this look awesome”. I want to have your wife, friend, or even your kid come in, rough out a basic level with as little time and
e!ort spent having to explain the tools to them ahead of time. This leaves room for the experts to do amazing work once they
see what the designer or artist was trying to do

Get in and play,
while leaving
room for
power users to
do their thing

Really though, I want to allow you to just get in and play while still leaving room for the power users to do their thing

Let’s take cars for example. You don’t have to be a mechanic to drive from your home to work – if you did, no one would be
driving around right now. For the most part, you just want to get in, put your keys in the ignition, and go. If you were more
mechanically inclined and wanted to work on the car, then you should be able to do that too, without having it be a
requirement.

I want to allow you to be able to just pick up and play with the tools while still leaving room for the experts and power users
to apply their craft to making amazing content.

So how do we accomplish ALL of this?

With great power comes great r3ponsibility

So one thing to keep in mind - with all the changes we’re making/tools designing, must understand impact of what you
change and also know why you’re changing it

The reason why is because the changes that are made can impact:
•Games
•Jobs and Careers
•Even Lives

So when I first started working at Insomniac, I would walk around and see people doing all of these awesome things. I’d see
people making crazy physics systems, camera systems, doing awesome animations...and I’d think “man, these guys are doing
all of these awesome things and all I’m doing is making some icons and color palettes”. But when I actually took a step back
and thought about it...I realized that what I was doing a!ected everyone that worked on any of our games, and that’s a pretty
big responsibility.

So again, it’s extremely important to remember and stay aware of these responsibilities

The UX Process

So the process that we have for designing our tools and pretty much the usability process as a whole looks a lot like this:

We start out with a whole lot of really broad ideas of things that could work or would be excellent additions to the tools. Then
over the course of this process, we end up streamlining - getting rid of the excess and bad ideas, and eventually end up with a
very focused and polished final product

Our Process

Tool
Concepting

Pen and
Paper

Mockups

IterationFinal

For our tools design, we use a four step process which is actually pretty similar to game design overall:

•You start with your concepting and pre-production phase
•We then move on to pen and paper mockups in order to get a good idea of layout, look, aesthetic, flow, etc
•Following this we have a TON of iteration - something I’m sure you all are very familiar with
•Once we’ve done all of our iterations and feel like we’re in a great spot, we reach the “final” version

I say “final” with quotes because as most of you know - it may seem great, and once it’s released into the wild we realize that
we weren’t reallllllly done like we thought we were

Concepting

First we start out with Concepting the
tool

Core
Concept

Epicenter
Design

At Insomniac Games, we employ what’s called “Epicenter Design” - which is a term I picked up from the guys over at 37
Signals.

•What epicenter design really means is, you start from the core concepts and mechanics of a system

•So then once those are nailed down you build outward

This concept is really explained and solidified with a quote from John Gruber...

“Figure out the a4olute le1t you need to
do to implement the idea, do just that,
and then pol5h the hell out of the 6perience”

– John Gruber

You really want to figure out what the purpose of the tool is so that you can limit the scope to only what really needs to be
there.

One of the main principles that we adhered to from the beginning is that we design and deliver a singular and integrated
experience.

We want to make sure that the look, feel, and workflow for every part of the tools is as integrated and seamless as possible

Develop and
Adhere to a
Style-Guide

In order to do this, we found that developing a style guide allowed us to develop conventions at the outset that dictated visual
requirements, sizing and placement of elements, as well as develop expectant user workflows

By doing this we ensure a consistent look and feel throughout the entire tools

It also allows the user to learn expectant behavior and functionality when they are presented with consistent look, feel, and
action with di!erent portions of the tools

Design is a
conversation,
not a monologue

So the thing to keep in mind is that the design process is a conversation, not a monologue - It’s not a one-man show.

