
Why … Erlang?

Henning Diedrich
CEO Eonblast

2

Your Host

Henning Diedrich

• Founder, CEO Eonblast
• CTO Freshworks
• CTO, Producer at Newtracks
• Team Lead, Producer at Bigpoint
• OS Maintainer Emysql, Erlvolt

3

Acknowledgements

Thank You!

Joe Armstrong
Robert Virding Erlang Solutions
Ulf Wiger Feuerland Labs
Felix Geisendörfer Transloadit

… for vetting and improving these slides in various stages.
All errors and omissions are, of course, mine.

4

Why Erlang?

1. Why Care About It?
2. Who Uses It?
3. What for?
4. Is It for Me?
5. How It Looks
6. Getting Started!

5

Erlang may be to Java
what Java was to C++

6

Erlang may be to Java
what Java was to C++

C++ – pointers = Java

Java – deadlocks = Erlang

7

Erlang may be to Java
what Java was to C++

„Drop Slides 4 and 5“

Joe Armstrong

8

Erlang may be to Java
what Java was to C++

Erlang is a lot more ...

9

Who Uses It?

10

You are Using It

„You probably use systems based on
 Erlang/OTP every day without knowing it.“

Mike Williams

11

Erlang Game Servers

Zynga: FarmVille via membase, Activision Blizzard: Call of Duty, Bigpoint: Battle Star Galactica, Wooga: Magic Land

12

Distributed DBs using Erlang

Handling state: secure, fast and distributed.
Membase, riak, BigCouch

13

EA contributed Emysql

http://eonblast.github.com/Emysql

http://eonblast.github.com/Emysql
http://eonblast.github.com/Emysql
http://eonblast.github.com/Emysql
http://eonblast.github.com/Emysql

14

The Erlang Poster Child

Klarna AB

• Financial Services for E-Commerce
• 600 Employees, $38M revenue
• 12,000 e-commerce stores
• 30 seconds downtime in 3 years
• Investment by Sequoia Capital

15

Sequoia Capital

1975 Atari
1978 Apple
1982 Electronic Arts
1987 Cisco
1993 Nvidia
1995 Yahoo!
1999 Google
1999 Paypal

2000 Rackspace
2003 LinkedIn
2005 YouTube
2007 Dropbox
2009 Unity 3D
2010 Klarna
2012 Instagram

16

Why Use It?

17

Why Erlang?

Business Perspective

• Reduce Costs
• Improve Retention
• Shorten Time To Market

18

Why Erlang?

Production Perspective

• High Productivity
• Low Hardware Requirements
• More Robust Servers

19

Why Erlang?

Design Perspective

• More Complex Designs
• Profitable On Small Markets
• Less Mainstreaming Pressure

20

When Use It?

21

Sweet Spots

• Stateful Servers with High Throughput
• Cluster Distribution Layers
• Chats*

* Chats are a bitch. The Facebook Chat was written in Erlang.

22

Why Is It Good At These Things?

23

Origins

PLEX
• Ericsson makes billions with telecom switches
• They used PLEX, an all proprietary software
• PLEX delivers, but has bad productivity

24

Origins
• The 80's: Ericsson Computer Science Lab

Joe Armstrong, Robert Virding, Mike Williams

„What aspects of computer languages make it
easier to program telecom systems?“

25

Origins
Mission

● Keep features, but invent a more productive PLEX.

Approach
● Programmed a small telephone exchange (MD110) in

Prolog, CHILL, Ada, Concurrent Euclid,
Rules Based Systems, AI Systems, Functional Langs

Conclusion
● Many good abstractions
● None could match the characteristics of PLEX

The True story about why we invented Erlang and A few things you don’t want to tell your Manager
Mike Williams

www.erlang-factory.com/upload/presentations/416/MikeWilliams.pdf

26

Origins

PLEX
● Safe pointers
● Ability to change size of arrays etc without memory leaks
● Fine grained massive concurrency
● Ability to develop software in independent “blocks”
● Ability to change code at runtime without stopping
● Advanced tracing ability at runtime
● Restart Mechanisms to recover software & hardware failure

The True story about why we invented Erlang and A few things you don’t want to tell your Manager
Mike Williams

www.erlang-factory.com/upload/presentations/416/MikeWilliams.pdf

27

Erlang was Built For

• Reliability
• Maintenance
• Distribution
• Productivity

28

Features Achieved

● Productive
● Reliable
● Fast
● Scalable
● Great to Maintain

… how?

