

Why ... Erlang?

Henning Diedrich CEO Eonblast

Your Host

Henning Diedrich

- Founder, CEO Eonblast
- CTO Freshworks
- CTO, Producer at Newtracks
- Team Lead, Producer at Bigpoint
- OS Maintainer Emysql, Erlvolt

Acknowledgements

Thank You!

Joe Armstrong Robert Virding Ulf Wiger Felix Geisendörfer

Erlang Solutions Feuerland Labs Transloadit

... for vetting and improving these slides in various stages. All errors and omissions are, of course, mine.

- 1. Why Care About It?
- 2. Who Uses It?
- 3. What for?
- 4. Is It for Me?
- 5. How It Looks
- 6. Getting Started!

C++ – pointers = Java

Java – deadlocks = Erlang

"Drop Slides 4 and 5"

Joe Armstrong

Erlang is a lot more ...

Who Uses It?

You are Using It

"You probably use systems based on Erlang/OTP every day without knowing it."

Mike Williams

Erlang Game Servers

Zynga: FarmVille via membase, Activision Blizzard: Call of Duty, Bigpoint: Battle Star Galactica, Wooga: Magic Land

Distributed DBs using Erlang

Membase, riak, BigCouch

Handling state: secure, fast and distributed.

EA contributed Emysql

http://eonblast.github.com/Emysql

The Erlang Poster Child

Klarna AB

- Financial Services for E-Commerce
- 600 Employees, \$38M revenue
- 12,000 e-commerce stores
- 30 seconds downtime in 3 years
- Investment by Sequoia Capital

Sequoia Capital

1975 Atari
1978 Apple
1982 Electronic Arts
1987 Cisco
1993 Nvidia
1995 Yahoo!
1999 Google
1999 Paypal

2000 Rackspace

2003 LinkedIn

- 2005 YouTube
- 2007 Dropbox
- 2009 Unity 3D
- 2010 Klarna
- 2012 Instagram

Why Use It?

Business Perspective

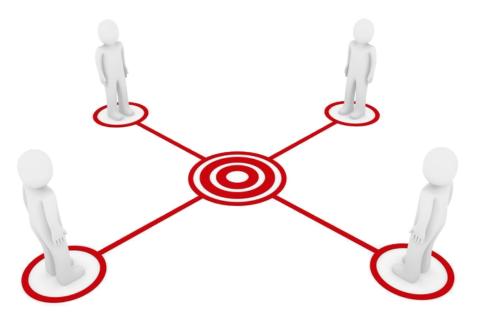
- Reduce Costs
- Improve Retention
- Shorten Time To Market

Production Perspective

- High Productivity
- Low Hardware Requirements
- More Robust Servers

Design Perspective

- More Complex Designs
- Profitable On Small Markets
- Less Mainstreaming Pressure



When Use It?

Sweet Spots

- Stateful Servers with High Throughput
- Cluster Distribution Layers
- Chats*

* Chats are a bitch. The Facebook Chat was written in Erlang.

Why Is It Good At These Things?

PLEX

- Ericsson makes billions with telecom switches
- They used PLEX, an all proprietary software
- PLEX delivers, but has bad productivity

• The 80's: Ericsson Computer Science Lab Joe Armstrong, Robert Virding, Mike Williams

"What aspects of computer languages make it easier to program telecom systems?"

Mission

• Keep features, but invent a more productive PLEX.

Approach

 Programmed a small telephone exchange (MD110) in Prolog, CHILL, Ada, Concurrent Euclid, Rules Based Systems, AI Systems, Functional Langs

Conclusion

- Many good abstractions
- None could match the characteristics of PLEX

25 The True story about why we invented Erlang and A few things you don't want to tell your Manager Mike Williams

www.erlang-factory.com/upload/presentations/416/MikeWilliams.pdf

PLEX

Safe pointers

- Ability to change size of arrays etc without memory leaks
- Fine grained **massive concurrency**
- Ability to develop software in independent "blocks"
- Ability to change code at runtime without stopping
- Advanced tracing ability at runtime
- Restart Mechanisms to recover software & hardware failure

26 The True story about why we invented Erlang and A few things you don't want to tell your Manager Mike Williams

Erlang was Built For

- Reliability
- Maintenance
- Distribution
- Productivity

Features Achieved

- Productive
- Reliable
- Fast
- Scalable
- Great to Maintain

... how?

The Magic

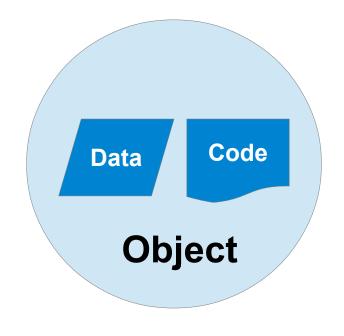
- Microprocesses
- Pattern Matching*
- Immutable Variables
- * Not your familiar Regex string matching

What Is That?

Thinking Erlang

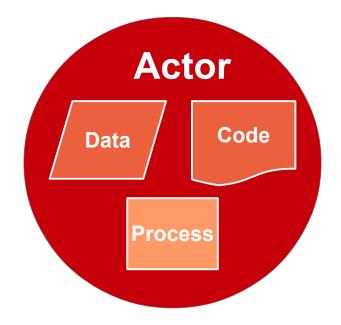
- The Actor Model
- Thinking Parallel
- Thinking Functional
- Thinking Processes
- Let It Crash!

Actor Model vs. OO

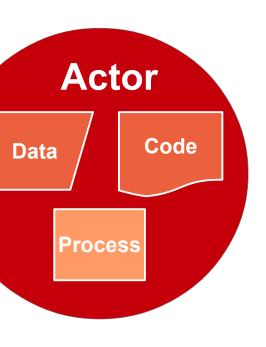

The Actor Model

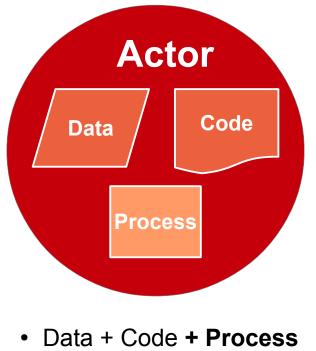
Carl Hewitt 1973

- Behavior
- State
- Parallel
- Asynchronous Messages
- Mailboxes
- No Shared State

