TO M||.|.|0NS OF SUMMONERS
GOC SCOTT DELAP

SCALABILITY ARCHITECT
GDC 2012

ABOUT ME — SCOTT DELAP

& Scalability Architect
& Joined Riot in 2008
& About a year before beta

$ @scottdelap

$ sdelap@riotgames.com

ABOUT RIOT GAMES

FOUNDED 500+ OFFICES IN

SANTA MONICA,

SEPT.2006 EMPLOYEES ST\LOUIS,

DUBLIN, SEOUL

OUR MISSION

TO BE THE MOST
PLAYER-FOCUSED

GAME COMPANY
IN THE WORLD.

. |

LEAGUE

i

LEAGUE OF LEGENDS: INTRO

July 201 1
15 MIL REGISTERED

4 MIL MONTHLY
1.4 MIL DAILY

0.5 MIL PEAK CCU

3.7 MIL DAILY HRS

November 201 |
32.5 MIL REGISTERED

11.5 MIL MONTHLY
4.2 MIL DAILY
1.3 MIL PEAK CCU

10.5 MIL DAILY HRS

B A UNIQUE SCALING CHALLENGE

GGGGG

Social elements
require uniform access

GAME FEATURES
DO NOT ALWAYS SUPPORT

Crafting an enjoyable
user experience

MEETS THESE NEEDS?

AGENDA

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING

PROBLEM #1:

HOW DO WE DEVELOP A
SYSTEM

... WHILE PLANNING FOR

I LEAGUE OF LEGENDS: TECH OVERVIEW

G AMES

CLIENT EXPERIENCE

SERVER SIDE STACK

Apache Tomcat PHP Game Servers
Spring Cake Game Servers
ActiveMQ MySQL Game Servers
Coherence Game Servers

Hibernate

MySQL

B4 TODAY’S FOCUS

G AMES

CLIENT EXPERIENCE

SERVER SIDE STACK

Apache Tomcat PHP Game Servers
Spring Cake Game Servers
ActiveMQ MySQL Game Servers
Coherence Game Servers

Hibernate

MySQL

JI80 A TECH STACK WITH NEW AND OLD ELEMENTS

Apache Tomcat Apache Tomcat Apache Tomcat
Spring Spring Spring

Coherence Coherence Coherence Coherence

Hibernate Hibernate Hibernate Hibernate

BENEFITS OF TRADITIONAL JAVA

MATURE OPEN SOURCE
((ECOSYSTEM
—)
e
— M ESTABLISHED TOOLS

Java gr LARGE POOL OF TALENTED

DEVELOPERS

ACCELERATING THE FOUNDATION WITH NoSQL

ORACLE COHERENCE ‘ NoSQL SOLUTION

DATA STORED IN CACHES BY KEY
NUMEROUS USES

PROVIDES ELASTICITY

NoSQL ENABLING RAPID GROWTH

Horizontal scaling of Coherence greatly
simplified absorbing CCU growth over time

Design patterns enforced by Coherence
promoted feature level scaling as well

CACHING IN DETAIL

DAO

HIBERNATE / COHERENCE
i SHARDING LOGIC
el AT APPLICATION LEVEL

EMBRACING CACHE ADVANTAGES

DAO

HIBERNATE COHERENCE

EMBRACING CACHE ADVANTAGES

DAO

COHERENCE

HIBERNATE

PR LEVERAGING ADVANTAGES

LEAGUF_ _ \ = [xomie
LEGE P 4 il S

Game Mode Game Map Game Type

Classic Summoner's Rift Normal
5v5 Blind Pick
Dominion
Twisted Treeline Normal
3v3 Draft Pick

Ranked Solo/Duo

£ GRID COMPUTING

Draft Pick

TRANSPARENT
PARTITIONING

AGENDA

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING

PROBLEM #2:

HOW DO WE QUICKLY
DEVELOP

... WHILE

SIMPLE IS BEST

el 3 BILLION

CPU INSTRUCTIONS /SECOND

FAST

MEMORY NETWORK

Complexity

$

DON’T OVER DESIGN

T RIG THE GAME

Divide inputs of algorithm
P 9 ! Continually coordinate
then parallel process

T RIG THE GAME

THREAD 1 THREAD 2
Coordl-na% f Data
n
<
.g§9 ' Data
{b (=
o°°
o Data
oo"o* -
Qbe ' Data

