
1

Welcome to the rigid body solver presentation. First I’ll show
you a couple of demos so that you can see the results you can
get with rigid body dynamics. This demo shows rigid body
destruction of an arena made out of stone. As I fire the
weapon, you’ll notice the stone fracture, the debris fall, and
form stable piles on the ground. The physics and graphics are
all running on a single GPU.

2

The fracture tech and demo were made by these researchers
and artists at NVIDIA.

3

In the next demo you will see rigid body destruction
implemented in a real game, Hawken by Adhesive games.
Again the physics and graphics are running on the same GPU.

4

In previous years that we’ve done this talk, we’ve had a wide
range of abilities in the audience.

I know that some of you write physics solvers for a living, and
may be interested in the details, and I refer you to our
SIGGRAPH paper.

5

The presentation you are about to see has four sections.

First, what do you need the rigid bodies in your games to do?

Second, I’ll show you how you can write a solver to get these
behaviors and avoid these problems. For beginners, I’ll start
from how to apply a force to a rigid body and go from there.

Third, for those of you that write games physics solvers for a
living, I want to give you something too. So I’ll also show you
how to fix some of the problems unique to parallel solvers.

Finally, I’ll show you the benefits of solving these problems,
and the effects you can get by running large simulations on
many threads.

I’ll try and leave 10 minutes at the end for questions, so I ask
that you wait until then to ask them.

6

Section 1: Problem/Requirements

Games have lots of rigid objects, like the player, vehicles, non player
characters, and the static environment.

What do you need rigid bodies to do?

• Accelerate and decelerate. Even early games had this.

• Appear to be solid, in other words, not go through each other.

• Fall under gravity.

• Slide down slopes.

• Stop sliding. We need to simulate surface properties like roughness, or
friction. If we don’t do this, then everything will look like it is sliding
around on ice.

• Bounce like basketballs, or not bounce like concrete rubble.

• Form piles. This is just a consequence of objects not going through each
other and falling under gravity, but it is surprisingly hard to get right, so
it gets its own mention.

The picture on this slide shows a demo that we did a couple of years where
you could wander around an art gallery making large piles of debris by
blowing things up with a rocket launcher.

7

Cast your mind back to high school physics class. You
probably learned how to calculate the motion of projectiles,
like the one on the left. You probably also learned how to
calculate and apply a collision impulse of two bodies in mid-air,
like the diagram in the middle. The green arrows show the
forces involved.

Cases like the diagram on the right are harder. This shows a
pile of objects coming to rest on the ground. You can see that
there are many forces involved, and that they all depend on
one another.

8

The motion of each body is determined by the sum of all the
forces acting on it.

If forces don’t exactly sum to zero for each body, then the pile
will never come to rest, and instead will jitter.

9

Finding a set of forces that will eventually sum to zero is hard,
because applying a force or impulse at one point on a body
immediately affects the velocities at other points.

It is complicated further if you want to solve different forces
on different threads.

This is why you might need a solver like the one I’m going to
describe today.

10

This section is the introductory section, and will be familiar to
those of you who were here last year.

Section three is where the new material starts.

11

Definition of rigid body coordinates

In graphics APIs like OpenGL and DirectX, it’s easy to animate rigid
objects. Why? It’s because we can specify mesh vertices relative to
a local coordinate frame. So when we render, we don’t have to
specify the world coordinate of each vertex each frame, we just
change the transformation matrix to move the mesh in the scene.

Ok, so let’s talk about using rigid body physics to move the mesh
around the scene. So the first concept I’d like to introduce is the
center of mass. In graphics, it doesn’t usually matter where the
artist places the origin of the mesh. In rigid body physics, the
center of mass of a mesh has special significance, so to keep things
simple, let’s assume that the artist has placed the origin of the
mesh at the center of mass. (If this isn’t true, we can just store an
offset). So a rigid body engine modifies the mesh’s transformation
matrix each frame to move the center of mass around the scene,
and the rest of the mesh follows. Also, the physics engine can rotate
the mesh around the center of mass by changing the orientation
part of the transformation matrix.