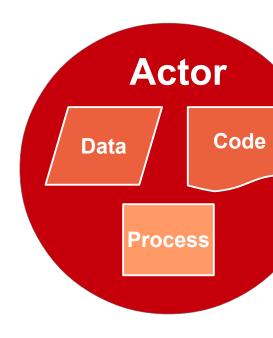

Object Oriented

- Data + Code
- Encapsulation
- Inheritance
- Polymorphy
- Late Binding

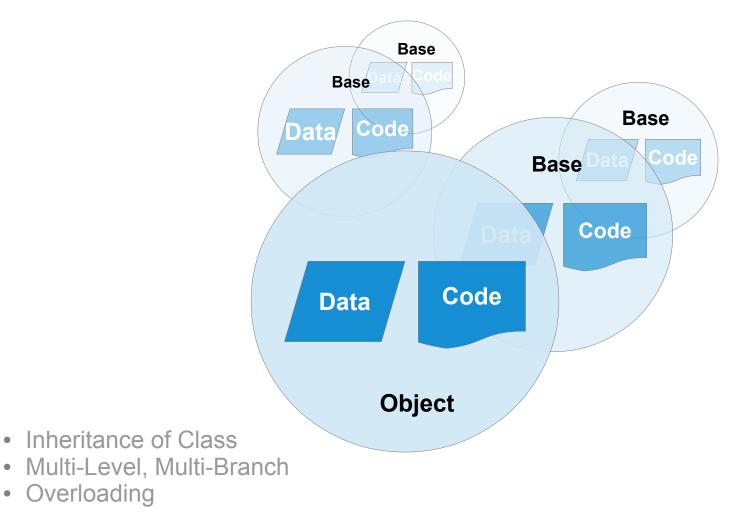

Actor Model



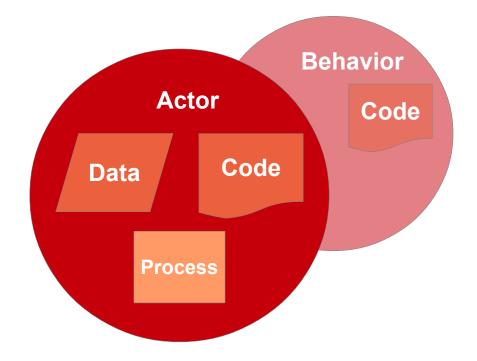
- Data + Code + Process
- Self-Contained Machines
- Stronger Encapsulation
- Less Inheritance
- Type Inference
- Hot Code Upgrades



Actor Model



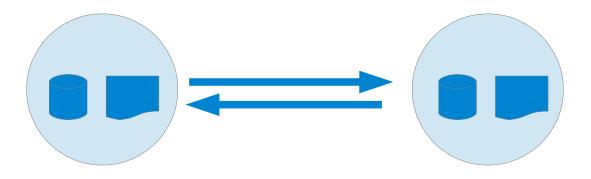
- Self-Contained Machines
- Stronger Encapsulation
- Less Inheritance
- Type Inference
- Hot Code Upgrades



OO Inheritance

Erlang Behavior

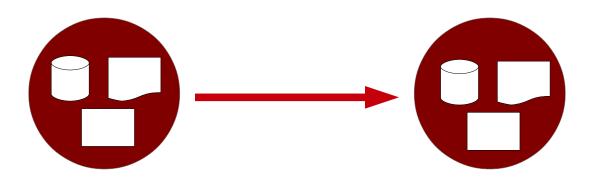
- Inheritance of Behavior only.
- Usually only one level deep.


38

- Usually one of the standard OTP behaviors:
- Generic Server, Event, State Machine, Supervisor.

OO Methods: Synchronous Calls

o.method(a)



- OO "method calls" are simply synchronous function calls.
- Not really the OO "messages" once promised.
- OO fails itself where building on Algol.

Actors: Asynchronous Messages

Pid ! Msg

- Message dispatch is one-way, truly **asynchronous**.
- Not function calls but something in their own right.
- Clean break from the FP paradigm.

Actor Model: Benefits

- More true to the real world
- Better suited for parallel hardware
- Better suited for distributed architectures
- Scaling garbage collection (sic!)
- Less Magic

• What should be a Process?

"Easy!"

Joe Armstrong

- Three Elevators
- Ten Floors
- How many processes?

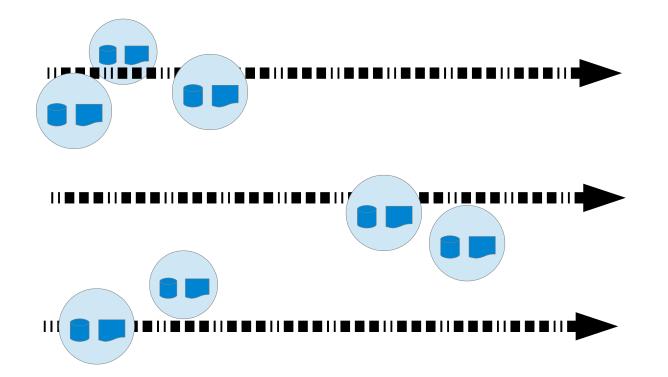
Thirteen!

"It's so obvious!" - Joe Armstrong

- elevators hold state
- floors hold state
- All live separate lives
- All don't share state

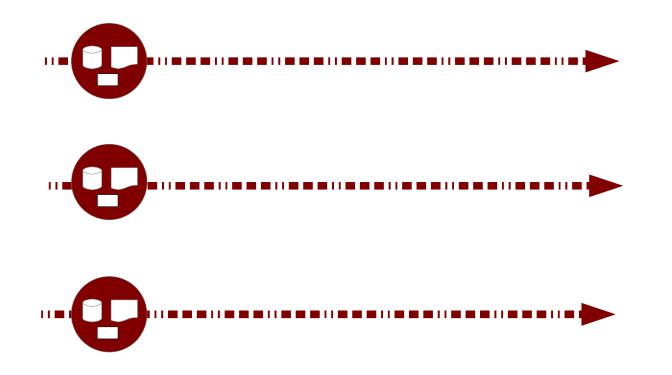
The Algorithm courtesy Joe:

- 1. each foor has it's own stop list
- 2. when you press the "up" button on f oor K you **broadcast** to all lifts "I want to go up, how long will it take to get to me?"
- 3. each lift computes this independentally and
- 4. sends the result to f oor K.
- 5. Floor K waits for 3 messages then
- 6. Chooses the minimum
- 7. then sends a message to this list "add me to your stop list."
- Elevators and floors interact independently

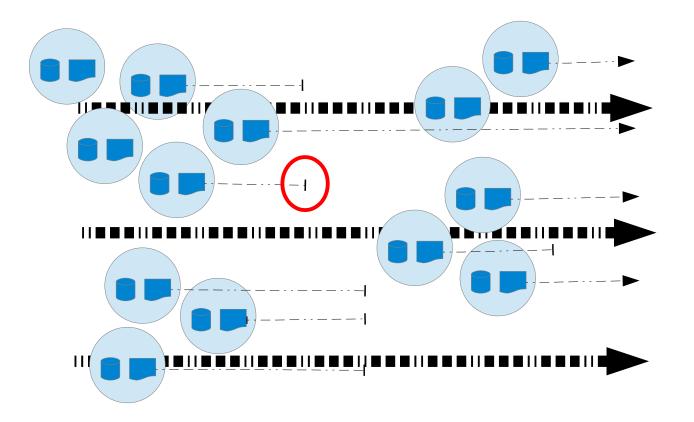


Processes

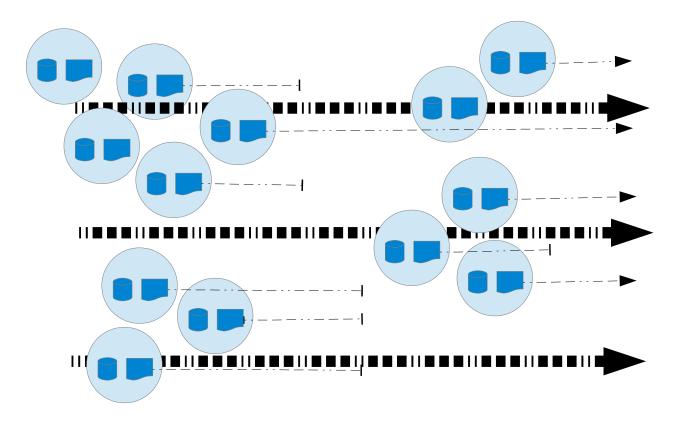
- Don't share State
- Communicate Asynchronously
- Are Very Cheap to create and keep
- Monitor Each Other
- Provide Contention Handling
- Constitute the Error Handling Atom

