
The Tricks Up Our Sleeves
A Walkthrough of the Special FX of Uncharted 3: Drake’s Deception

Keith Guerrette
Lead Visual Effects Artist, Naughty Dog
www.keithguerrette.com

Mouse-over this icon to see my narration!

kguerrette
Sticky Note
I always describe my job to people like this: I am the amateur magician of the video game world – When I’m making sprite based effects, I use every trick I can hide in my sleeves to create an often feeble illusion of a real, three-dimensional effect with real world lighting and physics. But in reality, its all smoke, mirrors, sparkles, and poofs. I want to share with you guys some of the cool new ways we’ve found to sell our false reality while working on Uncharted 3.

kguerrette
Sticky Note
This presentation, in its original format, is entirely based upon videos and narration. I haven't found a worthwhile way to demonstrate the videos through pdf, but I hope the inclusion of my narration in these comment boxes will help to fill the gap a little.

Overview

● Evolution of our FX pipeline across the
Uncharted Franchise

● Specific FX Challenges of Uncharted 3
(and the solutions that we came up with)

● A few lessons we’ve learned, and plenty
we haven’t

kguerrette
Sticky Note
In order for me to do that, I first have to give you guys a quick glimpse at our tools, and how they’ve evolved across the entire Uncharted franchise. Hopefully this will help you guys understand what I’m talking about as I walk you through some of the challenges we faced when making Uncharted 3. Specifically, filling a chateau with fire, creating thick, realistic smoke from a crashed plane, and creating realistic interactions with a desert.

And of course, no lesson or experience would be worth-while if I didn’t take a quick glance backwards, and consider the mistakes we made, and successes we stumbled into, and what we’ve actually learned from it all.

The Team

kguerrette
Sticky Note
Now before I really dig into any of this presentation with you guys, I want to make it very clear to everyone that I am the fortunate one that gets to stand up here and talk to all of you about the work we’ve been doing, but in reality, all of this is a team effort. I am blessed to work with such an incredibly talented, creative, and dedicated team. So please, keep in mind that everything I am showing you today is every bit the hard work of these other 4 people as much as it is mine.

From Left: Iki Ikram, Doug Holder, Mike Dudley, Eben Cook, Keith Guerrette

Marshall Robin
Genius, FX Programmer Extraordinaire, and All-Round Cool Guy

kguerrette
Sticky Note
Beyond those guys, one person deserves a tremendous amount of credit – Marshall Robin is our dedicated FX programmer. Through all of production, he is working right next to us, bouncing ideas with us, and helping to improve our abilities, our tools, or our performance.

This is what he actually looks like….

Marshall Robin
Genius, FX Programmer Extraordinaire, and All-Round Cool Guy

kguerrette
Sticky Note
But to us, he’s more like this…

EVOLUTION OF THE TOOLS

kguerrette
Sticky Note
Moving along… (I can’t really look at that photo for very long)…

Uncharted 1 FX Pipeline

● FX were hand-written
in a scripting language
similar to LISP.

● Shaders were hand
written in HLSL

kguerrette
Sticky Note
I was not at Naughty Dog for the development of Uncharted 1 – and whenever I think about the tools they had, I’m very glad of that…

The entire FX pipeline was driven by scripts. Every effect created was hand-written in an in-house scripting language called “DC” which is somewhat similar to LISP, for those of you techies out there. If I wanted a new shader applied to my particles, it was written by hand in HLSL.

I’m not sure if I have any programmers in the audience that are laughing at me right now thinking “what’s wrong with that?”, but for us artists, this would suck the soul out of me.

Uncharted 2 FX Pipeline

● Goals:

● Artist friendly pipeline

● Freedom and Power

● Meet artistic
standards set by the
top of the industry

kguerrette
Sticky Note
So moving into Uncharted 2, the studio had a few pretty clear goals for the FX, both pipeline, and visual quality. Marshall was assigned to the task full time, and they started discussing their options regarding other tools being used (which most of you will know, there aren’t really any standards…) and also, should they make their own custom UI? In the end, the decision was made to utilize a pretty familiar program:

kguerrette
Sticky Note
Some of you might recognize this as Maya. This is a photo of my workstation with our current tool layout – I just wanted to show you guys a quick example.