You want to make sure that through this whole concepting phase, that you’re involving all of the relevant parties in
discussions, and not just placating them. You want to make sure that you’re involving all of the necessary stakeholders - ie.
those who will be making the most use of the tool, as well as the department leads

Ask the

Right
Questions

During these discussions, you need to make sure that you’re asking the right questions:

What things were awesome in the old tools? What things didn’t work as well as they could have in our old tools? How can we
get this information and how can we go about fixing them as well?

What is the most important information that the user will need with any tool? How can we make sure that this is displayed
prominently and is the most easily accessible?

Old Properties Panel

Transform information
was used most often

Overwhelming the
user with unnecessary
information

So an example of how we approached this was our old Properties Panel:

•After ux testing and shadowing (more of that in a bit), we found that the most used info was the transform section

•So if this was used the most, why is it at the bottom? Why don’t we have it at the top? Why are we making them scroll all the
way to the bottom every time they select something new to get to this information?

•We also found that we were overwhelming our users with a ton of unnecessary information.

•These buttons at the top, why aren’t they a right click?

•The show geometry and bounds information, how come these aren’t global settings?

Revised Properties Panel
Information prioritization

Only show what needs to
be shown

Only display what the
user can work with

By asking all these questions, we were able to fully revise the properties panel:

•All of the information was completely rearranged due to what got used the most often

•We’re only showing what needs to be shown: what user can work with. A lot the extra things were put into right click menus
or global preferences.

•We also made sure that all of the un-necessary information was hidden. The reason for this is when you’re faced with too
many decisions it ends up being paralyzing. You can’t really make a “right” decision because there are too many options to
choose from without a clear “right” answer.

Look at not only
our old tools, but
at what everyone
else in the
industry is using

So we’re not only looking at our old tools, we also want to look at what everyone else in the industry is using as well.

What improvements, choices, and user experience decisions can we find in these programs? Additionally, how can we improve
upon these to make our tools a clear and obvious choice for our users?

It’s incredibly important to not just copy these choices, we also need to know why the decisions were made in the first place

So I play a game called StarCraft 2, now, show of hands - how many of you also play StarCraft 2? Ok well, for those that
haven’t played it, it’s really awesome - full of strategy, everything you could want in a good game. Now I don’t know about you,
but personally if I want to get better, what do I do?

•Well, I watch the pros play. Now, if I watch someone like Nestea or JulyZerg play, copy their strategy, and lose...most likely I’m
going to just think “well I lost because I’m not as good as them”. Really what it probably was, was that I was just copying their
strategy without knowing why they did what they did, or why they made the decisions that they did.

See, by knowing the why, you can then make better educated decisions in the future.

Vs

So, how do our tools stack up with what else is out there?

We check this through e"ciency testing. We’ll do a set of tasks on one set of tools (say UDK), then replicate the same task on
our tools. By doing this we’re able to see how long it takes across the board. If it takes longer for our tools, how can we
improve this to be the fastest and most e"cient possible (even more-so than what else is out there)?

Also looking
at non VG
software

So we’re also looking at a ton of non-video game software and engines

•Photoshop, After E!ects. We’re even looking at music software like traktor, ableton, logic, etc

So how many of you out there - show of hands - own an Apple device?
•Alright, so you all probably know that apple makes beautifully designed and easy to use hardware and software

We’re making sure that we’re checking the workflow, user experience decisions, UI, overall design, visuals, etc

Mockups

Once we finish all of the pre-production and concepting of the tool, we get to work on some mockups

“Pen and paper”
mockups

Fastest Iteration

Minimal
investment

•So what we do is start with pen and paper mockups

•We found that this was the fastest way to iterate the look, the layout, any workflows, etc

•The thing is that you want the absolute minimal investment at this point - easy to get rid of if not appropriate. At this point
you’re making so many changes that it really doesn’t make sense to invest a ton of time and energy yet

Photoshop > Code

Tools developed
much faster

Once pen and paper wireframes ok’d, they’re brought into Photoshop or some other wireframe/
prototyping software in order to give everyone a real concrete idea of what the tool will end up looking
like.