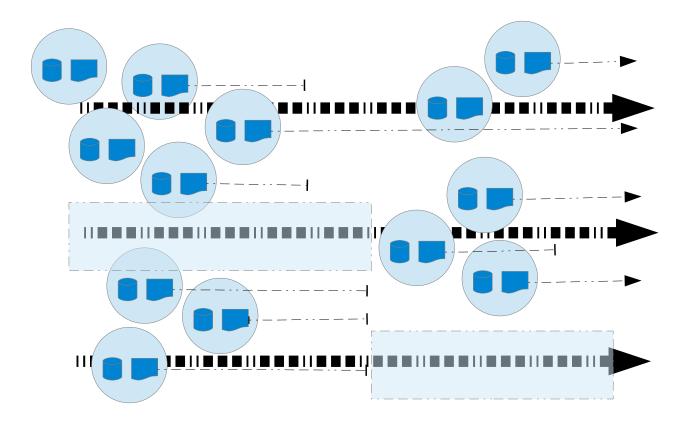

Objects share Threads

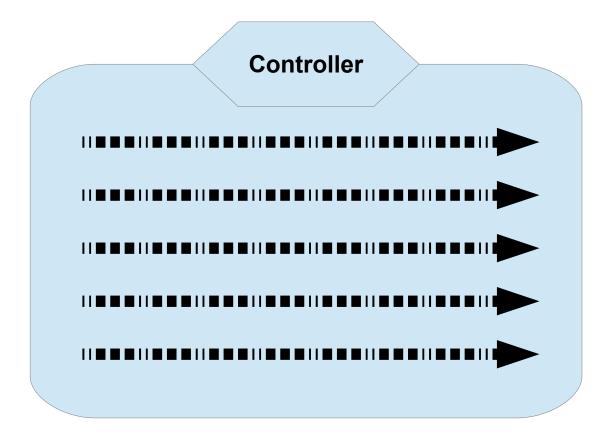
- Multiple objects share threads.
- Objects can be accessed across threads.
- Threads and objects share state.

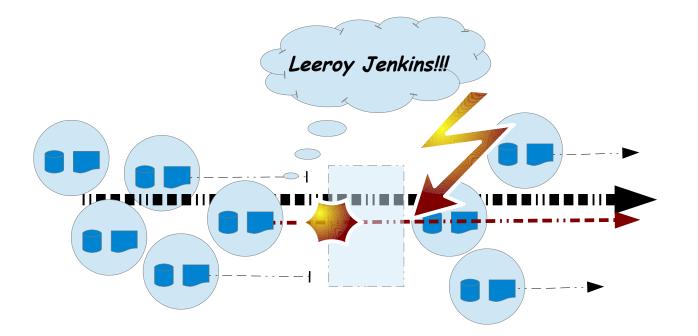


Actors are Processes


- State, code and process form a unity: the actor.
- Like processes, actors do **not** share state.
- In fact, like humans. Who mostly work quite well.


Lifetime & Destruction

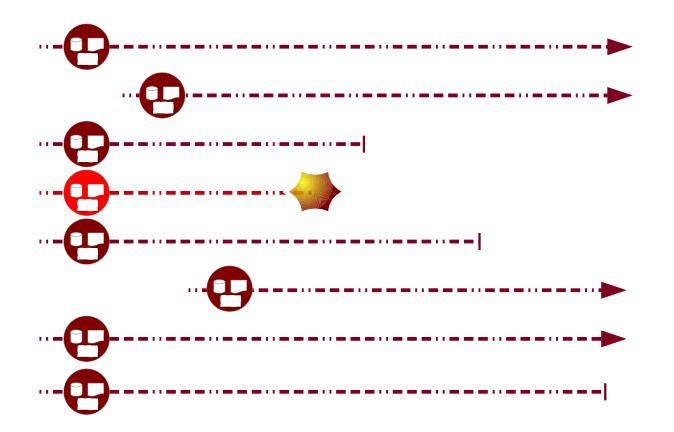

C C++ C# Java JavaScript Node Lua Python


Idle Threads


Thread Pooling for Recycling

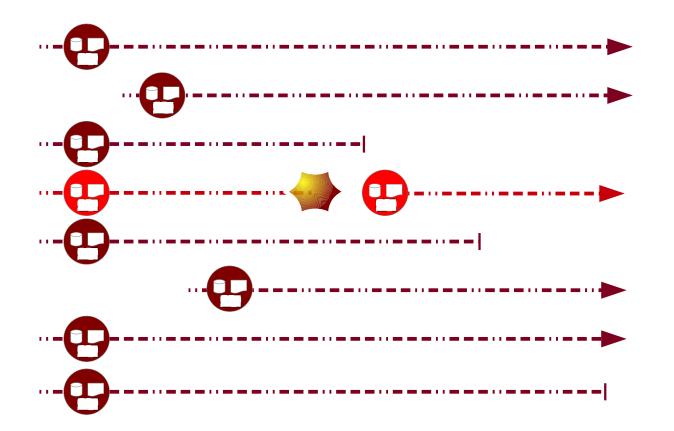
Unwanted surviving objects

Prematurely destroyed objects

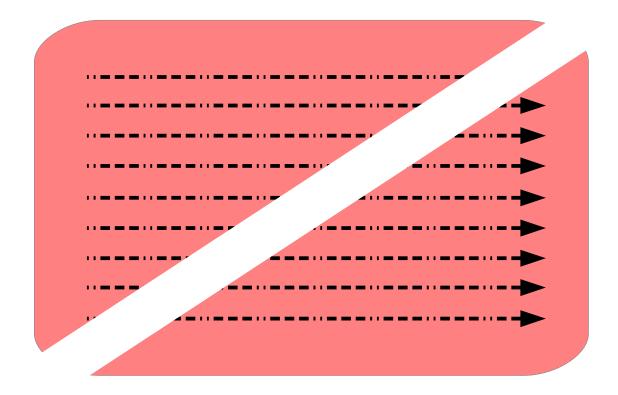


Erlang Processes

Erlang Actors: State + Code + Process


Erlang Processes

One dies.

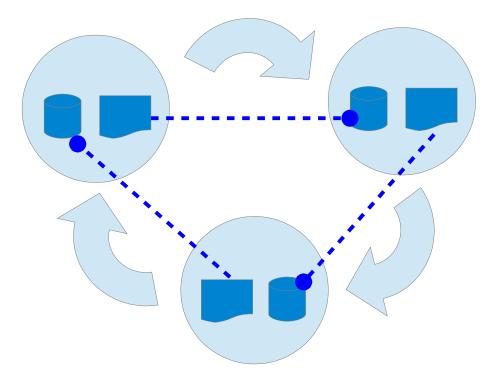

Erlang Processes

The Erlang way: the process is restarted.