The transformation matrix can be efficiently stored as a position and
a quaternion, a 7D vector. We call this 7D vector “the pose of the
mesh in rigid body coordinates”. I’m going to use the letter x to
represent the rigid body pose in this presentation.

12

Velocities and impulses in rigid body coordinates

We can express other things in rigid body coordinates, like
velocities and impulses. Just as the rigid body pose uniquely
determines the position of every vertex of the body, the rigid
body velocity (the linear and angular velocity of the center of
mass) determines the velocity of every vertex (and also every
other point) of the rigid body.

We’ll show how to calculate this in a minute.

13

I recommend that you think of rigid body physics in terms of
impulses and velocities, rather than forces and accelerations.

Why? Friction is much better behaved at the impulse-velocity
level and it also allows us to treat resting contact in the same
way as colliding contact.

14

You’ll hear the word impulse used in two ways, the first is in
the term “impulsive force”.

Imagine a car travelling at constant speed towards a concrete
wall. Once the car hits the concrete wall its speed will go to
zero very quickly. In the inelastic rigid body model this
happens instantly. The graph at the top of the slide shows how
the velocity of such a car changes over time.

Underneath that graph is the corresponding graph of the force
between the wall and the car on the same time axis. You can
see that the force is zero almost everywhere, except at this
very short period of time where the wall is reducing the car’s
velocity, where it is very high.

Such forces that are applied over infinitesimally small time
periods are called impulsive forces.

15

The second way I’ll use the term impulse is the area under a
force-time graph between two points in time, the integral of
force with respect to time.

In your simulations you need to know the state of the system
at regular intervals in time, the times in which you render a
frame of graphics.

In the force-acceleration model, you’d calculate forces to apply
only at these instants of time (assuming that you don’t
subdivide the time step).

In the impulse-velocity model, you instead solve to find the
area under the force-time graph between frames. This allows
you to calculate systems that have impulsive forces between
frames, and treat resting contact and colliding contact in the
same way. It also ensures that certain common frictional
contact situations always have a solution. (see Baraff D.
“Issues in computing contact forces for non-penetrating rigid
bodies” for details of this common frictional contact situation).

16

If you want to apply a constant force, you can easily convert it to an
impulse by multiplying by the time step, h. Most of the rules about
applying forces applies to impulses, for example, impulses occur in
equal and opposite pairs, just like forces.

16

The boxes on this slide show that applying a force changes
acceleration, and applying an impulse changes velocities.

17

Earlier I showed you how you can track quantities like position
and velocity at only one point, the center of mass.

If you want to apply an impulse to a vertex (or other point on
the rigid body), you can calculate the equivalent rigid body
impulse (a linear and angular impulse at the center of mass)
and apply the impulse by changing the rigid body velocity.

18

A rigid body engine is just something that updates a pose and
velocity in rigid body coordinates each frame, according to
some contacts supplied by a collision detection engine.

This slide shows the highest level representation of a rigid
body engine. Over the next few slides you’ll see the diagram
become more detailed.

19

The simplest rigid body physics engine you could write would
just move a single body through the air without collisions.

This box shows how to transform the rigid body coordinates
each frame.

First you update the velocity by applying gravity to it. Then
you use the new velocity to update the pose.

20

The next simplest simulation you could try is a body colliding
with the ground at a single point of contact.

The contact here is shown in red, and the picture on the right
shows what you want to happen. To keep things simple we’re
going to look at an inelastic contact, so imagine that the box
and slope are so rigid that the box won’t bounce when it hits
the slope.

21

You can prevent bodies penetrating each other by applying
impulses to change their velocities.

When the box hits the slope, you can apply an impulse to
counteract the effect of gravity and make the velocity parallel
with the slope. Making the velocity parallel to the slope will
cause the body to slide down the slope in future frames.

This is called solving the contact constraint at the velocity-
impulse level. Collisions will also require positions and
rotations to be changed slightly, but you’ll hear about that in a
moment.