Coordination

Data

RIG THE GAME

S R TR PV BT B

THREAD 1 THREAD 2

T RIG THE GAME

THREAD 1 THREAD 2

AGENDA

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING

PROBLEM #3:

HOW DO WE HANDLE NOT JUST

..BUT

CODE A DYNAMIC SYSTEM

LARGE SYSTEM

CHANGES AS
IT'S RUNNING

J90 CODE A DYNAMIC SYSTEM

HARDWARE FAILURES

LARGE SYSTEM
CHANGES AS
IT'S RUNNING

Next release?
During downtime?

J90 CODE A DYNAMIC SYSTEM

HARDWARE FAILURES

LARGE SYSTEM
CHANGES AS
IT'S RUNNING

CODE A DYNAMIC SYSTEM

TECHNOLOGIES W/
ELASTIC PROPERTIES

Dynamic Cluster Stateless Growth
Recomposition Patterns

NOT EVERY PIECE OF YOUR STACK HAS TO BE ELASTIC

CODE A DYNAMIC SYSTEM

All relevant configuration properties
are dynamic

Coherence near caches used to propagate
changes to nodes dynamically

Algorithms written so they are aware their
variables may change while running

LARGER EXAMPLES OF DYNAMIC BEHAVIOR

Entire machine/feature combinations can be deployed & updated

) .) Features can be deployed in advance of
Hotfixes require less downtime .
release windows

AGENDA

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING

PROBLEM #4:

WHAT HAPPENS WHEN WE

...AND

m SCALING BEST PRACTICES HAVE CONSEQUENCES

0 Let’s get rid of some things so can do this easier
e What do we get rid of? | can’t decide...
° Plan B...instead of what you can’t do, I'll tell you what you can

e Follow these X rules and everything will be fine

m SCALING BEST PRACTICES HAVE CONSEQUENCES

MAP REDUCE

. |

If all problems can

be written with a I’'m taking awa
. g 7 Pick two...
map step and a your joins...

reduce step...

CONSEQUENCES

Blog Entry

ATOMIC OPERATIONS OFTEN BECOME SCOPED
BY ENTRY VALUES AND ROOT OBJECTS

CONSEQUENCES

COMMENT

Blog Entry

ATOMIC OPERATIONS OFTEN BECOME SCOPED
BY ENTRY VALUES AND ROOT OBJECTS

FH CONSEQUENCES

'- l COMMENT
T o -

4

ATOMIC OPERATIONS OFTEN BECOME SCOPED
BY ENTRY VALUES AND ROOT OBJECTS

o d o

TRy R S
Ry R S R

GGl FGNDCR FOENDSRY EGENDS)
b rGiRooR PR NG EGENDS) > AS GAMES ARE ALLOCATED,
N FANBS IR FANESIR FONBO IR EGENGS, CHILD OBJECTS ARE ADDED

B G G G
R W R G

- Y,

AN EXAMPLE OF A MISMATCH

COMPLEXITY OF GAMES
CHILD OBJECTS PER SERVER

T ROOT OBJECTS AND CHILD OBJECTS

MACHINE

Game Instance

Game Instance

Game Instance

EVOLUTION OF AN ANTI-PATTERN

Child Object Child Object Child Object Child Object Child Object Child Object

2-50k 2-50k 2-50k 2-50k 2-50k 2-50k

<20k > >500k

BOUNDING FACTORS

THE PIPE IS FULL

MACHINE MACHINE MACHINE MACHINE MACHINE

Game Game Game Game Game
Instance Instance Instance Instance Instance

Game Game Game Game Game
Instance Instance Instance Instance Instance

Game
Instance

Game
Instance

Game
Instance

Game
Instance

Game
Instance

DO WE REALLY HAVE ONE OBJECT?

MACHINE

G | Game Game Game
m n n
ame Instance Instance Instance Instance

SMALLER IS BETTER!