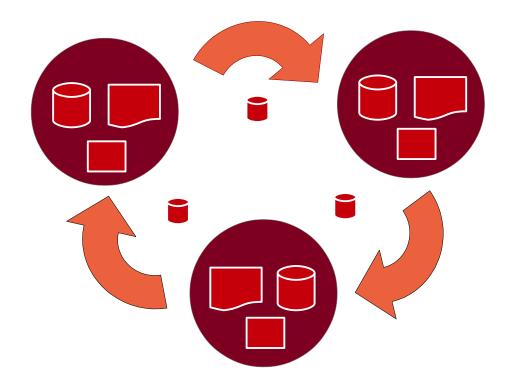
Processes are Cheap

 \rightarrow No Process Pooling in Erlang

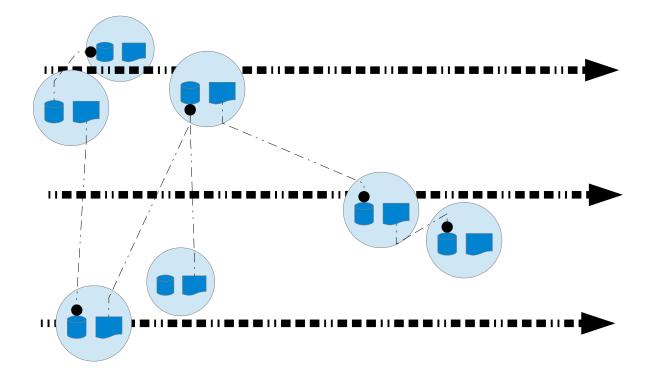
Processes are Cheap


Have millions of them.

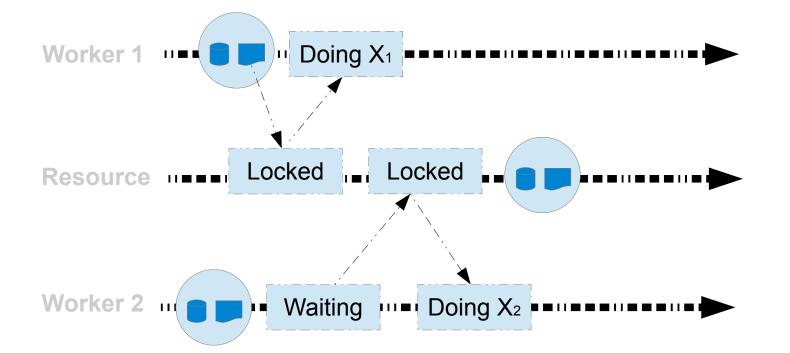
Locks and Deadlocks


Objects **share** State

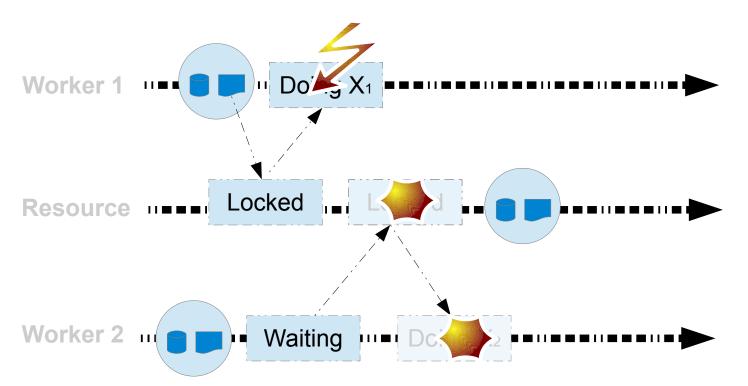
- State can be contested.
- Locks invite deadlocks.
- Truly parallel architectures increase **fringe case** race conditions.


Actors message Copies

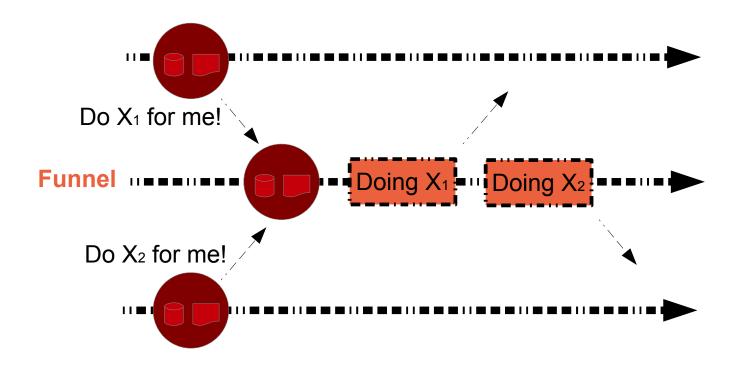
- Messages can only communicate via copies of state.
- Eliminates most race conditions.
- (But references and locks do exist for global lists.)


Objects reference State

- Multiple objects share threads.
- Objects can be accessed across threads.
- Threads and objects share state.


Objects need Locks

- System design is disrupted by explicit locks.
- Overly cautious locking slows things down.
- Forgotten locks create errors that show under load.


Crashed Locks Stall

- Locks can need cross-thread error handling.
- Stalling and time outs aggravate load.

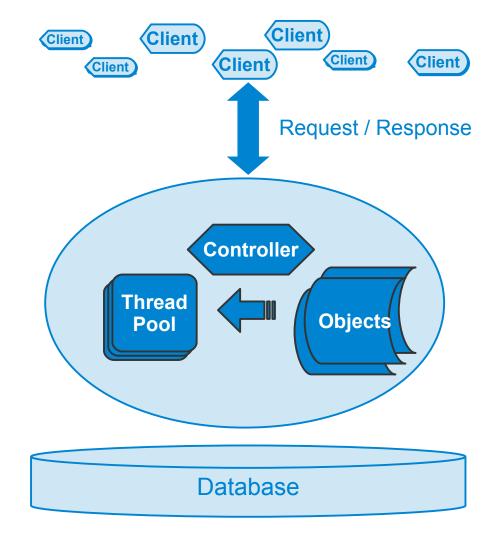
Processes are Transactional

Obviously:

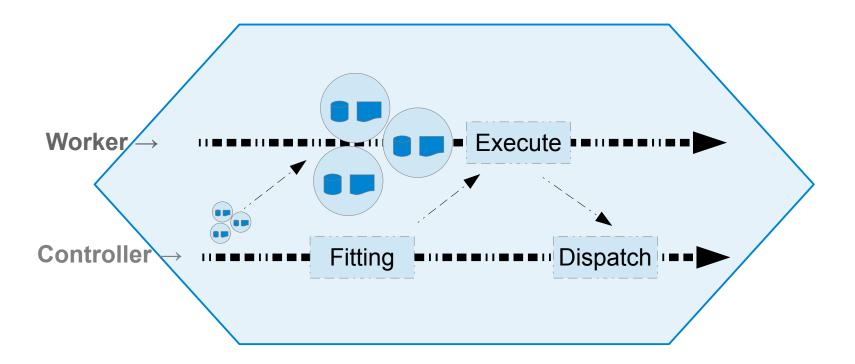
- One actor is one process and so, cannot "race itself".
- Mandating a job kind to an actor creates a transactional funnel.
- Only one such job will ever be executing at any one time.

