
A Different Approach for
Continuous Physics

Vincent ROBERT
vincent.robert@ubisoft.com

Physics Programmer at Ubisoft

mailto:vincent.robert@ubisoft.com

A Different Approach for
Continuous Physics

Existing approaches

Our method

Limitations

Performances

Conclusion

A Different Approach for
Continuous Physics

Existing approaches

Our method

Limitations

Performances

Conclusion

Linear convex cast

TOI

Compute the Time of
Impact (TOI)
between two convex
shapes

Trajectory

TOI

An issue can still occur

With the Linear cast, a
future collision can be
detected.

Detecting the collision !=
handling it.

Static mesh

Dynamic box

Existing Continuous Physics method

while (TOI found)

 Move at earliest time of impact

 Compute collision

 Solve

This method costs a lot of CPU.

Does not always prevent tunnelling of fast rotating
bodies.

Speculative contact points

Bounding volume

Dynamic sphere

Static mesh

Trajectory

Contact point

•Contact point with
a positive distance

•Cheap and
efficient solution

•Handles various
impacts in one
frame

Speculative contact points:
Ghost bug

Bounding volume

Dynamic sphere

Static mesh

Trajectory

Contact point

Stops the
dynamic rigid
body even if it
shouldn’t.

Speculative contact

• This solution doesn’t
always prevent
tunnelling issues.
• This issue can occur
with ragdoll.

A Different Approach for
Continuous Physics

Existing approaches

Our method

Limitations

Performances

Conclusion

Objective: No tunnelling issues

• No iterative algorithm that costs a lot of CPU:

• Iteration of all the pipeline

• Robust:

• Few solver iterations

• Handling variable frame rate

• Handling fast rotating bodies

Our method

Our approach involves some modifications at
different stages of the physics pipeline:

 Broad phase

 Narrow phase

 Constraint creation

 Solver

Our method

Broad phase

Narrow phase

Constraint creation

Solver

Moving body in the broad phase

Body’s linear velocity is used to compute the
trajectory:

Segment = velocity * deltaTime

The segment is used to detect the potential
collisions.

Detecting the potential colliding bodies

• Consider the
trajectory.

• Use the bodies’
Axis Aligned
Bounding Box
(AABB).

Transfer volume and compute a
segment intersection • Add AABB of the

moving body to
the other AABB

• Compute
intersection
between segment
and AABB

• Generate the
expected body
pairs

Our method

Broad phase

Narrow phase

Constraint creation

Solver

Incremental Manifold

Incremental
manifold provides
one new contact
point at each frame.

Frame 012

Static mesh

Dynamic box

Contact point

Full Manifold

Full manifold
provides all contact
points in one frame.

Frame 01

Static mesh

Dynamic box

Contact point

Distance-based full manifold

Potential contact points in full manifold

Static mesh

Dynamic box

Contact point

Supported shapes

Shapes supported on all rigid bodies:

• Sphere (point + radius)

• Capsule (segment + radius)

• Box

• Convex

Shapes only supported on static rigid bodies:

• Mesh / Height map (collision with triangles)

Distance-based full manifold with a
sphere

• One contact point = full manifold.

• Gilbert Johnson Keerthi (GJK) is a well known
algorithm to compute the minimum distance
between two convex shapes.

• Use GJK against any other shapes.

Distance-based full manifold with a sphere

Contact point

Distance-based full manifold with a
capsule

• Full manifold is required for a capsule.

• But, how do we calculate it?

Distance-based full manifold
between a capsule and a box

Static box

Dynamic capsule

Trajectory

Find the box’s reference plane

Static box

Dynamic capsule

Normal plane

Project capsule extremities
on the plane

Static box

Dynamic capsule

Contact point

Plane

Find clipping planes: orthogonal to the

reference plane with an edge in common

Static box

Dynamic capsule

Plane

Normal plane

Clip contact points

Static box

Dynamic capsule

Plane

Normal plane

Contact point

Compute contact points,
considering the capsule radius

Static box

Contact point

Dynamic capsule

If the capsule is in the Voronoï edge
region, use GJKVoronoï edge

region

Voronoï
edge region

Voronoï
edge region

Voronoï edge
region

Static box

Contact point

Dynamic capsule

Distance-based full manifold
between a capsule and a triangle

Static mesh

Plane

Normal plane

Contact point

Dynamic capsule

Generalizing the computation to
convex

Static convex

Plane

Normal plane

Contact point

Dynamic capsule

Distance-based full manifold with a box

• Full manifold is required for a box.

• Same technique:

 Clip edges instead of segment.

• Don’t clip all edges:

Select the right ones.

Use edges that face the reference
plane

Dynamic box

Normal plane

Static mesh

Selected edge

Distance-based full manifold between
a box and a triangle

Dynamic box

Static mesh

Selected edge

Contact point

Clipping plane

Distance-based full manifold:
Generalization between two convexes

Dynamic convex

Static mesh

Selected edge

Contact point

Clipping plane

Handle potential and real contact
points

Real contact points

Potential contact points

Contact point

Static mesh

Dynamic box

Handle potential and real contact
points at the same time

• Same frame:

• Real contact points can generate fast
rotation.

• Potential ones avoid tunnelling issue
in the same frame.