MACHINE MACHINE

Game Game Game Game Game Game
Instance Instance Instance Instance Instance Instance

MACHINE MACHINE MACHINE

Game Game Game Game Game Game Game Game Game
Instance Instance Instance Instance Instance Instance Instance Instance Instance

AGENDA

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING

PROBLEM #b5:

HOW DO WE

... WHEN WE HAVE

MONITOR EVERYTHING

LOGS WITH MILLIONS
OF OPERATIONS /DAY

J
| W
JEAS
W \

{

\ \‘. r
f \WA/ \ s \
\(W// \\; y

Simar /& [/’ﬂ / J\. /
\ J mx\ \ / \ //\ i =

MONITOR EVERYTHING

LOGS WITH MILLIONS
OF OPERATIONS /DAY

.
NS

|-

MONITOR EVERYTHING

WHAT HAPPENED HERE?

Networking issuel

T MONITOR EVERYTHING

e Automate metrics gathering

Spring performance monitoring interceptor
Log out call stack on external calls

Sample internal calls

Automate reporting

Trivial cost vs. benefit

MONITOR EVERYTHING

DATA IS USELESS WITHOUT AN EASY WAY TO VIEW IT.

Top 50 EXTERNAL calis by volume

Current import | \ Pravious Import |

hervion l afhiod Num Calis ‘ Mrine | Totmi Catte 1 Baseline Factor | % diff Num Calls 1 Avg Cail Time | % of Totai Calls | Basaline Factor
3465105 27| 7.3848% 2.6471|-4.5627% 3572459 24 7.5898% 2.7742

3090954| 7 6.5695% 2.3612|-3.6516% 3155920 7| 6.7049% 2.4507

2406357 | 0 5.1145% 1.8383/43,32009 2291151 0 4.8676% 1.7792

2408357| 7| 5.1145% 1.8383/+3.320! 2291151 7| 4.8676% 1.7792

2138788| 2 1.6339|+0.145! 2100940 2| 4.4635% 16315

2031441 24 1.5519|-4,7465% 2097979 24| 4.4572% 1.6282

1552590)| 0 1.1861|-4.3052% 1596050 o| 3.3909% 1.2394

1493027| 6 1.1408| -4.4092% 1536489 6| 3.2643% 1.1832

1358414 20 1.0377| -4.0802% 1393162 20 2.9598% 1.0819

1309035 0 1.0000| 0.0000% 1287743 0| 2.7355% 1.0000

1106124| 23 0.8450|-0.1746%| | 1090036 22| 2.3158% 0.8485

1100421 0.8406/|+1,4989% 1066536 7| 2.2659% 0.8282

1073141| 17 0.8198|-4.163 1101554 17 2.3403% 0.8554

1072878| 3| 2.2803% 0.8198/ -4.1650% 1101296 i 2.3397% 0.8552

1069397 1 22729% 0.8169|+0.1457% 1050472 1 2.2318% 0.8157

1069391 | 12| 22729% 0.8169(+0.1455% 1050468 12| 2.2318% 0.8157

1069390 2.2729% 0.8169(40,1454% 1050469 0| 2.2318% 0.8157

105057 2| 2.2520% 0.8094|-3.3607% 1078588 2| 2.2015% 0.8378

893122 61 1.8983% 0.6823(-2.4315% 900490 59| 1.9131% 0.6993

846345| 73| 1.7988% 0.6465/+1.2110% 822617 68| 1.7477% 0.6388

- 776295| 1| 1.8499% 0.5930| -4.3052% 798025 1 1.6954%| 0.6197

...LETS GREP THE RED ITEMS...

T MONITOR EVERYTHING
|

[0, 100)
[100, 200)
[200, 300)

(300, 400) 3176

(400, 500) 42

AUTOMATE NEXT o0

|[700, 800) 16

5 QUESTIONS/ANSWERS [®

[1000, 1100) 1

[1100, 1200) 1

(Why should they be manual?) 1200, 1300) 0

I[1300, 1400) 0

[1400, 1500) 0

[1500, 1600) 2

[1600, 1700) 0

[1700, 1800) 6

[1800, 1900) 45

[1900, 2000) 57

[2000,) 113

& EMBRACING JAVA AND NoSQL

& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM
& SCALING BEST PRACTICES
& MONITOR EVERYTHING

GBC
QUESTIONS?

www.riotgames.com /careers
(We're also in the Career Pavilion at booth #CP181 3)

SCOTT DELAP _3¥\eld

SCALABILITY ARCHITECT ; EG

5de|°|°@rio’rgames.com & B
GDC 2012 ~