Couldn't I just ...

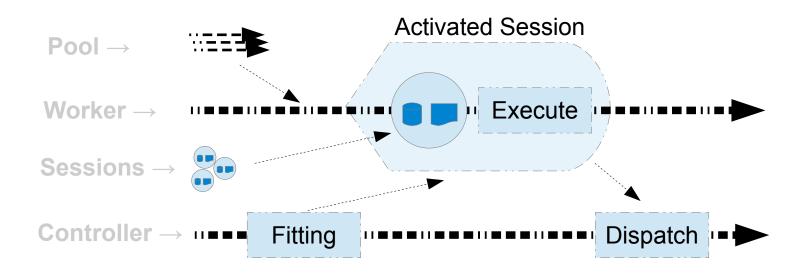
... be disciplined? And program like this in Java?


- :-) Almost, yes, plus some extensions.
- :-) Like, you can avoid null pointers in C by discipline.
- :-) And Conwell's Game of Life is Turing Complete.
- :-(So realistically, not at all.
- :-(Erlang encourages the right way.
- :-(Erlang performs better at what it is made for.
- :-(Erlang/OTP is made for servers.
- \rightarrow you will be faster learning and using Erlang.

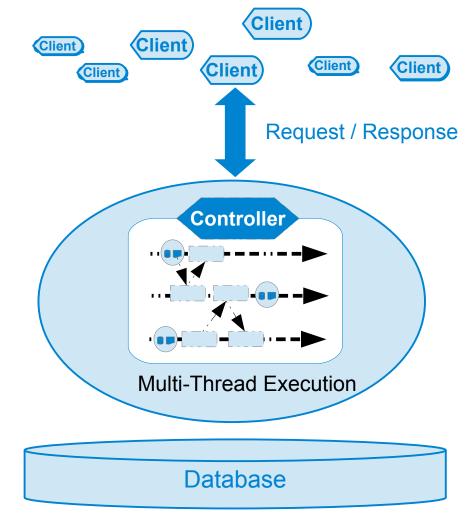
Server Architecture



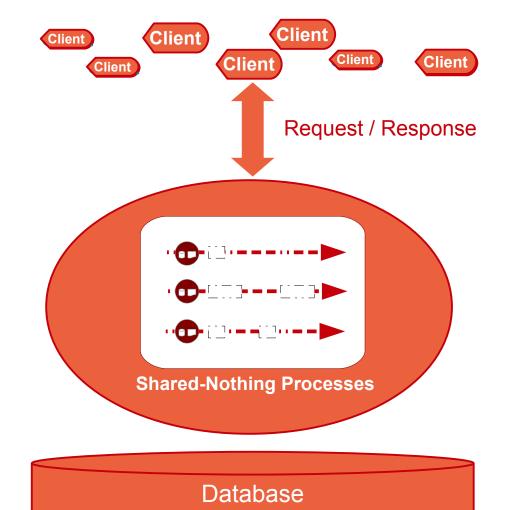
OO Server Architecture


Fitting Recycled Threads

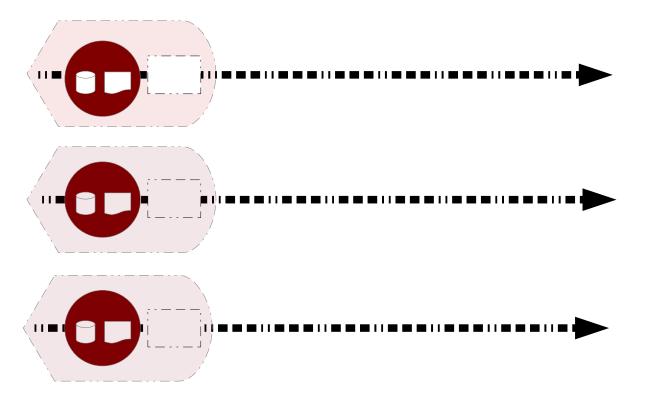
- One thread fitting per single request.
- Pooling owed to heavy footprint of system threads.
- Cracks traumatically under pressure.


Fitting Recycled Threads

- One thread fitting per single request.
- Pooling owed to heavy footprint of system threads.
- Cracks traumatically under pressure.



OO Server Architecture



Erlang Server Architecture

Erlang: One Process per Session

- Natural congruence of requirements and system.
- Thread management way simpler.
- Enabled by light-weight processes.

Sessions & Processes

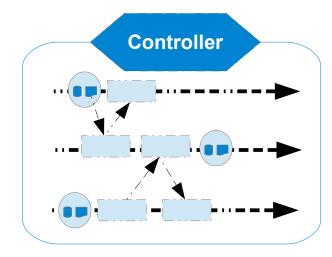
Sessions and Processes correlate.

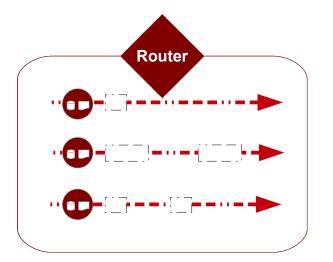
- VM schedules & spreads across Cores
- Asynchronous Messages + Mailboxes
- Shared-Nothing: Messages are Copies
- Individual Memory Management & GC
- Strong Built-In Monitoring Features

Sessions & Processes

One Player Session per Process + Immutable State = Transactional Behavior

Hello CloudDB!

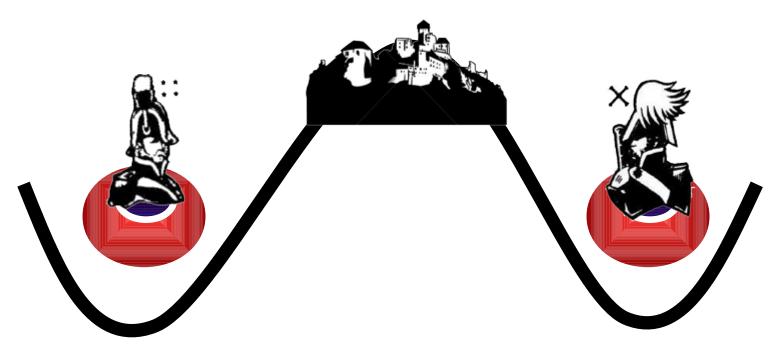

Sessions & Processes


1 Session per Process + VM is Process-Aware = VM is Session-Aware

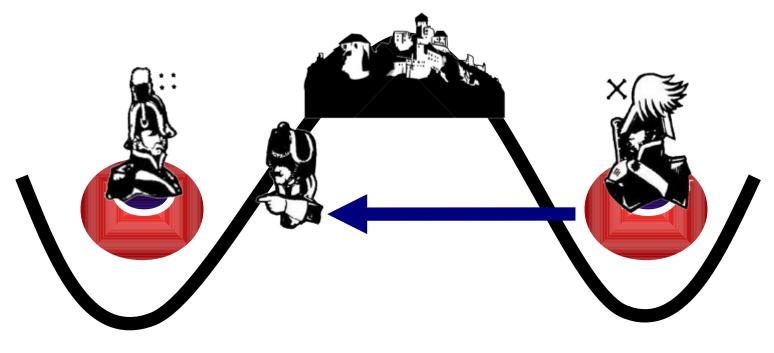
→ Process Stats = session stats → Per Process GC = per session sweep