The decision to use maya as the base came for a few reasons:
Naughty Dog’s entire pipeline runs through Maya
There’s already a great infrastructure for creating our own UI and tool workflow (MEL/Python)
The particle tools seemed to provide a decent base upon which to grow – particles, emitters, fields, ramps, and expressions

This was around the time that I came into Naughty Dog – we’d gotten a UI functioning, and a few very basic controls that worked within the game. From here, my journey with the FX tools at Naughty Dog roughly paralleled the evolution of FX within games. So for visual aid as I’m discussing our challenges and decisions, I’m going to show you guys different examples of fire.

Static Materials

kguerrette
Sticky Note
Beginning with this fire here – this is the type of fire that we saw in games about 15 years ago. This is the type of fire that our first maya tools let us put in the game, about 1/4th of the way through Uncharted 2’s development.

Static Materials

kguerrette
Sticky Note
Here’s the wireframe. It’s just a bunch of static textures scaling and rising randomly.

Static Materials

kguerrette
Sticky Note
Sure, I can mix it up by applying a variety of different static textures

Static Materials

kguerrette
Sticky Note
Or even sell it more with some smoke and a few embers… It implies a fire, so this was great a decade ago… but the there’s so much detail and motion missing from the effect for us to call it “realistic”

Uncharted 2 FX Pipeline

● Problems

● Maya’s sprite engine
is terrible

● We had to build our
own controls,
functions, and better
workflow

kguerrette
Sticky Note
Why couldn’t we do better? Well, the truth is that Maya’s sprite engine is terrible, so we realized pretty early on that we would have to build our own controls, functions, and workflow.

But that’s not really indicative of how we were thinking and trying to evolve. What we were actually saying is, “this looks awful… What is the next step we need to take to improve this?” The next step for FX in history was the ability to play frame sequences, or “flipbooks” on particles. So we took the same step.

Flipbook Materials

64 frames
512 x 512

32 frames
512 x 512

kguerrette
Sticky Note
Flipbooks have their own serious problems – texture resolution vs. frame rate requires some serious thinking, but more importantly – how do you generate randomness? This wasn’t a solution that we were happy with in anyway. So what’s the next step?

Dynamic Materials

kguerrette
Sticky Note
I’d just come from a studio working with the Unreal Engine, so it wasn’t really a puzzling question for me or Mike Dudley, who had just joined the team around this time. The answer was, of course, cool custom, UV distorted materials applied to the sprite simulations.

Unfortunately, we didn’t have a great way to do this as artists – we hadn’t improved the shader writing pipeline, and neither Mike nor I were equipped to write HLSL shader code to the degree needed. So instead, we worked closely with Marshall to create a small library of shaders, the above example being a small snippet of the script from our fire shader.

Uncharted 2 Fire Material

kguerrette
Sticky Note
This is the type of motion that this shader let us achieve, only within the particle.

kguerrette
Sticky Note
And this is the fire effects that it let us create in the final, shipped version of Uncharted 2.

Uncharted 3 FX Pipeline

● Goals:

● Remove dependency
on Programmers

● Improve efficiency of
workflow

● Expose more control
the tools & artists

kguerrette
Sticky Note
Going into development on Uncharted 3, we had some pretty clear objectives:

The dependency upon Marshall for iteration on our shaders was killing us. We needed to find a way to resolve that.

We also needed to revisit our basic tools and improve our general workflow and efficiency. We’d spent all of Uncharted 2 with the goal of allowing us to put things in the game, but hadn’t really considered HOW we put things in the game, so our workflow was a little clunky.

Beyond that, we already realized that we were stumbling into a pipeline that provided a wealth of freedom and control, and we knew that we wanted to continue to exploit this.