•Absolutely no code written until the mockups are ok’d by all relevant parties.
Until the ok is given, not a single line of code is made. We’ve found that it’s much faster to change a
photoshop mockup than it is to rework code

•Because of this, we’ve found that the tools have been developed much faster

Iteration

Ok, so now that the original mockups have been given the green light, let’s start iterating

So this is the first photoshop mockup that we did of our Animset Editor

And then here are all of our numerous iterations of the Animset Editor

Again, we’re still doing all of the iterations in Photoshop, because again, it’s faster in Photoshop than it is in Code

Final“ ”

After all fixes and revisions are done in photoshop, we reach the “final” - live version

•Now I use the airquotes because by final, I really mean that it’s the first version that are actually in use in production

This is the first, live version in our tools

Improving
Tools UX

5
10

15

UX
SHADOWING

So once the tools are out and in the wild, how do we keep improving the user experience? Well we do this with about eight
di!erent things:

•Usability Shadowing Sessions
•Impromptu usability tests
•Our usability week
•What we call the Core Team Open House
•Our Bugs and Suggestions Form
•Top Critical Issues Lists from leads
•Top Time Wasters
•Tools education

Usability Shadowing Sessions
Observations of people using the tools in production, on
their own machines

Streamline observed repetitive behavior

Ask the right questions

=
85%
Issues*

*Jakob Nielson: Why You Only Need to Test with 5 Users - bit.ly/w8GNRn
Seeing the tools in use makes a world of di!erence. While we *THINK* we know the best things for people, the tools, and the
needs of our users, most of us aren’t level designers, animators, designers, etc. A lot of the time there are key bits of
information - whether it’s a workflow issue, or behaviors or habits, we don’t always get it right. That’s where usability
shadowing comes into play.

•One of the more important things that we do is Observing people using the tools in production, on their own machines
This allows the individuals to feel more familiar with their surroundings and will work more closely to how they normally do
when compared to working in a “test” setting

•We can make sure that we’re able to streamline a lot of the repetitive behavior that we notice throughout our shadowing
session, and again...

•We want to make sure that we’re asking the RIGHT questions while we’re observing everyone working. This way we can
discover the core issues and short-comings of the tools at hand

•The thing about all of this is that it can be done REALLY cheaply - without the need for complex testing equipment, eye
tracking software, etc. By shadowing even five people, you can usually obtain roughly 85% of all problem issues. This isn’t just
from me, this is from Jakob Nielson, widely considered as THE usability expert.

“The Miyamoto
Kidnappings”

So then we move on to our impromptu usability tests.

If any of you were at GDC 2009’s Keynote presentation by Iwata, you would have heard about what he called “The Miyamoto
Kidnappings”

Whenever Miyamoto was working on a new game or idea or project, he would randomly “kidnap” a Nintendo employee that
had nothing to do with production, put them in a room with developers, handed a controller, and the only instructions that
they were given was to play. See Miyamoto had the belief that since you weren’t going to have the developers in the room
with you while you played, that it only made sense to watch and observe the players. He wanted to see how they succeeded,
failed, where they were happy and sad, and fix as many of the issues as possible before the game was released.

We do something very similar at Insomniac, except we actually ask questions while we’re observing so that we can really
know the issue rather than guessing at the cause.

“Usability Week”

Was one day,
now a week

One Dept
Per Day

J F M

A M J

J A S

O N D

2012

The next thing that we have is what we call our Usability week

•We used to have just a usability day, however we found that we weren’t getting nearly enough useful and actionable
information, so we extended it to a week

•This week occurs roughly every two to three months.

•Bring various people from di!erent departments in to use the tools – each dept gets one day of UX testing

•We’re also able to get actionable feedback from multiple people from di!erent departments, which allows us to make sure
that we’re not basing all decisions on what could be a biased opinion of one or two people. We also see any trends in
workflow habits or behavior that are happening that we may not have noticed before.