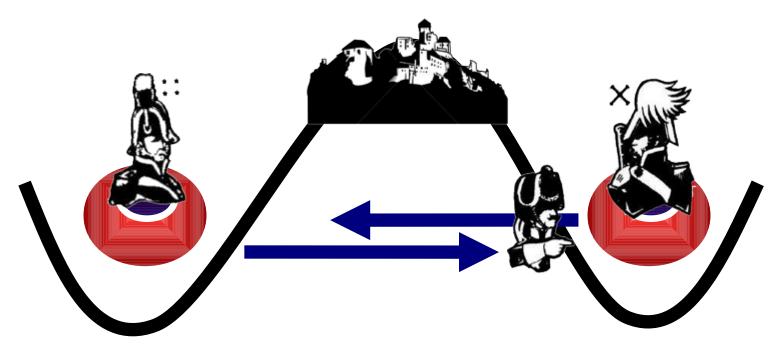
OO vs Erlang Architecture

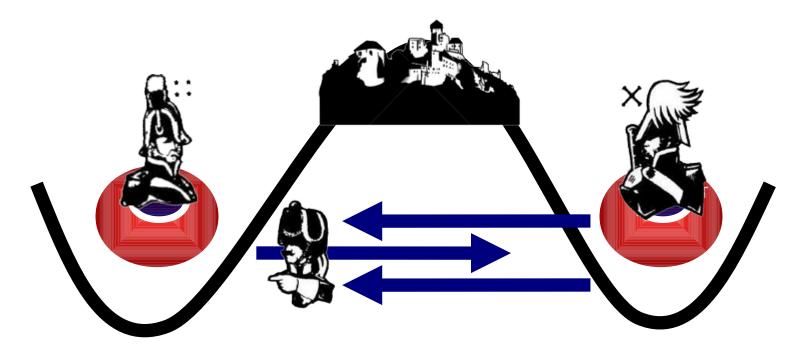
Thinking Parallel

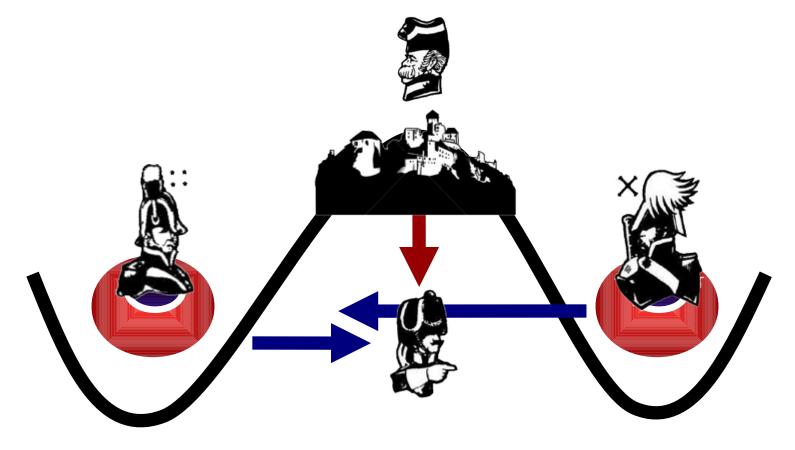

"It's not easy." Robert Virding

Thinking Parallel

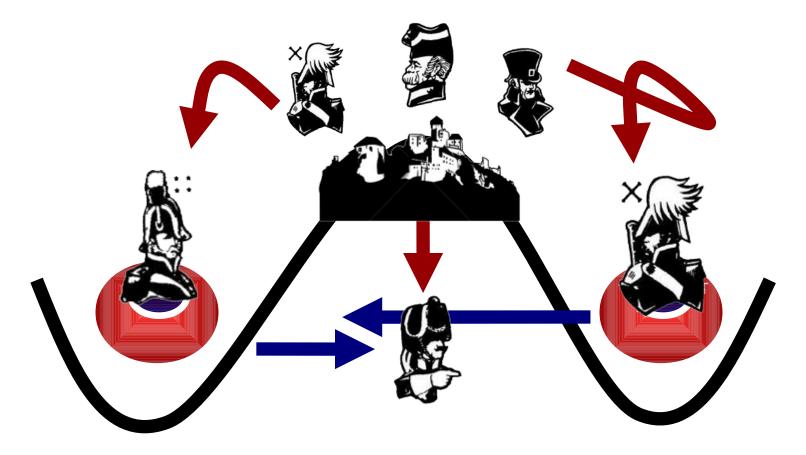

- The Generals' Problem
- Lamport Clocks
- No Guarantees



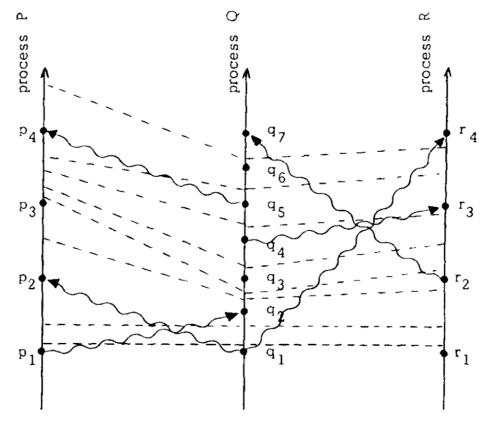

One sends a messenger.


The other acknowledges.

ACK the ACK. Etc.



The messenger may get lost.


Byzantine Generals

The generals, actually, too.

Lamport Clocks

Order matters more than time.

Thinking Parallel

- Erlang makes it easy
- Some things have no clean solution
- Some things have complicated solutions

Thinking Functional

Thinking Functional

Small Functions

+ Immutable Variables

→ Don't assign variables: return results!

Complete State in Plain Sight

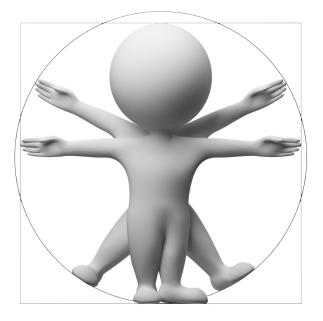
- \rightarrow Awful for updates in place.
- → Awsome for debugging & maintenance.

Side Effects

Erlang is *not* side-effect free at all.

- Messages between Processes
- Terminal Output
- Logging
- Global Registry
- Database Access

Let It Crash!


Let It Crash!

- No Defense Code
- On Error, restart Entire Process
- Built-In Process Supervision & Restart
- Missing Branches, Matches cause Crash
 - \rightarrow Shorter, Cleaner Code
 - → Faster Implementation
 - → More Robust: handles A// Errors

What Does That **look** Like?

Hello, World!

io:format("Hello, World!").