29

The Magic

• Microprocesses
• Pattern Matching*

• Immutable Variables

* Not your familiar Regex string matching

30

What Is That?

31

Thinking Erlang

• The Actor Model
• Thinking Parallel
• Thinking Functional
• Thinking Processes
• Let It Crash!

32

Actor Model vs. OO

33

The Actor Model

Carl Hewitt 1973

• Behavior
• State
• Parallel
• Asynchronous Messages
• Mailboxes
• No Shared State

34

Object Oriented

Data Code

Object

● Data + Code
● Encapsulation
● Inheritance
● Polymorphy
● Late Binding

35

Data Code

Object

Actor Model

Data Code

Actor

Process

● Data + Code + Process
● Self-Contained Machines
● Stronger Encapsulation
● Less Inheritance
● Type Inference
● Hot Code Upgrades

36

Data Code

Object

Actor Model

Data Code

Actor

Process

● Data + Code + Process
● Self-Contained Machines
● Stronger Encapsulation
● Less Inheritance
● Type Inference
● Hot Code Upgrades

Data Code

Object

Data Code

Actor

Process

Data Code

Object

Data Code

Actor

Process

37

Data Code

Base

Data Code

Base

Data Code

Base

OO Inheritance

Data Code

Base

Data Code

Object
● Inheritance of Class
● Multi-Level, Multi-Branch
● Overloading

38

Code

Behavior

Erlang Behavior

Data Code

Actor

Process

● Inheritance of Behavior only.
● Usually only one level deep.
● Usually one of the standard OTP behaviors:

Generic Server, Event, State Machine, Supervisor.

39

OO Methods: Synchronous Calls

● OO “method calls” are simply synchronous function calls.
● Not really the OO “messages” once promised.
● OO fails itself where building on Algol.

o.method(a)

40

Actors: Asynchronous Messages

● Message dispatch is one-way, truly asynchronous.
● Not function calls but something in their own right.
● Clean break from the FP paradigm.

Pid ! Msg

41

Actor Model: Benefits

• More true to the real world
• Better suited for parallel hardware
• Better suited for distributed architectures
• Scaling garbage collection (sic!)
• Less Magic

42

Thinking ProcessesThinking Processes

43

Thinking Processes
• What should be a Process?

„Easy!“
 Joe Armstrong

44

Thinking Processes
• Three Elevators
• Ten Floors
• How many processes?

45

Thinking Processes

Thirteen!
„It's so obvious!“ - Joe Armstrong

• elevators hold state
• floors hold state
• All live separate lives
• All don't share state
• Elevators and floors interact independently

The Algorithm courtesy Joe:
1. each fl oor has it's own stop list
2. when you press the "up" button on

fl oor K you broadcast to all lifts
"I want to go up, how long will it
take to get to me?“

3. each lift computes this
independentally and

4. sends the result to fl oor K.
5. Floor K waits for 3 messages then
6. Chooses the minimum
7. then sends a message to this list

"add me to your stop list."

46

Thinking Processes

Processes
• Don’t share State
• Communicate Asynchronously
• Are Very Cheap to create and keep
• Monitor Each Other
• Provide Contention Handling
• Constitute the Error Handling Atom

47

Objects share Threads

● Multiple objects share threads.
● Objects can be accessed across threads.
● Threads - and objects - share state.

48

● State, code and process form a unity: the actor.
● Like processes, actors do not share state.
● In fact, like humans. Who mostly work quite well.

Actors are Processes

49

Objects and Threads

Lifetime & Destruction

50

Objects and Threads

C C++ C# Java JavaScript Node Lua Python

51

Objects and Threads

Idle Threads

52

Objects and Threads

Thread Pooling for Recycling

Controller

53

Objects and Threads

Unwanted surviving objects

Leeroy Jenkins!!!

54

Objects and Threads

Prematurely destroyed objects

2*B || !2*B ?

55

Erlang Processes

Erlang Actors: State + Code + Process

56

Erlang Processes

One dies.

57

Erlang Processes

The Erlang way: the process is restarted.

58

Processes are Cheap

→ No Process Pooling in Erlang

59

Processes are Cheap

Have millions of them.

spawn(fun).

60

Locks and Deadlocks

61

Objects share State

● State can be contested.
● Locks invite deadlocks.
● Truly parallel architectures increase fringe case race conditions.

62

Actors message Copies

● Messages can only communicate via copies of state.
● Eliminates most race conditions.
● (But references and locks do exist for global lists.)

