
Computational Geometry

Graham Rhodes
Senior Software Developer, Applied Research
Associates, Inc.

What is Computational Geometry?

● Manipulation and interrogation of shapes

● Examples:

● “What is the intersection of a line and a
triangle mesh”

● “What is the minimum distance separating
two objects”

● “Break a mesh into pieces”

Typical Application in Games

● Interrogation of Geometry

● Collision detection for physics

● Proximity triggers for game logic

● Pathfinding, visibility, and other AI operations

● Manipulation of geometry

● Creation of game assets in 3ds max/Maya/etc

● User-generated content (e.g., Little Big Planet)

● Destruction (Bad Company 2, etc., etc.)

Some Perspective

● Game levels are usually made of meshes

● Typically made of triangles

● Indexed triangle meshes

X

Z

Y

Some Perspective

● Game levels are usually made of meshes

● Typically made of triangles

● Indexed triangle meshes

0 <-.5, 0, 0>

1 <0, 0, 0>

2 <-.5, 0, .5>

3 <0, 0, .5>

4 <-.25, 0, 1>

5 <-.5, 1, 0>

6 <0, 1, 0>

7 <-.5, 1, .5>

8 <0, 1, .5>

9 <-.25, 1, 1>

0
1

2
3

4

6

8

9

Some Perspective

● Game levels are usually made of meshes

● Typically made of triangles

● Indexed triangle meshes

0
1

2
3

4

6

8

9
0 <-.5, 0, 0>

1 <0, 0, 0>

2 <-.5, 0, .5>

3 <0, 0, .5>

4 <-.25, 0, 1>

5 <-.5, 1, 0>

6 <0, 1, 0>

7 <-.5, 1, .5>

8 <0, 1, .5>

9 <-.25, 1, 1>

Triangle Indices

0, 1, 2

1, 3, 2

2, 3, 4

1, 6, 3

3, 6, 8

3, 8, 9

3, 9, 4

…

Some Perspective

● Game levels are usually made of meshes

● Typically made of triangles

● Indexed triangle meshes

0
1

2
3

4

6

8

9

Triangle Indices

0, 1, 2

1, 3, 2

2, 3, 4

1, 6, 3

3, 6, 8

3, 8, 9

3, 9, 4

…

0 <-.5, 0, 0>

1 <0, 0, 0>

2 <-.5, 0, .5>

3 <0, 0, .5>

4 <-.25, 0, 1>

5 <-.5, 1, 0>

6 <0, 1, 0>

7 <-.5, 1, .5>

8 <0, 1, .5>

9 <-.25, 1, 1>

Getting Ready

Computational geometry requires
appropriate data structures

Categories of Data Structures

● Spatial

● Find things fast

● BSP tree, octree, Kd-tree, spatial hashing

● Etc…

● Geometry + topology

● Change the shape of objects

● Focus of this talk!

A Computational Geometry Problem

How?

