
1



2



3



For game AI to be able to figure out what is the best 
course of action for NPC’s in a given situation, and 
more importantly where they should be, some 
information about the world around the NPCs is 
needed. 

The data set needs to contain connectivity 
information, just like navmesh, about the world that 
can be traversed by NPCs. It also needs to contain 
information about visibility, what can one see from 
each ‘point’ in the world. This is a very important 
requirement since doing any kind of tactical decisions 
that can extend potentially tens of seconds into the 
future one must be able to figure out which locations 
gives the best and most long lasting probability in 
either gaining or avoiding line-of-sight and line-of-fire. 
Selected position might be invalidated before NPC 
reaches it since player will have the same amount of 
time to change his position. Obviously for games where 
the average lifetime of NPCs, from spawning to death, 
is only few seconds this might not be the case. Finally, 
it should be possible to access this data very fast and 

4



have the possibility of storing arbitrary information to each of 
the nodes. Storing information acts as spatial memory which 
is important for coordination.

4



Specialization is good as it gives good performance and simple 
API for each use-case.

5



Example of one raycast from node-to-node being blocked by 
rather thin obstacle. This can be avoided by performing multiple 
raycasts between nodes and having a threshold to decide if 
there is visibility between nodes. For example 80% threshold 
would make most of those nodes marked as red become visible 
(green) until the very few at the distance.

6



7



Our solution is to discretize the world into cells, uniform grid, 
since it is fast to map any arbitrary location and it also makes 
the nodes and any data stored in them easily comparable as 
they all have roughly the same area of influence. In addition 
distance between nodes being constrained it means it is possible 
to use them as pretty good approximation of distance calculation 
as the nodes and their connections describe the topology closely 
matching that of the navmesh.

Nodes inside cells can still be freely placed so more detail can be 
achieved from this.

8



Example of a navmesh and grid on top of it. Colored polygons 
are the navmesh, black lines make the grid and white rectangles
with white lines are the nodes and their connections. The width 
and height of the cells is 2.25m and as can be seen the nodes 
describe the area of the room closely matching that of the 
navmesh.

9



Generating nodes for average level in HM:A takes only few 
seconds while generating the visibility with good quality takes up 
to 15minutes with a decent work station utilizing all cores.

For debugging purposes it is good to have the possibility of 
skipping the visibility calculation part so that the node 
placement and creation algorithm is easy to debug.

10



Can be fixed number of nodes which means the cell size will 
vary or can be fixed cell size to have varying number of nodes.

Find bounding box of navmesh use that to calculate the cell size 
and grid bounds.

11



Optimization step to quickly find the cells that actually can have 
a node.

12



Find the exact node placement, trying to maximize connectivity 
to neighboring cells.

13



14



15



Allow connecting nodes even if no straight line in navmesh to 
deal with small navmesh corridors. With our 2.25m cell size 
there were quite a lot of these but most of the time the node 
placement would solve them.

Mostly this happens when the narrow navmesh corridors are not 
axis-aligned as the basic node placement would only scan in 
cardinal directions and the grid is always axis-aligned.

16



After this step you would perform a node-to-node visibility step 
simply issuing raycasts between the nodes. For ”high” visibility 
you need only n * n / 2 raycasts as A->B is the same as B->A 
while performing a ”high” to ”low” raycasts you need n * n as A-
>B is not the same as B->A. Here you should try to do more 
than one ray between two nodes as it will result in better 
description of the visibility in terms of tactical decisions.

17



18



19



20



21



Each job had a custom struct that they take in driving the 
processing, nothing special about that.

Output would always be one of the three types; fields, area or 
single node. Most of the jobs were fields and the final selection 
process was done as a ’node-job’ which would pick the best 
rating, or closest with good enough rating etc. Jobs could take 
as input something that other jobs would output, this was often 
the case with the selection jobs.