Particle System & Emitter
List

Ramp & Attribute Controls

Creation & Runtime
Expression Controls

Tons of other options,
including:

Material Assignments, Spawn
Methods, Custom Material Variables,

Collisions, Sounds, Lights, Global
Fields, UV Controls, Trails, Ribbons,

etc

kguerrette
Sticky Note
This is a screenshot of our current particle tool UI – its not pretty, but it doesn’t need to be. Instead, it’s a well organized, easy access to about a bajillion tools, and creation opportunities.

kguerrette
Sticky Note
Here’s a video Doug made of him using the tool, sped up to not bore you too much.

kguerrette
Sticky Note
This was the other HUGE improvement for us – this might look a little bit familiar to some of you. We emotionally call this tool “Noodler.” This tool came to us from the Sony ATG group across the pond, and after a little bit of manipulation from Marshall, we now have a fully artistic, programmer supported, but not involved, method to create powerful custom shaders for use upon our particles!

kguerrette
Sticky Note
And it lets us do cool things like these (more examples fires!)

Uncharted 3 FX Pipeline

● Current Readable Particles Attributes:

● Ramp output (with custom V
inputs)

● Position (world, local)

● Velocity (world, local)

● Age (particle)

● Time (emitter)

● Bouncecount

● Timedelta

● Bounce Count

kguerrette
Sticky Note
To give a bit more insight of our current tools and capabilities – this is a list of the attributes that I can read from when building my particle simulation and use to drive other elements of the effect or material.

Uncharted 3 FX Pipeline

● Current Particle Expression
Functions:

● +-x/

● Modulus

● Random

● Linstep & Smoothstep

● Clamp

● Magnitude

● Sign

● Sin & Cos

kguerrette
Sticky Note
Here’s a list of the functions I can use within the creation and run time expressions upon the sprites.

Uncharted 3 FX Pipeline

● Very powerful, math oriented
pipeline

● Many different types of controls &
customizations

● Fully supportive team of
programmers

● Open communication

● No Politics

● Easy, understanding
discussions of priorities

Uncharted 3 FX Pipeline

● Any attribute in a shader can
be controlled at run-time

● Up to 8 real-time inputs into
the shader, not including the
vertex color and vertex opacity
(12 Total)

THE FX CHALLENGES OF UNCHARTED 3

kguerrette
Sticky Note
Alright, enough of the boring part – lets get to some cool stuff. I want to run you guys through a few of the specific challenges that we found ourselves facing during the development of Uncharted 3.

Challenge:

How do we utilize dynamic materials to create
complex detail and motion within the particle
system?

kguerrette
Sticky Note
I want to start with a somewhat generic challenge, but a good challenge none the less. We knew we wanted to do a lot of wind, smoke, fire, etc, all of which is really comprised of broad motion and shapes, but also a lot of small, internal detail and movement.

So how do we make a material with complex detail and motion that we can apply to particles and make an effect?

Creating Motion in Particles

kguerrette
Sticky Note
Just to clarify what I mean, this is an example of a dust burst made from static sprite images. It works – it certainly implies a dust burst, but there’s a lot of cool detail missing. So how do we actually add more detail within the outlying shape of the effect?

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
Before I can even begin to answer that question, I need to make sure everyone has a small understanding of the underlying math of Uvs.

This is a VERY basic example shader – we have a single texture, with its Uvs, plugged into the emissive. The image on the right is the output of the material. For most of my work, it’s this UV node that I’m the most interested in, and it requires a correct understanding of what the Uvs actually are – which is an address system for each pixel, where the bottom of the texture is O V, and the top of the texture is 1 V (same for U).

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
If it helps, you can think about this as a color ramp in each direction, U and V.

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
But its best to think about them in terms of numbers.

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
So what happens when we multiply the UV addresses by a value of 2? The texture will tile twice in both directions, U and V.

Creating Motion in Particles
Prerequisite Knowledge: UV Math

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
Of course I can separate my U and V channels, so that I can control the multiplication independently for each.

Creating Motion in Particles
Prerequisite Knowledge: UV Math

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
What happens if I use addition instead of multiplication?

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
I can now scroll or pan the texture. (0 + 0.5 = 0.5 and 1 + 0.5 = 1.5)

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
Of course I can animate any of these parameters over time, or the life of the particle, or any other control that I want.
Now, this is all neat… but its basic, and not really that useful. So lets try pushing this a little further:

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
So far, we’ve only done math uniformly across the sprite (like this example) – every pixel has been affected the same… but what happens if we multiply each pixel in the texture by a different value?