● We have polygons in our game level

● The graphics card requires triangles

● Triangulation converts polygons into triangles

The Polygon Triangulation Problem

● Intuitive approach: ear-clipping

● Fast approach: monotone decomposition

● Both involve chopping triangles off in a sequence

Number of Polygons:
1

Polygon Indices

6,1,3,0,4,2,5

0

4

2
5

6

1

3

The Polygon Triangulation Problem

● Intuitive approach: ear-clipping

● Fast approach: monotone decomposition

● Both involve chopping triangles off in a sequence

0

4

2
5

6

1

3 Number of Polygons:
2

Polygon Indices

6,1,3,4,2,5

0,4,3

The Polygon Triangulation Problem

● Intuitive approach: ear-clipping

● Fast approach: monotone decomposition

● Both involve chopping triangles off in a sequence

0

4

2
5

6

1

3 Number of Polygons:
3

Polygon Indices

6,1,4,2,5

0,4,3

4,1,3

The Polygon Triangulation Problem

● Intuitive approach: ear-clipping

● Fast approach: monotone decomposition

● Both involve chopping triangles off in a sequence

0

4

2
5

6

1

3 Number of Polygons:
4

Polygon Indices

6,1,2,5

0,4,3

4,1,3

4,2,1

The Polygon Triangulation Problem

● Intuitive approach: ear-clipping

● Fast approach: monotone decomposition

● Both involve chopping triangles off in a sequence

0

4

2
5

6

1

3 Number of Polygons:
5

Polygon Indices

6,2,5

0,4,3

4,1,3

4,2,1

2,6,1

The Polygon Triangulation Problem

● Intuitive approach: ear-clipping

● Fast approach: monotone decomposition

● Both involve chopping triangles off in a sequence

0

4

2
5

6

1

3 Number of Polygons:
5

Polygon Indices

6,2,5

0,4,3

4,1,3

4,2,1

2,6,1

The Polygon Triangulation Problem

● Was maintaining the index list convenient?

● NO!

● Original polygon: 6,1,3,0,4,2,5

● Final polygon: 2,5,6

● All the removed points were in the middle of the list!

● Maintaining the list can be error prone, and slow for
complex models

● Inelegant

Getting Ready

Computational geometry requires
appropriate data structures!

(Lets take a look at one)

Triangulation Demo Part 1

Geometric Model Representation

● Geometry describes the shape of model
elements (triangles)

● Topology describes how the elements are
connected

Manifold Topology

● Each edge joins exactly two faces

● Model is watertight

● Open edges that join to one face
are allowed

● Modeling operation consistency
rules

● “Invariants”

Non-manifold
Topology

Topological Data Structures

● Enable elegant and fast traversals

● “Which edges surround a polygon?”

● “Which polygons surround this vertex?”

● Easy to modify geometry

● Split an edge or face to add a new vertex

● Collapse an edge to simplify a mesh

Other Topological Data Structures

● Manifold

● Winged Edge (Baumgart, 1972)

● Half Edge (presented here)

● Quad edge

● Non-manifold

● Radial edge

● Generalized non-manifold

Half Edge Data Structure (HDS)
● Basic topological element is a half edge (HE)

● Geometry is implied by connections*

HE

Half Edge Properties

Half Edge Data Structure (HDS)
● HE connects a Start point to an End point

● Traversal is StartPt to EndPt (edge is oriented)

● Geometry is a straight

StartPt

EndPt
Half Edge Properties

EndPt

HE

Half Edge Data Structure (HDS)
● HE points to next half edge in traversal direction

● Start point of HE.next is HE.EndPt

Half Edge Properties

EndPt

Next

HE

Half Edge Data Structure (HEDS)
● Traversal directions are consistent

Half Edge Properties

EndPt

Next

HE

Half Edge Data Structure (HEDS)
● Note that sequence of half edges forms a loop!

● So far, we only connect points (no polygons yet!)

● Geometry is a wire
Half Edge Properties

EndPt

Next

HE

Half Edge Data Structure (HEDS)
● HE may point to a face on its left side

● All half edges in a loop point to same face

Half Edge Properties

EndPt

Next

Face HE

Face

Half Edge Data Structure (HEDS)
● HE points to its opposite half edge

● Which is attributed as above

Half Edge Properties

EndPt

Next

Face

Opposite

Half Edge Data Structure (HEDS)
● It is useful to store user data and a marker

Half Edge Properties

EndPt

Next

Face

Opposite

UserData

Marker

Simple C++ HDS class definition

struct HalfEdge

{

 HalfEdgeVert *endPt;

 HalfEdge *next;

 HalfEdge *opposite;

 HalfEdgeFace *face;

 void *userData;

 unsigned char marker;

};

struct HalfEdgeVert

{

 HalfEdge *halfEdge;

 int index;

 unsigned char marker;

};

struct HalfEdgeFace

{

 HalfEdge *halfEdge;

 unsigned char marker;

};