63

Objects reference State

● Multiple objects share threads.
● Objects can be accessed across threads.
● Threads - and objects - share state.

64

Objects need Locks

● System design is disrupted by explicit locks.
● Overly cautious locking slows things down.
● Forgotten locks create errors that show under load.

Locked Locked

Waiting

Doing X1

Doing X2

Resource

Worker 2

Worker 1

65

Crashed Locks Stall

● Locks can need cross-thread error handling.
● Stalling and time outs aggravate load.

Locked

Waiting

Doing X1

Resource

Worker 2

Worker 1

Doing X2

Locked

66

Processes are Transactional

Obviously:
● One actor is one process and so, cannot “race itself”.
● Mandating a job kind to an actor creates a transactional funnel.
● Only one such job will ever be executing at any one time.

Do X1 for me!

Do X2 for me!

Doing X1 Doing X2Funnel

67

Couldn't I just ...

… be disciplined? And program like this in Java?

:-) Almost, yes, plus some extensions.
:-) Like, you can avoid null pointers in C by discipline.
:-) And Conwell's Game of Life is Turing Complete.

:-(So realistically, not at all.
:-(Erlang encourages the right way.
:-(Erlang performs better at what it is made for.
:-(Erlang/OTP is made for servers.

→ you will be faster learning and using Erlang.

68

Server Architecture

69

OO Server Architecture

Database

Thread
Pool Objects

Client

Request / Response

Controller

Client ClientClient

ClientClientClientClient

Client

ClientClient

70

Fitting Recycled Threads

● One thread fitting per single request.
● Pooling owed to heavy footprint of system threads.
● Cracks traumatically under pressure.

Fitting

Execute

Controller → Dispatch

Worker →

71

Fitting Recycled Threads

● One thread fitting per single request.
● Pooling owed to heavy footprint of system threads.
● Cracks traumatically under pressure.

Fitting

Execute

Controller → Dispatch

Activated Session

Sessions →

Worker →

Pool →

72

OO Server Architecture

Database

Client

Request / Response

Controller

Client ClientClient

ClientClientClientClient

Client

ClientClient

Multi-Thread Execution

Controller

73

Erlang Server Architecture

Database

Client

Request / Response

Client ClientClient

ClientClientClientClient

Client

ClientClient

Shared-Nothing Processes

74

● Natural congruence of requirements and system.
● Thread management way simpler.
● Enabled by light-weight processes.

Erlang: One Process per Session

75

Sessions & Processes

Sessions and Processes correlate.

• VM schedules & spreads across Cores
• Asynchronous Messages + Mailboxes
• Shared-Nothing: Messages are Copies
• Individual Memory Management & GC
• Strong Built-In Monitoring Features

76

Sessions & Processes

One Player Session per Process
+ Immutable State

= Transactional Behavior

Hello CloudDB!

77

Sessions & Processes

1 Session per Process
+ VM is Process-Aware

= VM is Session-Aware

→ Process Stats = session stats
→ Per Process GC = per session sweep

Courtesy Wooga: http://www.slideshare.net/wooga/erlang-the-big-switch-in-social-games

78

OO vs Erlang Architecture

Controller

Controller Router

79

Thinking Parallel

„It's not easy.“
 Robert Virding

80

Thinking Parallel

• The Generals’ Problem
• Lamport Clocks
• No Guarantees

81

Generals’ Problem

State

Two generals must agree on a time to attack.

82

Generals’ Problem

State

One sends a messenger.

83

Generals’ Problem

State

The other acknowledges.

84

Generals’ Problem

State

ACK the ACK. Etc.

85

Generals’ Problem

State

The messenger may get lost.

86

Byzantine Generals

State

The generals, actually, too.

87

Lamport Clocks

Source: Lamport http://research.microsoft.com/users/lamport/pubs/time-clocks.pdf

Order matters more than time.

88

Thinking Parallel

• Erlang makes it easy
• Some things have no clean solution
• Some things have complicated solutions

89

Thinking Functional

90

Thinking Functional

 Small Functions

+ Immutable Variables

→ Don’t assign variables: return results!

Complete State in Plain Sight

→ Awful for updates in place.

→ Awsome for debugging & maintenance.

91

Side Effects

Erlang is not side-effect free at all.

• Messages between Processes
• Terminal Output
• Logging
• Global Registry
• Database Access

92

Let It Crash!

93

Let It Crash!