22

You want the new velocity to cause the body to slide down the
slope instead of into penetration. The first picture shows the
unconstrained velocity due to gravity in rigid body
coordinates. Recall from a few slides earlier that the velocity
of the center of mass determines the velocity of every point
on the rigid body. I’ll show you exactly how later. In this case,
the velocity at the contact is the same as the center of mass
because the body is not rotating.

You want to eliminate the component of the velocity that is
pulling the box into penetration, so first you need to calculate
the magnitude of this velocity component.

23

Once you know the direction and magnitude of the velocity
component you want to eliminate, you can calculate the
impulse required to eliminate it.

24

Recall from earlier tha you can apply an impulse anywhere on
a rigid body by calculating the equivalent impulse in rigid body
coordinates and applying that. The rigid body impulse is
shown in the right hand picture. Notice how applying the
impulse off-center causes a rotation as well as a linear
impulse.

25

When you apply the impulse to the unconstrained velocity, the
linear part of the new velocity aligns with the slope, just as we
had forseen.

26

Now all you need to do is apply the velocity to update the
position. The picture shows the box rotated so that it is
parallel with the ground. This will probably take many frames,
and at some point you are going to get more contacts from
the collision detection to stop it rotating further through the
slope. You’ll hear about multiple contacts later.

27

Putting all the previous steps together, this is what you get.

• Apply Gravity

• Calculate the relative velocity at the contact point (along the
contact normal)

• Calculate the impulse to apply at this point that would make
this relative velocity zero

• Calculate this impulse in rigid body coordinates

• Apply this rigid body impulse to the rigid body velocity

• Update the rigid body pose using the rigid body velocity

28

Now we’ll show how to implement each box in the diagram
using math.

The simple update rules for applying gravity and velocity are
called Euler integration. For people who know about numerical
integration already, from these isolated blocks it may look like
we are using explicit Euler, which is only conditionally stable.
Overall though, we are doing a semi-implicit Euler which is
unconditionally stable. See the time-stepping papers by
Anitescu for more information on this.

There are more complicated integrators available, but they
don’t do well in systems with discontinuous changes like rigid
body impacts. Also, even though these integrators are more
accurate, in games we generally value stability and speed
more than accuracy.

29

The velocity application in the last slide contains a slight
problem. I wrote it the way I think about it, but it’s not
actually true.

The rigid body pose, x, is a 7D vector, a position and a
quaternion, whereas the rigid body velocity, v is a 6D vector.
We can’t add these things together.

So how is it done?

The linear part is just the same as in the last slide, but to
apply the angular velocity to the quaternion requires the
formulae on this slide.

30

This is how rigid body impulses are applied. In particle
dynamics, mass is a single number, but here M is a 6*6
matrix. The first 3 diagonal elements are just the mass, but
the bottom right 3*3 block is something called the inertia
tensor. Just as the mass specifies how hard it is to move a
body linearly, the inertia specifies how hard it is to rotate a
body around its center of mass. There are standard formula
for the inertia of primitives like cubes, etc, a standard way of
calculating the inertia of a triangle mesh (with uniform
density), and a standard way of calculating the inertia of
rigidly attached components when you know the inertia of
each component. I usually just look that stuff up on the
internet.

31

Now you need to implement the boxes that give you the
velocity at a point, given the rigid body velocity, and also the
box that converts an impulse applied at a point to a rigid body
impulse.

The first box is implemented by multiplying the rigid body
velocity by a matrix J, and the second box is implemented by
multiplying by the transpose of the same matrix J. In the next
slide you’ll see what J is.

32

J is a 1*6 matrix, the first three elements are the linear part
and the second three elements are the angular part. The
linear part is the contact normal, and the angular part is the
offset of the contact from the center of mass crossed with the
contact normal.

Remember in high school that you learned that torque is force
multiplied by perpendicular distance? The cross product does
this same kind of operation, but in 3D.

33

There is just one box on the diagram that we have not yet
converted to math, the one that takes the relative velocity at
the contact point and works out how much impulse to apply at
the point to eliminate it.

I said earlier that overall we will make the method semi
implicit to ensure that it is unconditionally stable, and this is
where we’re going to achieve that.