HDS Invariants
● Strict

● halfEdge != halfEdge->opposite

● halfEdge != halfEdge->next

● halfEdge == halfEdge->opposite->opposite

● startPt(halfEdge) == halfEdge->opposite->endPt

● There are a few others…

● Convenience

● Vertex == Vertex->halfEdge->endPt

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop(HalfEdge *edge)

{

 IndexList loop;

 HalfEdge *curEdge = edge;

 do {

 loop.push_back(edge.endPt->index);

 curEdge = curEdge->next;

 } while (curEdge != edge);

 return loop;

};

Triangulation Demo
Part 2

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop(HalfEdge *edge)

{

 IndexList loop;

 HalfEdge *curEdge = edge;

 do {

 loop.push_back(edge.endPt->index);

 curEdge = curEdge->next;

 } while (curEdge != edge);

 return loop;

};

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop(HalfEdge *edge)

{

 IndexList loop;

 HalfEdge *curEdge = edge;

 do {

 loop.push_back(edge.endPt->index);

 curEdge = curEdge->next;

 } while (curEdge != edge);

 return loop;

};

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop(HalfEdge *edge)

{

 IndexList loop;

 HalfEdge *curEdge = edge;

 do {

 loop.push_back(edge.endPt->index);

 curEdge = curEdge->next;

 } while (curEdge != edge);

 return loop;

};

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop(HalfEdge *edge)

{

 IndexList loop;

 HalfEdge *curEdge = edge;

 do {

 loop.push_back(edge.endPt->index);

 curEdge = curEdge->next;

 } while (curEdge != edge);

 return loop;

};

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop(HalfEdge *edge)

{

 IndexList loop;

 HalfEdge *curEdge = edge;

 do {

 loop.push_back(edge.endPt->index);

 curEdge = curEdge->next;

 } while (curEdge != edge);

 return loop;

};

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop(HalfEdge *edge)

{

 IndexList loop;

 HalfEdge *curEdge = edge;

 do {

 loop.push_back(edge.endPt->index);

 curEdge = curEdge->next;

 } while (curEdge != edge);

 return loop;

};

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop(HalfEdge *edge)

{

 IndexList loop;

 HalfEdge *curEdge = edge;

 do {

 loop.push_back(edge.endPt->index);

 curEdge = curEdge->next;

 } while (curEdge != edge);

 return loop;

};

Simple Operations
Split a face

vert1

vert2

HalfEdge edge1 = vert1.halfEdge;

HalfEdge edge2 = edge1.next;

HalfEdge edge3 = vert2.halfEdge;

HalfEdge edge4 = edge3.next;

*See speaker notes below slide for an important consideration!

Simple Operations
Split a face

vert1

vert2

HalfEdge edge1 = vert1.halfEdge;

HalfEdge edge2 = edge1.next;

HalfEdge edge3 = vert2.halfEdge;

HalfEdge edge4 = edge3.next;

 HalfEdge newEdge = new HalfEdge;

edge1.next = newEdge;

newEdge.next = edge4;

newEdge.face = edge1.face;

newEdge.endPt = vert2;

Simple Operations
Split a face

vert1

vert2

HalfEdge edge1 = vert1.halfEdge;

HalfEdge edge2 = edge1.next;

HalfEdge edge3 = vert2.halfEdge;

HalfEdge edge4 = edge3.next;

 HalfEdge newEdge = new HalfEdge;

edge1.next = newEdge;

newEdge.next = edge4;

newEdge.face = edge1.face;

newEdge.endPt = vert2;

edge1.face.halfEdge = edge1;

Simple Operations
Split a face

vert1

vert2

HalfEdge newEd2 = new HalfEdge;

newEd2.next = edge2;

newEd2.endPt = vert1;

edge3.next = newEd2;

newEdge.opposite = newEd2;

newEd2.opposite = newEdge;

Simple Operations
Split a face

vert1

vert2

newFace = new HalfEdgeFace

newFace.halfEdge = edge2;

HalfEdge *curEdge = edge2;

do {

 curEdge->face = newFace;

 curEdge = curEdge->next;

} while (curEdge != edge2);

newFace

Triangulation Demo
Part 3

Related Operations

● Cut off an ear/triangle

● Exactly same as split face

● Apply recursively to triangulate face

● Insert auxiliary edge

● Connect inner and outer loops to support
holes in faces

What Else Can We Do?