22



To make it easy to implement new jobs and have them easily be 
time sliced a node iterator was done to encapsulate the traversal 
state and deal with the advancing in the grid.

Breadth-first was used since it proved to be optimal to create 
distance fields.

23



Three simple jobs that perform a straightforward task is 
combined to form a more complex query.

Find the closest node, in path-finding distance to agent, that has 
line-of-sight to search position. The ’Find closest node’ would 
start from the ’Search position’ which means that the node that 
will be returned has line-of-sight to the search position and is 
within x meters from the search position and is the one closest 
to the Agent.

24



25



Some information can be shared and is updated parallel to the 
NPC specific jobs. Using double buffering of the float fields 
means that there is always data to be read even when update is 
in progress.

26



Most of the time NPC is interested to have a float field which 
describes how well can certain area be seen from each node. 
Float value of 0 means no visibility where 1 would mean full 
visibility over the given area.

When performing the LoS job area size is given and it means 
that from each node multiple nodes around each of the target 
node are being checked. If there are 10 nodes within the target 
area then seeing 5 of them would give 50% visibility. Using this 
approach means that it is less likely to end up in a situation 
where query is being made, NPC goes to location only to see 
that situation has changed and there is no LoS anymore.

This can be updated constantly without any specific request 
from individual NPC as it is calculated to threat position.

27



28



29



Using distance field to threat to seek preferred distance where 
to fight. Changing this preferred distance is easy way to control 
the nature of the combat, defensive vs aggressive. This is path-
finding distance and not euclidian distance as NPC’s seek to be 
able to run after the threat and keep themselves not too close 
for target to run past or at them.

This can be updated constantly without any specific request 
from individual NPC as it is calculated from threat position.

30



31



This tells which nodes are close to an NPC or close to the threat. 
Will cause NPC’s to spread around and in combination with the 
preferred distance to fight they will start to flank eventually.

HM:A did not have a specific flanking behavior but it was 
triggered due to occupancy and hazard zones invalidating nodes 
in front of the player.

This gets updated regularly and is shared between NPC’s since it 
is not dependent on any one NPC.

32



33



Cover map tells which covers would currently, given the threat 
position, give cover from the threat. Any node being close 
enough to a cover which is valid at the moment will have value 
of 1 where others will have value of 0. Since this is just one 
value amongst all the others it will not mean that NPC always 
takes cover even though they clearly favor them.

It is possible to have a node without valid nearby cover that is 
the best node given the current situation which leads into NPC 
fighting from open.

This is also shared between NPC’s and is not dependant on 
individual NPC request as only threat position will affect how this 
field changes.

34



While lines show associated covers to the nodes while green 
means connection to a valid cover.

35



This is a byte field keeping count of hazard zones currently 
active. Hazard zones are simply a point with a radius and a 
timer. Everytime a new zone gets activated it will increase the 
number on each of the nodes within its influence by 1 and when 
it gets deactivated it will decrease the number on each of the 
nodes within its influence.

This means that when hazard field has a number higher than 0 
the node is currently associated with at least one active hazard 
zone. Easy way to keep information about spatial influence 
without needing to iterate through all hazard zones everytime a 
node is being evaluated.

36



37



Simple control for designers to create guidance for positioning 
for NPC’s operated by systemic AI.

38



Composite field from NPC’s point-of-view. Threat further away in 
top right section of the image.

39



40



41



42



43



www.mooncollider.com

www.intelligentartefacts.com

44



Quick video clips of my experience

45



Dynamic Navigation under Kythera in Umbra

www.umbragame.com

46



47



This talk is based on my work at Crytek on the Tactical Point 
Selection system.

Much more details on many parts of this discussion in the book 
article. Due to be published April 2013.

www.Xaviant.com

www.lichdom.com

48



Reminder from Mika’s slides. Note stages of generating a point 
in each time, filtering and then scoring the remainder.

49



Generating points around a cover object from a target, in 
Lichdom.

50



Generating points on open terrain

51



What advantages?