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
Perhaps by another texture?

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
Then I am able to do things like this:

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
Or this with a better noise texture input

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
Or if I normalize my offset texture from -1 to 1, instead of 0 to 1 (however your engine does this), we can do something like this. Now we are getting some interesting detail. What happens if we scroll the noise texture that is being added to the Uvs?

Creating Motion in Particles
Prerequisite Knowledge: UV Math

kguerrette
Sticky Note
This video demonstrates the basic behind 70% of the materials we made for Uncharted 3

Creating Motion in Particles
Technique 1: Scrolling UV Distortion

kguerrette
Sticky Note
This is building this concept into a more advanced shader, which we humbly call the “scrolling distortion” shader.

Creating Motion in Particles
Technique 1: Scrolling UV Distortion

kguerrette
Sticky Note
Here is the material which that shader allows me to create – you can see that on this single quad, I’m able to generate an incredible amount of motion and detail just by using UV distortion within the material.

Creating Motion in Particles
Technique 1: Scrolling UV Distortion

kguerrette
Sticky Note
And if we take that material, and apply it to that old dust bursting effect, you can see that we now have a lot of interesting detail and motion added within the simulation.

Creating Motion in Particles
Technique 1: Scrolling UV Distortion

Creating Motion in Particles
Technique 1: Scrolling UV Distortion

● Pros

● Breaks the silhouette

● Adds internal motion

● Cons

● It’s mostly non-directional motion and
ambiguous detail

kguerrette
Sticky Note
This technique, or some simple derivative, is the most commonly used dynamic shader within the FX of Uncharted 3. It’s excellent at quickly and easily breaking up the silhouette of the particles, so you can’t see repetition within the systems, and it adds some cool internal motion. But what happens when I want very specific types of motion? The detail that is added with this technique is fairly hard to control, and usually just ambiguous noise…

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
Which brings us to the next technique. “Flow” is actually technique developed for our water in Uncharted 1, but the math and concept behind it has proven quite useful in so many different ways – specifically for us, within particle materials.

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
I don’t want to go too much into the math, as we’re running out of time, but if you look at this shader, the concept is actually the same as the last examples – you’re using an image (Flow image) to push around the Uvs of a source image. The primary difference is what type of data that image is storing. If we consider it as a mapping of different vectors (direction and magnitude), we can use it very intelligently to create motion. So what the hell do I mean by that? And how do I make a vector field into a texture?

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
We’ve created a number of ways to do this in house – don’t forget we’ve been using this concept for years with our water, but perhaps the coolest one for us takes advantage of the Paint Fluid Velocity tool in Maya. In this video, I’m just painting a quick squiggle stroke across the a 2d fluid volume. And using a fairly simple script that Carlos Gonzales-Ochoa wrote for us, we can bake that velocity vector information into a texture

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
Which looks like this. Again, not the easiest thing to paint – but the RG values in this texture are extremely useful.

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
So now that I have this texture, if I plug it into the “Flow” input in my shader…

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
I can get this material effect. For the sake of this example, I’m crossfading between the texture and itself to create a continuous loop (like the water again…). Neat, but again, how do we actually use this on an effect? Let me show you a few other examples of cool things you can do with this technique.

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
Zoom (in or out… just reverse time)

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
Twist

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
Or something way more convoluted but cool.

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
This last texture, and this basic flow concept, is actually what we used to create our sand gusts and wind effects from the top of the dunes in the desert.

Creating Motion in Particles
Technique 2: Flow Technique

kguerrette
Sticky Note
The shader for which looks like this – We added far more controls to allow the material to do what we wanted (blend with the desert, shift directions, randomness, etc), but the core concept is the same.

Creating Motion in Particles
Technique 2: Flow Technique

Creating Motion in Particles
Technique 2: Flow Technique

● Pros

● Extremely controllable awesome motion

● Cons

● Patterns of the motion are very visible (i.e.
not very random…)

● Lots of negative space in the particle
(overdraw)

kguerrette
Sticky Note
Using this technique, we were able to generate very specific complex motions and shapes within the material – great for specific swirls, mushroom clouds, etc. Unfortunately, because that shape and motion are derived from a source texture, there’s not a tremendous amount of randomness within that motion.