● Split a mesh in half with a cutting plane

● Step 1: Split edges that cross the plane

● Step 2: Split faces that share two split edges

● …

Intersection of edge and plane

● Plane equation

● Line Equation

dPn

ˆ
P

n̂

v1

v2

 121 vvtvline

P

?

Intersection of edge and plane

● Solve for t

● If t >= 0 and t <= 1

● Edge touches plane

P

n̂

v1

v2

 12

1
ints

12ints1

)ˆ(

ˆ

vv

vd
t

dvvtv

n

n

nn

intsP

What Can We Do with a B-rep Mesh?
● Split a mesh in half with a cutting plane

● Step 1: Split edges that cross the plane

● Use marker variables to tag affected geometry

● Aids in finding related entities

What Can We Do with a B-rep Mesh?
● Split a mesh in half with a cutting plane

● Step 2: Split faces that share two split edges

Edge Split Demo
Part 1

Simple Operations
Split an edge
HalfEdge edge1;

HalfEdge edge2 = edge1.opposite;

Simple Operations
Split an edge
HalfEdge edge1;

HalfEdge edge2 = edge1.opposite;

 HalfEdge edge1_b = new HalfEdge;

edge1_b.EndPt = edge1.EndPt;

edge1_b.face = edge1.face;

edge1_b.next = edge1.next;

edge1.EndPt = splitVert;

edge1.next = edge1_b;

edge1_b.EndPt.halfEdge = edge1_b;

Simple Operations
Split an edge
HalfEdge edge1;

HalfEdge edge2 = edge1.opposite;

 HalfEdge edge1_b = new HalfEdge;

HalfEdge edge2_b = new HalfEdge;

edge2_b.EndPt = edge2.EndPt;

edge2_b.face = edge2.face;

edge2_b.next = edge2.next;

edge2.EndPt = splitVert;

edge2.next = edge2_b;

edge2_b.EndPt.halfEdge = edge2_b;

HalfEdge edge1_b = new HalfEdge;

Simple Operations
Split an edge
HalfEdge edge1;

HalfEdge edge2 = edge1.opposite;

 HalfEdge edge1_b = new HalfEdge;

HalfEdge edge2_b = new HalfEdge;

edge2_b.opposite = edge1;

edge2.opposite = edge1_b;

edge1_b.opposite = edge2;

edge1.opposite = edge2_b;

splitVert.halfEdge = edge1;

Other Operations

● Remove face(s)

● Delete HalfEdgeFaces and any related
topology that is unused elsewhere

● Take care to properly RE-connect half
edges/verts that are not on open boundary

Other Operations

● Unhook face(s)

● Same as remove faces but copies removed
face and related to another object

What Else Can We Do?
● Split a mesh in half with a cutting plane

● Step 3: Remove or unhook faces on one side

● Step 4: Find and cover open boundary loops

● Step 5: Triangulate the remaining faces

Edge Split Demo
Part 2

Pop Quiz!
Find the open boundary vertices!

d

IndexList Boundary;

Boundary =

 FindVertexLoop(startEdge->opposite);

(But what if the boundary
isn’t connected properly?)

*See speaker notes below slide for an important consideration!