The Optics

- Alien 60ies-Looking Prolog Heir
- Variables start on Capitals
- Very Short Functions
- No Type Declarations
- Statements end on Commas, Semicolons, Dots, Arrows, Nothing
- Pattern Matched Function Heads
- A Church of Short Variables Names exists

Declarative

Fibonacci looks like a Math explanation of it.

fib(0) -> 0; fib(1) -> 1; fib(N) when N>1 -> fib(N-1) + fib(N-2).

Pattern Matching

Function heads matching **0**, **1** or **anything**.

The Syntax

- Small
- Easy
- Stable
- Declarative
- Started out as Prolog
- Inspired by Prolog and ML
- Obvious State, Implicit Thread

Compiling & Executing

\$ erlc hello.erl \$ erl -s hello

Hello, World! Full Module

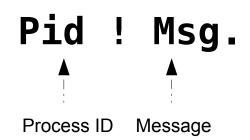
- -module(hello).
 -export([start/0]).
- start() ->
 io:format("Hello, World!~n").

Creating a Process

Pid = spawn(mod, func, [A, B, C]).

Creating a Process

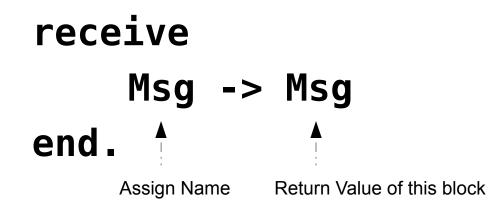
Pid = spawn(mod, func, [A, B, C]). A New Process' ID Code Module Start Function Parameters to the function.



Sending a Message

Pid ! Msg.

Sending a Message



Receive a Message

receive Msg -> Msg end.

Receive a Message

108

Hello, World! The Erlang Way

```
-module(hello).
-export([start/0, loop/0]).
start() ->
  Pid = spawn(hello, loop, []),
  Pid ! hello.
loop() ->
   receive
      hello ->
         io:format("Hello, World!~n"),
         loop()
   end.
```


Start

109

```
-module(hello).
-export([start/0, loop/0]).
```

```
start() ->
Pid = spawn(hello, loop, []),
Pid ! hello.
loop() ->
receive
hello ->
io:format("Hello, World!~n"),
loop()
end.
```


Output

```
-module(hello).
-export([start/0, loop/0]).
start() ->
  Pid = spawn(hello, loop, []),
  Pid ! hello.
loop() ->
   receive
      hello ->
         io:format("Hello, World!~n"),
         loop()
   end.
```


111

Process Spawning

Blocking Receive

```
-module(hello).
-export([start/0, loop/0]).
```

```
start() ->
Pid = spawn(hello, loop, []),
Pid ! hello.
```

```
loop() ->
    receive
    hello ->
        io:format("Hello, World!~n"),
        loop()
end.
```


Message Passing

```
-module(hello).
-export([start/0, loop/0]).
start() ->
  Pid = spawn(hello, loop, []),
  Pid ! hello.
loop() ->
   receive
      hello ->
         io:format("Hello, World!~n"),
         loop()
   end.
```



```
-module(hello).
-export([start/0, loop/0]).
```

```
start() ->
Pid = spawn(hello, loop, []),
Pid ! hello.
```

```
loop() ->
    receive
    hello ->
        io:format("Hello, World!~n"),
        loop()
end.
```


Atoms

```
-module(hello).
-export([start/0, loop/0]).
start() ->
Pid = spawn(hello, loop, []),
Pid ! hello.
```

```
loop() ->
    receive
    hello ->
        io:format("Hello, World!~n"),
        loop()
end.
```


116

Tail Recursion

```
-module(hello).
-export([start/0, loop/0]).
```

```
start() ->
Pid = spawn(hello, loop, []),
Pid ! hello.
```


Dots

```
-module(hello).
-export([start/0, loop/0]).
start() ->
  Pid = spawn(hello, loop, []),
  Pid ! hello.
loop() ->
   receive
      hello ->
         io:format("Hello, World!~n"),
         loop()
```


Commas

```
-module(hello).
-export([start/0, loop/0]).
start() ->
 Pid = spawn(hello, loop, []),
  Pid ! hello.
loop() ->
   receive
      hello ->
         io:format("Hello, World!~n"),
         loop()
   end.
```


End

```
-module(hello).
-export([start/0, loop/0]).
start() ->
  Pid = spawn(hello, loop, []),
  Pid ! hello.
loop() ->
   receive
      hello ->
         io:format("Hello, World!~n"),
         loop()
   end
```


Arrows

120

```
-module(hello).
-export([start/0, loop/0]).
start(
        ->
  Pid = spawn(hello, loop, []),
  Pid ! hello.
loop(
      hello ->
         io:format("Hello, World!~n"),
         loop()
   end.
```


Arrows

121

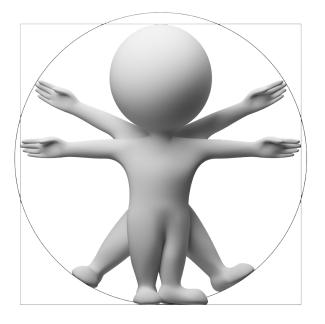
```
-module(hello).
-export([start/0, loop/0]).
start() ->
  Pid = spawn(hello, loop, []),
  Pid ! hello.
loop() ->
   receive
      helld
         io:format("Hello, World!~n"),
         loop()
   end.
```


Nothing

```
-module(hello).
-export([start/0, loop/0]).
start() ->
  Pid = spawn(hello, loop, []),
  Pid ! hello.
loop() ->
   receive
      hello
         io:format("Hello, World!~n"),
         loop()
   end.
```


123

Modules mix Processes


```
-module(hello).
-export([start/0, loop/0]).
                                         Calling Processes
start() ->
  Pid = spawn(hello, loop, []),
  Pid ! hello.
                                     Module's Own Process
loop() ->
   receive
      hello ->
         io:format("Hello, World!~n"),
         loop()
   end.
```


Modules mix Processes

```
-module(hello).
      -export([start/0, say/1, loop/0]).
                                                     Calling Processes
      start() ->
     ---spawn(hello, loop, []).
      say(Pid) ->
      • Pid ! hello.
                                                 Module's Own Process
      loop() ->
          receive
              hello ->
                 io:format("Hello, World!~n"),
                 loop()
          end.
124
         From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html
```

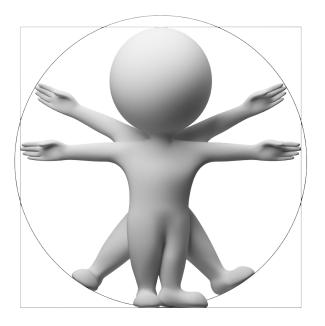

Can't assign a second time:

 $A = 1, A \neq 2.$

It has to be:

$$\mathsf{B}=\mathsf{A}+\mathsf{1}.$$

$$A = 1, B = 2.$$



- Prevent Coding Errors
- Provide Transactional Semantic
- Allow for Pattern Matching Syntax
- Can be a Nuisance

S1 = dosomething(S), S2 = dosomemore(S1)

. . .