BURNING DOWN A CHATEAU

kguerrette
Sticky Note
The Chateau level was one of the first production levels posing a challenge for the FX artists. We new how to make some cool looking fires, but we weren’t confident that we could fill a room with enough fire and smoke, at different levels of detail, to properly imply the inferno that everyone wanted. Sure enough, when we tried filling the main hall with fire, we tanked the game to about 12 fps.

Challenge:

How do we make an awesome fiery
inferno covering the walls, floor, &
ceiling, while running at 30 frames

per second?

kguerrette
Sticky Note
So what we needed was a cool way to imply all of the macro and micro detail of fire with as few particles as possible. The approach we tried, thanks to Eben Cook’s ingenuity, relies on a technique that we call “soft particles”, or that Unreal calls “depth bias blend”

Burning Down a Chateau
Prerequisite Knowledge: Z Depth Bias/Blending

kguerrette
Sticky Note
For those of you have no idea what I’m talking about: This is a normal particle effect with a super simple material applied to it. You can clearly see the hard edges where the effect intersects with the ground, or any other geometry.

Burning Down a Chateau
Prerequisite Knowledge: Z Depth Bias/Blending

kguerrette
Sticky Note
If we fade the particle out by comparing it against the Z-Depth of the geometry behind it, we can create a softening of that edge over a variable, artist controlled, distance.

But what happens if we input a texture to offset/bias this Z-Depth comparison? Further more… what happens if we scroll this texture?

Burning Down a Chateau
Prerequisite Knowledge: Z Depth Bias/Blending

kguerrette
Sticky Note
In this video, I’m slowly increasing the amount of z-depth bias driven by a noise texture. The end result is a particle with per-pixel bulging forward and backward in Z space.

Burning Down a Chateau

kguerrette
Sticky Note
Which means that we can use this technique on a wall, and the fire will appear to grow in and out of the wall. This above example is actually only 2 big particles with Z-Test disabled.

Burning Down a Chateau

kguerrette
Sticky Note
And that trick is the only reason we were able to pull this off.

Burning Down a Chateau

● Pros:

● Less Particles = Less Overdraw = Better
Frame Rate

● Cons:

● All of the motion has to come from the
material

● Texture resolution is important/visible

CRASHING A CARGO PLANE

kguerrette
Sticky Note
The next large challenge that we faced as an FX team was the crashing of a cargo plane in the desert. The several different pieces of concept all focuses on a large, oil burning smoke stack.

Challenge:

How do we make a realistic
looking, thick, volumetric

smokestack with enough broad and
subtle motion to feel like its huge,

but in the distance?

kguerrette
Sticky Note
The answer that we came up with for this challenge uses a few normal maps, and some fancy math.

Crashing a Cargo Plane
Prerequisite Knowledge: Dot Product Against a Normal Map

(0, 1, 0)
Light Vector

·
Dot Product =

kguerrette
Sticky Note
As a prerequisite to my explanation, I need to start with a simple explanation of the way we are utilizing the dot product. It’s not too important to understand that math, but it is important to know that you can generate a highlight and a self-shadow from a normal map by using a dot product and a “light direction”

Crashing a Cargo Plane
Prerequisite Knowledge: Dot Product Against a Normal Map

kguerrette
Sticky Note
Here’s that concept applied to a shader in Noodler, and as you can see in the video, as I change the direction that I’m lighting the normal map from, I can move the highlight and shadow at runtime.

Crashing a Cargo Plane
Prerequisite Knowledge: Dot Product Against a Normal Map

kguerrette
Sticky Note
Similarly, I can add two normal maps together, and even scroll one of them (forgive me, this shader doesn’t include the scrolling, but the video demonstrates it). If we normalize these two normal maps after the addition, and then compute the dot product, we can generate the highlights and shadows on a fairly complex moving surface.

Now if you think back to our challenge, this is an incredibly helpful technique.

Crashing a Cargo Plane

kguerrette
Sticky Note
And it’s the core concept used in this shader (my final shader used on the smokestack for the plane crash).