The way we do this is to ensure that the contact constraint is
enforced at the end of the timestep, not at the start. So even
though we don’t know the impulse (lambda) yet, we’ll
calculate what the velocity will be at the end of the timestep in
terms of it, calculate the relative velocity in terms of that,
then solve to find out what the impulse should be.

First, what is the final velocity in terms of v_rel and lambda

V_new = V_rel + M^{-1}J^T lambda

We want the relative velocity to be zero at the end of the
timestep

So we want J v_new = 0

34

J v_new = J V_rel + JM^{-1}J^T lambda = 0

34

Now you have all the information needed to implement the
single contact solver diagram. On the right is the code.

35

Multiple contact points

This is where things start getting tricky

Applying an impulse at one contact point can affect the
velocity at many other contact points

You need to find a set of impulses, one for each contact so
that when they are applied simultaneously, the velocity
constraints are satisfied simultaneously (taking into account
all the coupling between the contacts)

36

I could just give you the multiple contact algorithm now, but
I’m not going to.

First I’m going to show you the model that the multiple
contact algorithm solves.

37

Why am I doing this to you? You just need to know the final
algorithm so that you can code it, right?

My experience of writing solvers is that inevitably there is
some jitter or other undesirable behavior the first time you
run them. At that point you think, hmm, is this a bug, or is it
a fundamental problem? How do I know that applying all these
impulses locally is going to give a globally stable solution?

So this is the advantage to knowing the model that you are
approximately solving, once you know what the perfect
solution should be you can measure how close your
approximate solution is to it. Also, when you know the model
you can prove (or read a proof that was written already) that
your approximate algorithm converges to it, and then if
something weird happens you can be confident that it is just a
bug in your code and not some fundamental math problem.

Also, many people have written solver for similar models
outside of games, and if you know the model you have
something to pattern match against when reading papers from
other fields.

38

In the multiple contact case you need to know what the
relative velocities are a set of contact points. You can do this
by making a J matrix with one row for each contact, and
constructing each row in the same way as in the single contact
case.

39

Applying J to the rigid body velocity now gives you a vector of
relative velocities, one for each contact.

40

Given this, you may be thinking that the multiple contact
problem is a matrix equation that you could solve using a
standard linear system solver. Is that right?

41

No.

Instead of being a linear system, what we have is something
else called a linear complementarity problem (LCP). Don’t
worry, I’ll explain what the expressions on this slide mean in a
moment.

42

But first, why is it not a linear system? The answer is that
contacts can break.

43

On this slide you can see two books sitting on the edge of a
table. The circle represents the center of mass. The collision
detection system has generated two contacts in each case,
shown by the red arrows.

Intuitively, the book on the left should stay on the table, and
the one on the right should fall off the table. As the book falls
off the table, the leftmost contact should stop applying force.
We call this a breaking contact.

44

Suppose we model the contact impulses as a linear system.

This means is that we would solve a (matrix) equation to
calculate the impulses that when applied simultaneously would
set all the relative velocities to zero.

The problem is that the only way the solver can achieve this in
the right hand picture is to apply an attractive force on the left
contact. This is shown by the downward green arrow. The
attractive force and zero relative velocity mean that the bar
won’t fall.

So a linear system can give attractive impulses, which is fine
for simulating a book that is jointed to the table, or if the table
and book are magnetic, but that’s not what we have here.

45

Here is how you can specify what should happen in terms of
velocities and impulses:

You’ve seen that for contacts, you want impulses to be non
attractive (non negative), and you want relative velocities to
be zero or separating (also non negative).

There is one other condition that isn’t obvious from this
example - as soon as a contact is separating, no more impulse
should be applied. A formal way of saying this is that
constraints must do no work, which is a law that has many
names, like Gauss’ principle of least constraint, D’alembert’s
principle and the principle of virtual work.

This slide is just these three conditions written in math. They
are called the Signorini conditions after Antonio Signorini who
first formalized them. Here is a picture of him.

46

The meaning of this expression is exactly the same as the
three Signorini conditions from the previous slide, it’s just a
more compact way of writing them.