This can mean **two** things:

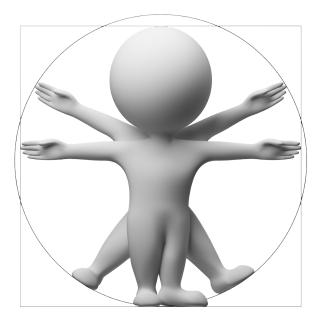
A = func().

The meaning depends on wheter **A** is already assigned.

The common, mixed case:

$\{ok, A\} = func().$

ok is an assertion ANDA is being assigned.


The common, mixed case:

$\{ok, A\} = func().$

"This makes it hard to remodel Erlang syntax into a more C-like syntax." Robert Virding

Erlang Compared

Erlang vs. Stackless Python

Truly parallel VM

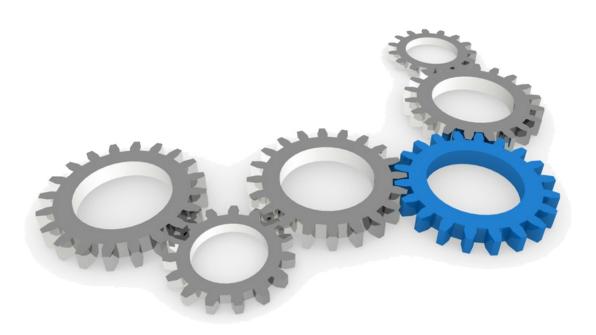
- Stackless has a GIL thus in reality works sequential only its paradigm is parallel
- Pattern Matching
- Immutable Variables

Erlang vs. C

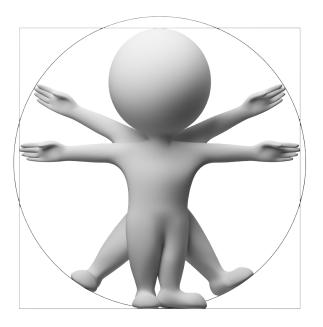
- More productive
- More concise
- More reliable
- Much slower for Number Crunching
- Microprocesses
- Pattern Matching
- Immutable Variables

Erlang vs. C++

- Virtual Machine
- Actors Model
- Less Magic
- More Safety
- Much Slower for Number Crunching
- Microprocesses
- Pattern Matching
- Immutable Variables


Erlang vs. Lua

- Made to Scale
- Single Paradigm
- Less Magic
- Much Bigger Footprint
- Microprocesses
- Pattern Matching
- Immutable Variables


Great Matches

- C
- Redis
- MySQL
- VoltDB
- AWS S3
- EC2
- Ubuntu

Productivity

Productivity & Maintainability

"Erlang systems have **4 – 10 x less code** than C / C++ / Java systems"

Ulf Wiger

Productivity & Maintainability

Shorter programs:

- Faster to develop
- Fewer errors
- Easier to maintain

Erlang LOCs show the same error frequency as C / C++ / Java code.

Scientific Proof

The Motorola Study of 2002 – 2006

- Motorala UK Labs
- Heriot-Watt University
- EPSRC UK Govt Project

Scientific Proof

"High Level Techniques for Distributed Telecoms Software"

Looking at

- Robustness
- Configurability
- Productivity
- Maintainability

Scientific Proof

"Erlang shows ...

- 2x higher throughput
- 3x better latency
- 3 7x shorter code

... than the equivalent C++ implementation."

Scientific Proof

Reasons

- Lightweight process management
- Code only the successful case saves 27%
- Automatic memory management saves 11%
- High-level communications saves 23%
- Telecom design pattern libraries (suit games)

Scientific Proof

Overload & Hardware Failure

- C++ "fails catastrophically"
- Erlang
 - Never completely fails
 - Recovers automatically after load drops

Challenges

The Warts

- Untidy Standard Libs
- Egregious String Handling
- "Records Suck"
- Cryptic Error Messages
- Lack of Advanced Tutorials & Books
- No-One Seems To Know All of OTP
- Hard To Find Developers

Strings

GAME DEVELOPERS CONFERENCE ONLINE

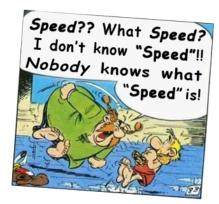
- Are* Lists. Or Binaries.
- Slow*
- Clumsy*
- Error prone*
- Cure announced for next release (R16)

Erlang was not built for text processing.

*according to Joe Armstrong these are myths. "Erlang has no strings. The only sane way to handle UTF-8 is lists of integers."

Records

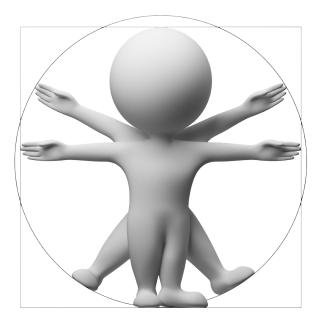
- "Records Suck"
- Verbose
- Error Prone
- Pure syntactic sugar over tupels.
- Cure announced for next release (R16)


"Records were added as a hack."

Raw Number Crunching Speed

- Erlang is fast
- Except at Shoot Outs
- Benchmark your real problem
- Use C NIFs to outsource crunching

Perceived reaction after asking about benchmarks on the Erlang mailing list.



Hiring

- Can Be Difficult
- Roll Your Own Programmers
 - Good Programmers Are Interested
 - High Productivity Can Be Reached Fast
 - Excellent Workshops can be booked

Getting **Started!**

Learning Erlang

- Scour Post-Mortems
- Download and Install from *erlang.org*
- Fred's site Learn You Some Erlang!
- Joe's book Programming Erlang
- IRC #erlounge
- Erlang Mailing List
- Local *Erlounge* Meetings
- Erlang Factories & User Conferences

Expected Timeframe

Ballparks

- Language 2 Weeks
- OTP 3 Months
- First Product 1/2 Year
- Thinking Erlang 2 Years

Business View

Makes Sense For

- New Projects
- Rewrites

Starting Out

- Find a Senior Erlang Developer
- Or Hire Erlang Solutions
- You Will Train Your Own Developers

Pitching It In-House

A Waste of Time Joe Armstrong

Just tell your boss that Erlang is used for banking applications. Mike Williams

- Most Often a Top-Down Thing
- Demonstrate the Productivity: prototype a demo solution to a real problem.
- ¹⁵⁷• Cite Facebook, Zynga, Blizzard, Wooga

References

Web

http://www.erlang.org/ http://learnyousomeerlang.com/ http://www.erlang.org/static/getting_started_quickly.html

List

http://erlang.org/mailman/listinfo/erlang-questions http://groups.google.com/group/erlang-programming

Books

http://pragprog.com/book/jaerlang/programming-erlang http://shop.oreilly.com/product/9780596518189.do

References

http://erldocs.com/ http://www.erlang.org/doc/

Post Mortems

http://www.facebook.com/note.php?note_id=14218138919 158 http://www.slideshare.net/wooga/erlang-the-big-switch-in-social-games

Your Talk Evaluation

Please check your Email **now** and give your **evaluation** of this talk to the GDC.

Any questions, feedback now or later, please email me at hd*eonblast.com

Questions

- Email: hdiedrich*eonblast.com
- Twitter: @hdiedrich
- IRC: #erlounge
- List: erlang-questions@erlang.org