Crashing a Cargo Plane

kguerrette
Sticky Note
By using 3 sets of scrolling normal maps, and the scrolling distortion concept I talked about early on the alpha, I can generate a material like this one.

Crashing a Cargo Plane

kguerrette
Sticky Note
Which lets me make an effect like this.

Crashing a Cargo Plane

kguerrette
Sticky Note
Here’s the coolest thing about this concept to me: If I set up the material correctly, I can actually adjust the colors of the shadows and highlights live at runtime:

Crashing a Cargo Plane

● Pros:

● Decent volumetric feel and motion

● Tons of control over color, shape, motion, etc

● Cons:

● Requires A LOT of particles

● Very expensive shader

INTERACTING WITH THE DESERT

Interacting with the Desert

kguerrette
Sticky Note
When we first heard that Drake was going to spend a fair amount of time navigating around the desert, we knew we had a lot of work to do. Several of us took a trip out to the Imperial Dunes near Yuma Arizona, and spent the day playing in the sand, recording reference.

The very first thing that became apparent was that we needed a serious innovation to create the sand interactions…

Challenge:

How do we make fluid,
realistic sand interactions

that consider the angle and
direction of the sand dune?

Interacting with the Desert

kguerrette
Sticky Note
The first innovation in this challenge came to us when Marshall gave us the ability to project particle effects onto the world geometry like a decal.

Interacting with the Desert

kguerrette
Sticky Note
Here’s the wireframe of this example. This example, of course, is not really anything special… but what this let us do is create a full detailed particle effect, and project it onto the world, so it conforms perfectly.

Interacting with the Desert

kguerrette
Sticky Note
More like this.

Interacting with the Desert

kguerrette
Sticky Note
Or more specifically, it let us do the sand/wind flowing along the dunes in this show.

Interacting with the Desert
Projecting Particles into the World Normal Buffer

Particle Texture Projected into
Emissive Render Pass

Projected into
World Normal Buffer

kguerrette
Sticky Note
The next innovation came when Marshall asked us, “Hey, can you guys think of a use for drawing the particle in the world normal buffer instead of the emissive pass?” (I’m paraphrasing) This concept had some jaw dropping outcomes for us– we could create a particle effect that only adjusted the normals of the surrounding environment – We no longer had to worry about hand matching the lighting and color of the footprints!

Interacting with the Desert
Sand Foot Prints

kguerrette
Sticky Note
So we could make a sand mound, and because it’s a particle, with all of our other particle controls, we can make it scale and threshold blend up, with some movement in the grain to imply sand falling along the mound.

Interacting with the Desert
Sand Foot Prints

kguerrette
Sticky Note
We can make a hole in the ground, again scaling and threshold blending, with some flow on the grain to imply the sand falling into the middle

Interacting with the Desert
Sand Foot Prints

kguerrette
Sticky Note
We can even make a noise map that spreads out and flattens, plus a lot of random.

Interacting with the Desert
Sand Foot Prints

kguerrette
Sticky Note
And best of all, I can put them all together to make a footprint.

Interacting with the Desert
Sand Foot Prints

kguerrette
Sticky Note
We took off running with this, and once we realized that we can read from the slope of the surface the prints are placed upon, and align only the flowing sand portion down that slope (and the rest aligned with Drake), we started making variable slope effects.

Interacting with the Desert

Interacting with the Desert

● Pros:

● @#$%ing awesome

● Cons:

● @#$%ing expensive

RETROSPECTIVE

Retrospective

● Pros:

● Incredible power and variety of controls and
tools to experiment with for new solutions

● Open communication, experimentation, and
teamwork are our absolute greatest assets

Retrospective

● Cons

● “With great power comes great responsibility”

●We break the game all the time…locally.

● Slow workflow from the vast amount of
control

NAUGHTY DOG IS HIRING!

COMPANY EMAIL:
JOBS@NAUGHTYDOG.COM

RECRUITER EMAIL:

CANDACE_WALKER@NAUGHTYDOG.COM

TWITTER:
@CANDACE_WALKER

The Tricks Up Our Sleeves
A Walkthrough of the Special FX of Uncharted 3: Drake’s Deception

Keith Guerrette
Lead Visual Effects Artist, Naughty Dog
www.keithguerrette.com