Simple Traversals
Find edges around a vertex

EdgeList FindEdgeRing(HalfEdgeVert *vert)

{

 EdgeList ring;

 HalfEdge *curEdge = vert->halfEdge;

 do {

 ring.push_back(curEdge);

 curEdge = curEdge->next->opposite;

 } while (curEdge != vert->halfEdge);

 return ring;

};

Simple Traversals
Find edges around a vertex

EdgeList FindEdgeRing(HalfEdgeVert *vert)

{

 EdgeList ring;

 HalfEdge *curEdge = vert->halfEdge;

 do {

 ring.push_back(curEdge);

 curEdge = curEdge->next->opposite;

 } while (curEdge != vert->halfEdge);

 return ring;

};

Simple Traversals
Find edges around a vertex

EdgeList FindEdgeRing(HalfEdgeVert *vert)

{

 EdgeList ring;

 HalfEdge *curEdge = vert->halfEdge;

 do {

 ring.push_back(curEdge);

 curEdge = curEdge->next->opposite;

 } while (curEdge != vert->halfEdge);

 return ring;

};

What Else Can We Do?

● Generate a convex hull mesh

● Divide and conquer method is fast

●O(n log n)

● Role of the half edge data structure

● Remove interior faces/edges during stitch phase

● Create new faces between boundary loops to
perform the stitch

What can go wrong?

● Be careful when clipping concave face

● Clipping against a plane can generate multiple loops

● User marker flags to tag start and stop points

● Recursively traverse to find ears to clip

What can go wrong?

● Some scenarios produce multiple loops

● Holes in a face

● Requires additional triangulation logic

● Nested loops: auxiliary edge to convert to
simple polygon

● Multiple un-nested loops: locate and
triangulate each loop separately

*See speaker notes below slide for an important consideration!

What can go wrong?

● Tolerance issues

● Edges not quite collinear

●Location of intersection point is highly sensitive

● Points nearly collocated

●Possible creation of very short/degenerate edges

● On which side of an edge is a point?/Which
face does a ray intersect?

Orientation Inversion

Orientation Inversion

Orientation Inversion

Orientation Inversion

Orientation Inversion
Polygon is no longer simple (it self-intersects) and no longer
has a consistent orientation

Cascades of Extraneous Intersections

Cascades of Extraneous Intersections

Tolerant Geometry
● Treat edges and points as thick primitives

● Assign a radius to be used in intersection
and proximity testing

2

1

Is point on edge?
On left side?
On right side?

2

1

Point is ON the edge Ambiguous answer depends on:
- Edge from 1->2 or 2->1
- Location

References and Resources

● Sample code for half edge data structure

● http://www.essentialmath.com

● These slides

● See http://www.gdcvault.com after GDC

● References

● http://www.cs.cornell.edu/courses/cs4620/2010fa/lectures/05meshe
s.pdf (Shirley & Marschner)

● http://www.cgafaq.info/wiki/Half_edge_general
● Nice discussion of invariants

● http://people.csail.mit.edu/indyk/6.838-old/handouts/lec4.pdf
● Polygon triangulation

http://www.essentialmath.com/
http://www.gdcvault.com/
http://www.cs.cornell.edu/courses/cs4620/2010fa/lectures/05meshes.pdf
http://www.cs.cornell.edu/courses/cs4620/2010fa/lectures/05meshes.pdf
http://www.cs.cornell.edu/courses/cs4620/2010fa/lectures/05meshes.pdf
http://www.cgafaq.info/wiki/Half_edge_general
http://www.cgafaq.info/wiki/Half_edge_general
http://people.csail.mit.edu/indyk/6.838-old/handouts/lec4.pdf
http://people.csail.mit.edu/indyk/6.838-old/handouts/lec4.pdf
http://people.csail.mit.edu/indyk/6.838-old/handouts/lec4.pdf
http://people.csail.mit.edu/indyk/6.838-old/handouts/lec4.pdf

References and Resources

● More references

● Tolerant geometry and precision issues

● Christer Ericson, Real-time Collision Detection

● Jonathan Shewchuk’s, “Adaptive Precision Floating-
Point Arithmetic and Fast Robust Predicates for
Computational Geometry”

● John Hobby, “Practical Segment Intersection with
Finite Precision Output” (snap rounding)

Questions?