52



53



54



55



56



57



Simplified query syntax from CryEngine TPS system

- What's the grammar of the language?

The grammar is described here -
http://freesdk.crydev.net/display/SDKDOC4/Tactical+P
oint+System#TacticalPointSystem-
QueryLanguageSyntax

It now has far more keywords than that - this doc 
really just describes the first design.

58

http://freesdk.crydev.net/display/SDKDOC4/Tactical+Point+System#TacticalPointSystem-QueryLanguageSyntax


59



60



61



62



63



64



65



66



67



68



69



70



71



72



73



74



75



76



77



78



79



80



- Did you have other keywords in the query 
language?

Hell yes :-) The version that ships with the Crytek SDK 
has perhaps 70 keywords. A few notables...

- Generators: Grid (mentioned in talk), Entities (point 
at every entity of given type), CurrentPos (generate 
just one point at position of given Object), Cover (as 
talk). NavMesh (in talk) is currently Xaviant-only.

- Objects: the player, the agent querying, his 
reference point

- Operations: various cover quality keywords, 
Reachable, Directness, CoverDensity, CameraCenter
(for position on screen), distance to nearest friend, 
distance to nearest foe, Random, HeightRelative, 
ElevationAngle, CanReachBefore (am I closer to this 
than my enemy is?) I hope those names give you the 
rough idea.

81



- How much work was it to implement the parser 
etc?

A few days I think. All the queries are built up as Lua
tables, so the Lua parser does most of the work, then 
we query that using existing APIs. Each element of the 
table consists of a string and a value, so 
something like: min_distance_from_player = 7 . The 
element names are tokenized, using the underscores 
as separators. The keywords are looked up in a string 
map to get bytecode values and syntax errors are 
generated if it doesn't fit the grammar. A couple of 
hundred lines for the parser itself? The supporting code 
- runtime API, scheduling, etc - is on top of that.

The dynamic evaluation scheme (i.e. optimising) is the 
most complex part. Not everyone would need that.

82



A simple operation most people could apply in their games

83



84



85



86



87



88



As I mentioned, there is a problem with this “balancing”. If these 
two distances are combined linearly, intuitively you expect to get 
a midpoint. If you were to change the weightings, you’d expect 
to bias the midpoint one way or the other.

In fact, all the points on the line between the two objects score 
equally. For every metre you move in one direction or the other, 
the loss of score on one weighting is equal to that gained in the 
other. Hence the result will usually be more or less random 
selection between points according to which is closest to this line 
between the objects. This isn’t necessarily going to be obvious 
from results and I think this is a common mistake. If you don’t 
bias equally, points as close as possible to the higher biased 
point will be selected, rather than just a different fractional 
midpoint.

89



90



91



In all these diagrams, the agent is on the left, the object we are 
using directness to converge upon is on the right.

92



Triangle is agent, grey circle is a point we are considering, the 
cross is the goal object we are converging on.

93



94



95



96



97



98



99



This is all that is required to achieve the zigzag pattern.

100



101



CryEngine semi-automatic cover mapping.

102



Screenshot from Lichdom, for which we developed extensions 
such as generation of points on a navigation grid.

103



Debugging screenshot from Crysis 2 released product.

104



A navigation mesh in Lichdom.

105



Same area, generating points for TPS selection based on that 
navmesh, centred on the far corner.

106



107



Adding in points for polys that received none to get a minimum
even coverage.

108



Inaccurate search distance due to pathfinding mesh poly size 
variation

109



Our correction compromise.

110



111



Shot from Modern Warfare 3

112



113



Shot from Lichdom. A circuitous path. Treestumps with green 
glow are “turrets”

114



115



116



Show from CE3 Sandbox.

117



One way to use a golden path in your TPS queries

118



119



120



121



122



123



124



125



126



Modern Warfare 3. How could we make squadmates like this 
fully systematic?

127



128



129



130



131