• No Defense Code
• On Error, restart Entire Process
• Built-In Process Supervision & Restart
• Missing Branches, Matches cause Crash

→ Shorter, Cleaner Code
→ Faster Implementation
→ More Robust: handles All Errors

94

What Does That look Like?

95

Hello, World!

io:format(“Hello, World!”).

96

The Optics

• Alien 60ies-Looking Prolog Heir
• Variables start on Capitals
• Very Short Functions
• No Type Declarations
• Statements end on Commas, Semicolons,

Dots, Arrows, Nothing
• Pattern Matched Function Heads
• A Church of Short Variables Names exists

97

Declarative

Fibonacci looks like a Math explanation of it.

fib(0) -> 0;

fib(1) -> 1;

fib(N) when N>1 -> fib(N-1) + fib(N-2).

98

Pattern Matching

Function heads matching 0, 1 or anything.

fib(0) -> 0;

fib(1) -> 1;

fib(N) when N>1 -> fib(N-1) + fib(N-2).

99

The Syntax

• Small
• Easy
• Stable

• Declarative
• Started out as Prolog
• Inspired by Prolog and ML
• Obvious State, Implicit Thread

100

Compiling & Executing

$ erlc hello.erl
$ erl -s hello

101

Hello, World! Full Module

 -module(hello).

 -export([start/0]).

 start() ->
 io:format("Hello, World!~n").

102

Creating a Process

Pid = spawn(mod, func, [A, B, C]).

103

Creating a Process

Pid = spawn(mod, func, [A, B, C]).

Code Module Start Function Parameters to the function.New Process' ID

104

Sending a Message

Pid ! Msg.

105

Sending a Message

Pid ! Msg.

MessageProcess ID

106

Receive a Message

receive

Msg -> Msg

end.

107

Receive a Message

receive

Msg -> Msg

end.
Assign Name Return Value of this block

108

Hello, World! The Erlang Way

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

109

Start

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

110

Output

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

111

Process Spawning

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

New Process

112

Blocking Receive

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

113

Message Passing

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

114

Pattern Matching

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

115

Atoms

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

116

Tail Recursion

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

117

Dots

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

118

Commas

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

119

End

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

120

Arrows

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

121

Arrows

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

122

Nothing

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

123

Modules mix Processes

-module(hello).
-export([start/0, loop/0]).

start() ->
 Pid = spawn(hello, loop, []),
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

Module's Own Process

Calling Processes

124

Modules mix Processes
-module(hello).
-export([start/0, say/1, loop/0]).

start() ->
 spawn(hello, loop, []).

say(Pid) ->
 Pid ! hello.

loop() ->
 receive
 hello ->
 io:format("Hello, World!~n"),
 loop()
 end.

From Edward Garson's Blog at http://egarson.blogspot.de/2008/03/real-erlang-hello-world.html

Module's Own Process

Calling Processes

125

Immutable Variables

126

Immutable Variables

Can’t assign a second time:

A = A + 1.

A = 1, A = 2.

127

Immutable Variables

It has to be:

B = A + 1.

A = 1, B = 2.

128

Immutable Variables

• Prevent Coding Errors
• Provide Transactional Semantic
• Allow for Pattern Matching Syntax
• Can be a Nuisance

S1 = dosomething(S),
S2 = dosomemore(S1)
...

129

Pattern Matching

130

Pattern Matching

This can mean two things:

A = func().

The meaning depends on wheter
A is already assigned.

131

Pattern Matching

The common, mixed case:

{ok, A} = func().

 ok is an assertion AND

A is being assigned.

132

Pattern Matching

The common, mixed case:

{ok, A} = func().

„This makes it hard to remodel Erlang
syntax into a more C-like syntax.“

Robert Virding

133

Erlang Compared

134

Erlang vs. Stackless Python

• Truly parallel VM
• Stackless has a GIL

thus in reality works sequential
only its paradigm is parallel

• Pattern Matching
• Immutable Variables

135

Erlang vs. C

• More productive
• More concise
• More reliable
• Much slower for Number Crunching
• Microprocesses
• Pattern Matching
• Immutable Variables

136

Erlang vs. C++

• Virtual Machine
• Actors Model
• Less Magic
• More Safety
• Much Slower for Number Crunching
• Microprocesses
• Pattern Matching
• Immutable Variables

137

Erlang vs. Lua

• Made to Scale
• Single Paradigm
• Less Magic
• Much Bigger Footprint
• Microprocesses
• Pattern Matching
• Immutable Variables

138

Great Matches

● C
● Redis
● MySQL
● VoltDB
● AWS S3
● EC2
● Ubuntu

139

Productivity

140

Productivity & Maintainability

“Erlang systems have
4 – 10 x less code

than C / C++ / Java systems“

Ulf Wiger

141

Productivity & Maintainability

Shorter programs:

● Faster to develop
● Fewer errors
● Easier to maintain

Erlang LOCs show the same error frequency as C / C++ / Java code.