It’s tremendously important to make sure that we receive feedback from multiple people to get the 90% case

Core Team Open House

?
J F M

A M J

J A S

O N D

2012

We also have what is called our Core Team Open House

•This is open to the entire company every two to three months or so.

•We think that this is an excellent chance to not only use the tools in various stages of development, but people can ask
questions as well to those who are actually developing the tools.

•We’ve found that it has greatly helped to close gap between programmers and all of the other departments

•The most important part of all though, we’ve got free beer + drinks! Who doesn’t love free beer and drinks right?

•Early on in the tools development, we felt that the barrier to entry to get feedback and bugs was too damn high!

•Now if any of you have ever used Devtrack, you’ll realize that it’s totally not an optimal solution for what we were looking for.

At the early stages of tools development, it’s important to get as much feedback as possible

Bugs/Suggestions Form

F1t3t and

E1i3t
Feedback

What we did though was create our bugs and suggestions form.

•This is built directly into the tools - you click on a button in the top corner, and you get this dialog that appears. You put your
quick bug or suggestion right in there, add your email address, and you’re o!. This feedback is then compiled and sent out to
our development team each day.

•We found that this is absolutely the fastest and easiest way to get feedback to us.

Overall we’ve found that this has been a tremendous success.

Issues and Time Wasters

5
10
15

Top Time Wasters:
Optional

More e"cient workers =
Better and happier
workers

•We also have our list of top critical issues which is compiled by our department leads. We put this on an internal web-page
for all to see. It allows us to see what’s important prior to deadlines, demos, etc, as it helps to focus and direct our e!orts.

•Another thing we have is our top time wasters which we do every three weeks or so. These are the top things that are taking
the most time for each person

•We’ve made these optional, but have found them to be quite beneficial, because...

•More e"cient workers are better and happier workers

?Tools
Education

Finally we have a whole suite of education for our tools. Due to how radically di!erent a number of our systems worked from
what everyone else was used to, we needed to make sure that there was as little ramp up time/learning curve as possible.

•Videos: Felt that it’s much easier to *show* someone via demonstration rather than have them read through a text tutorial on
a wiki.

•Help System: So one of the problems that we face is that our tools are very “hot-key” based, so it’s incredibly important that
everyone has easy access to not only the hot-keys and corresponding functionality, but also an explanation of what each
feature does.

•Intro: Presented the tools to each department over 1-2 hours once the tools rolled out. Answered questions and provided
guidance on features they would be using the most. All intros were recorded in video form and available via our video
tutorials.

•We also brought people on to the tools early: Brought 1-2 people from each department on to the tools early so they could
act as a liaison between tools devs and rest of the team. Were given 1-2 month head start on every one else. They also helped
provide invaluable feedback as to tools functionality and how it should work.

•Visible presence: Made sure that we walked around at least once per day to help answer any questions or help anyone who
had issues with the tools during the first few weeks that the tools were in production.

file://localhost/Users/helix/Desktop/For%20GDC%20Presentation/Icons/noun_project_421.svg

Moving to a Web-Based Tool Set
Unexplored territory in game dev

Were able to create “rules” and conventions as we went along

Wasn’t a wealth of information available, had to figure it out
on our own

The web is a proven “arena”

Now I’m sure that many of you have already heard by now that we’ve moved from a traditional tool set to a web-based tool-
set.

•When we first started, and even still today, it’s very much unexplored territory in game development

•The nice thing about this is that we were able to create rules and conventions as went along

•Unfortunately though, there wasn’t really a lot a lot of existing information out there, so we really had to figure out a lot of
this on our own

•We noticed though that over the course of development of our tools, the web has become a proven arena. With things like
google docs, Windows 8’s metro apps, OnLive, Hulu, etc, everyone is making web-apps now. So because of this we feel like
we’re heading very much in the right direction.