• Same part of the code:

• Reuse geometry information.

• Maximize cache access. Contact point

Static mesh

Dynamic box

Our method

Broad phase

Narrow phase

Constraint creation

Solver

Constraint creation for real contact
points and potential ones

Real contact
• Restitution is computed.

• Friction is added.

Potential Contact
• No restitution.

• No friction.

• Cheaper: no need to solve
the friction.

Restitution

• Potential contact points reduce the velocities to
reach the point of impact on the obstacle.

• At the next frame the body reaches the obstacle
with reduced velocities.

• Don’t use the current velocities to compute the
restitution.

Restitution example using the current
velocities

Dynamic sphere

Trajectory

Static mesh

Handling restitution

Using current velocities results in a false
restitution. Therefore, we must:

• Store the previous velocities; and

• Use them to compute restitution.

Restitution example using the
previous velocities

Dynamic sphere

Trajectory

Static mesh

Restitution

Pro

 Restitution is correct, with no loss of energy.

Con

 Still a loss of distance during the frame of impact. This
small loss is not visible in a video game.

Our method

Broad phase

Narrow phase

Constraint creation

Solver

Organize constraints in the solver

With a Gauss Seidel solver, each constraint
changes the velocities of bodies.

The latest solved constraints have more
importance.

Group the constraints by type.

Sort them by importance.

Hinge vs. Contact: hinge solved first
avoids tunnelling issues

Dynamic box

Hinge

Static mesh

A Different Approach for
Continuous Physics

Existing approaches

Our method

Limitations

Performances

Conclusion

Limitation on the second impact

Bounding volume

Dynamic sphere

Static mesh

Trajectory

Limitation on the second impact

This issue will happen if the second obstacle is
right after a first obstacle.

Solution wouldn’t be suitable for some video
games.

Handling several fast bodies

Handling several fast bodies

• We decided not to manage this case because it
was not an issue for most of the games.

• If one body moves really fast and the other one
moves slowly, the collision will be handled
correctly.

Remove these limitations

• To handle these limitations, only a modification
on the broad phase is needed.

• Use a bigger bounding volume, but this method:

• Can generate unnecessary body pairs

• Can increase CPU costs

• Causes the ghost bug

A Different Approach for
Continuous Physics

Existing approaches

Our method

Limitations

Performances

Conclusion

Continuous physics cost
Comparison between the discrete collision pipeline and the
continuous physics pipeline.

Broad phase

• Segment intersection with an AABB:

addition, min, max, cross product, select...

• More body pairs are generated.

Narrow Phase

• Distance-based full manifold collision algorithms cost about
the same as traditional collision algorithms.

• More contact points are generated.

• Additional memory is used to store the contact points.

Continuous physics cost

Constraint creation

 Additional data to store: previous velocities.

(For managing the restitution only.)

Solver

 No additional process.

 It takes more time because there are more contact
point constraints to solve.

Profiling in Ghost Recon Future
Soldier on Xbox 360

• Showing the profiling scene using Continuous
physics

• CPU benchmark

• Memory consumption

CPU benchmark

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T
im

e
 i
n

 m
ic

r
o

 s
e
c
o

n
d

s

Frames

CPU Benchmark

Total Physics Step Cost

Discrete Physics Cost

Continuous Physics Cost

Average cost: 11.4%
Average only falling: 15.4%
Max cost: 24.5%
Min cost: 0.7%
Dynamic rigid bodies: 11
All using continuous physics

CPU benchmark

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19

%
 C

P
U

 c
o

s
t

Frames

Additional cost to the
discrete pipeline

Additional cost

to the discrete

pipeline

Memory consumption: compare
to physics data

99%

1%

Memory consumption

Other usage Continuous Physics

Other usage:
14.2 MB

Continuous
Physics: 107 KB

Memory consumption:
Mesh as most important data

17% 1%

82%

Memory consumption

Other usage Continuous Physics Mesh

Other usage excluding
meshes: 2.5 MB

Continuous Physics:
107 KB

Mesh data : 11.7 MB

Memory consumption:
Comparison without mesh data

96%

4%

Titre du graphique

Other usage without mesh Continuous Physics

Other usage
excluding

meshes: 2.5 MB
Continuous

Physics: 107 KB

A Different approach for
Continuous Physics

Existing approaches

Our method

Limitations

Performances

Conclusion

Conclusion

Low additional cost for the CPU

• No big additional process.

• Potential contact points less expensive than real
contact points: no friction.

• The number of body pairs generated is more
significant, so the cost increases in the entire pipeline.

Restitution is handled correctly

Conclusion

Robust: No tunnelling issues with fast rotating
bodies

• Variable frame rate

• Few solver iterations

Limitations:
• Several fast bodies

• Second impact

• Solution can be improved

References

Erin Catto

Iterative Dynamics with Temporal Coherence

Box2D

Russell Smith

Constraints in Rigid Body Dynamics

Open Dynamics Engine (ODE)

Erwin Coumans

Continuous Collision Detection and Physics

Bullet

References

Gino van den Bergen

Ray Casting against General Convex Objects

with Application to Continuous Collision

Dirk Gregorius

Game Physics Pearls (Gino van den Bergen)

Paul Firth

Speculative Contacts - A continuous collision engine
approach

Special Thanks