142

Scientific Proof

The Motorola Study of 2002 – 2006

• Motorala UK Labs
• Heriot-Watt University
• EPSRC UK Govt Project

http://www.slideshare.net/JanHenryNystrom/productivity-gains-in-erlang

143

Scientific Proof

“High Level Techniques for
 Distributed Telecoms Software“

Looking at
• Robustness
• Configurability
• Productivity
• Maintainability

144

Scientific Proof

“Erlang shows …

• 2x higher throughput
• 3x better latency
• 3 - 7x shorter code

… than the equivalent C++ implementation.”

145

Scientific Proof

Reasons

● Lightweight process management
● Code only the successful case – saves 27%
● Automatic memory management – saves 11%
● High-level communications – saves 23%
● Telecom design pattern libraries (suit games)

146

Scientific Proof

Overload & Hardware Failure

• C++ “fails catastrophically“

• Erlang
– Never completely fails
– Recovers automatically after load drops

147

Challenges

148

The Warts

• Untidy Standard Libs
• Egregious String Handling
• „Records Suck“
• Cryptic Error Messages
• Lack of Advanced Tutorials & Books
• No-One Seems To Know All of OTP
• Hard To Find Developers

149

Strings

• Are* Lists. Or Binaries.
• Slow*
• Clumsy*
• Error prone*
• Cure announced for next release (R16)

Erlang was not built for text processing.

*according to Joe Armstrong these are myths. „Erlang has no
strings. The only sane way to handle UTF-8 is lists of integers.“

150

Records

• “Records Suck“
• Verbose
• Error Prone
• Pure syntactic sugar over tupels.
• Cure announced for next release (R16)

“Records were added as a hack.“

151

 Perceived reaction after asking
 about benchmarks on the
 Erlang mailing list.

Raw Number Crunching Speed

• Erlang is fast
• Except at Shoot Outs
• Benchmark your real problem
• Use C NIFs to outsource crunching

152

Hiring

• Can Be Difficult

• Roll Your Own Programmers
– Good Programmers Are Interested
– High Productivity Can Be Reached Fast
– Excellent Workshops can be booked

153

Getting Started!

154

Learning Erlang

• Scour Post-Mortems
• Download and Install from erlang.org
• Fred’s site Learn You Some Erlang!
• Joe’s book Programming Erlang
• IRC #erlounge
• Erlang Mailing List
• Local Erlounge Meetings
• Erlang Factories & User Conferences

155

Expected Timeframe

Ballparks
• Language – 2 Weeks
• OTP – 3 Months
• First Product – ½ Year
• Thinking Erlang – 2 Years

156

Business View

Makes Sense For
• New Projects
• Rewrites

Starting Out
• Find a Senior Erlang Developer
• Or Hire Erlang Solutions
• You Will Train Your Own Developers

157

Pitching It In-House

A Waste of Time
Joe Armstrong

Just tell your boss that Erlang
is used for banking applications.

Mike Williams

• Most Often a Top-Down Thing
• Demonstrate the Productivity:

prototype a demo solution to a real problem.
• Cite Facebook, Zynga, Blizzard, Wooga

158

References
Web
http://www.erlang.org/
http://learnyousomeerlang.com/
http://www.erlang.org/static/getting_started_quickly.html

List
http://erlang.org/mailman/listinfo/erlang-questions
http://groups.google.com/group/erlang-programming

Books
http://pragprog.com/book/jaerlang/programming-erlang
http://shop.oreilly.com/product/9780596518189.do

References
http://erldocs.com/
http://www.erlang.org/doc/

Post Mortems
http://www.facebook.com/note.php?note_id=14218138919
http://www.slideshare.net/wooga/erlang-the-big-switch-in-social-games

159

Your Talk Evaluation

Please check your Email now and give
your evaluation of this talk to the GDC.

Any questions, feedback now or later,
please email me at hd*eonblast.com

160

Questions

• Email: hdiedrich*eonblast.com
• Twitter: @hdiedrich
• IRC: #erlounge
• List: erlang-questions@erlang.org