HTML5 vs Flash?

Flash great when we started
Proved problematic in the end

Flash to HTML5
Huge performance gains
No compiler or proprietary software

Non-programmers can now
develop and design systems for
the tool set

•When we started out, flash was great. There were a ton of pre-existing libraries because flash has a lot of strengths for
making web-based applications.

•Unfortunately as we went on we realized that flash was proving to be quite problematic. The main issues stemmed from us
being stuck using ActionScript 2 due to Scaleform Limitations at the time. We also had the problem of a lack of ActionScript
knowledge on the team, as well as ActionScript 2 being both memory intensive, archaic, and incredibly hard to debug

•So we moved from Flash to JQuery, HTML5, Canvas, Css3, etc and have noticed improvements across the board!

•Right away we noticed huge performance gains across the board

•There’s also no longer a need for any special compilers or proprietary software needed - you can open up Notepad or
Notepad++ or anything else and start making tools for our toolset.

•Non-programmers can now also now make tools and additions for our toolset. As long as know basic web development tech
(jquery, html, etc), you can design for our tools. This drastically lowers the barrier to entry for making changes or
modifications for our tools

E!ier, Better, Faster, Stronger

Now with all of the changes that we’ve made across our toolset, we’ve found that our tools have become easier, better, faster,
and much stronger as a result.

E!ier, Better, Faster, Stronger

•With all of the processes that we’ve implemented, UI iteration is now extremely fast.

•With the exception of flash, there’s no longer any building or compiling - you make your changes and reload the web-page.

•We can now rapidly prototype tools. We can have one person coding the back-end with another person coding the visuals
and aesthetics at the same time with css.

•We can also use Chrome’s Developer Tools to make live changes. This lets us receive actionable feedback immediately which
is really awesome - let me tell you.

How We’ve Benefitted

Tools actually
make sense

Usability
shadowing

sessions

A f1ter
and more
e2cient
tool set

So how have we actually benefitted from all of this focus on usability?

•Our tools actually make sense now. We’ve completely redesigned our icons, workflows, and everything else as well. With our
web-based tool set, we can make live tool changes to really make sure that we’re right on with our designs.

•With our Usability Shadowing, we’ve been able to drasically reduce the amount of visual clutter to only display the necessary
amount of information. We’re picking up a ton of issues that we weren’t aware of before, and because of this, we’ve been able
to really streamline our experience with the things that we’ve observed. We’re making sure that we’re finding as many issues
early and often so that we can fix them before they hit production.

•We also have a tool set and engine that is faster and much more e"cient than it was before. We’ve reduced the downtime,
made sure that our levels load faster, and we can see all of these changes in the game much faster than ever before.

In Closing…

Better,
Faster,
More

E!cient

Easy To
Use

Want To
Use The

Tools

So in closing...

We had an entire tool set switch in the middle of production, and in less than a month people are working

•Better, Faster, and much more E"ciently than ever before

•We also found that it’s been easier for new hires to jump on to the tools with as minimal ramp-up time as possible

•And most importantly people actually want to use the tools

“Perfection is achieved, not when
there is nothing more to add, but when
there is nothing le9 to take away”

– :e Little Prince

So before we wrap up, I want to stress one thing:
What I’ve said today are not laws, but instead are guiding principles that we uphold as something to constantly strive towards
with everything that we do moving forward.

Thank You!
You’ve been aw3ome

So hopefully I’ve given you all a few ideas on how to better use usability and user experience in your own studios. Now I want
to thank you all for coming, you’ve been totally awesome.

We’re Hiring!
Come see us at

Booth #1314 bit.ly/insom_rnd

Sean Ahern
sahern@insomniacgames.com

Now we’re hiring! So come check us out.

Once again, my name is Sean Ahern, you can reach me at the email address on screen, and grab this presentation at the
address above.

If there are any questions I’ll take them now.