The upside down T means “is complementary to” and velocity
is complementary to impulse has the same meaning as the
third Signorini condition.

47

So this is our final model. The first line is Newton’s second law
of motion, the second line is the definition of velocity, and the
third line is the Signorini condition from the previous slide.

48

Now you have this idealized model which shows with infinite
resolution how position and velocity vary over time, between
collisions graphs of these things are perfectly smooth.

It is not possible to solve this model exactly in all interesting
cases, and you only need to know the answer once per frame
anyway. So we cut time into frame sized chunks and
approximate the functions as straight lines between them.
This is called doing a time discretization of the model. So you
can see that I’ve just replaced acceleration with (v_new-
v_old)/h etc.

So we went through all that so that I can say: what we are
solving is not a linear system, it is a linear complementarity
problem (LCP).

This unfortunately means that any existing linear system
solvers that you might know about are not going to work.

49

The good news though is that there is something that does
solve this LCP model, and it is almost exactly the same as the
simple one contact algorithm you saw earlier.

50

All you have to do is apply the one contact algorithm to each
contact in sequence, and then iterate through the whole
contact list a small number of times. The default number of
times in PhysX is four.

51

The question though is how you can ensure that the Signorini
condition is met so make sure that your objects don’t all look
like magnets.

The simplest thing you might think of is just take each impulse
you apply at each iteration and set it to zero if it is negative.
Remember that negative impulses are attractive impulses and
positive impulses are repulsive impulses.

52

Ok, the problem is that this doesn’t work, here is why.

You will need to iterate over all the contacts many times to
converge to the correct solution.

What the model tells us is that it is the total impulse applied in
the frame that must obey the Signorini conditions, not the
individual impulses.

These means that we need to keep an impulse accumulator
for each contact and clamp that each frame, not the impulse
from the current iteration.

Suppose that on the first iteration you apply too much impulse
at a contact. If you clamp the impulse applied on each
iteration, then you would never be able a negative correction
to reduce the impulse that was too large.

53

Instead, you just need to keep accumulators that track how
much impulse was applied to each contact this frame and
clamp those.

54

Here is the final algorithm in code

55

Earlier I said that you could mainly think about using impulses
to correct the velocities.

As the timestep size is fixed you can’t completely ignore
position errors though.

The middle diagram shows what might happen if you apply
the corrected velocity with a fixed timestep. You can see here
that there is both a linear position error and that the box has
rotated too much.

So you need a way to pop the box out of the slope and rotate
it to the correct orientation, as shown in the right hand
diagram. This process is called position projection.

56

The collision detection can tell you how much penetration has
occurred, here I represent it with the letter Phi. It is better to
just remove a proportion of the penetration each frame rather
than all of it, because that will ensure that the correction
happens smoothly and avoid one cause of jitter. PhysX is hard
coded to remove 80% of the penetration each frame. Earlier
you saw that Jv gives the relative velocity that you want to
zero (or allow to be positive). All you need to do is add 80% *
Phi / h to this.

Ok, that’s not exactly how we do it in PhysX, Erin’s previous
talks cover some of the other ways to do this.

57

That completes the description of the widely used PGS/SI
algorithm for rigid body contact. For single threaded
implementations, it is a fine algorithm.

If you are a physics engine developer, then you are going to
be asked at some point in your career to write a multithreaded
solver. Why?

CPU clock speeds are stagnating, so scaling performance
means using more cores. Also, at the recent announcement of
the Playstation4, Sony demonstrated that the PS4 has some
ability to run physics on the GPU, and GPUs need lots of
threads to run efficiently.

Next you’ll see how to write a rigid body solver that uses
many threads.

58

Suppose that you a simulating a box that has just collided
with the ground. The algorithm I described earlier fixes one
contact, causing the body to rotate one way, and then fixes
the other contact, making it rotate the other way. You iterate
between the two contacts, and the amount of rotation will
decrease at each iteration, until you have something that you
can render.

Notice that this is not parallelizable. To calculate the next
impulse you need the velocity change from the current
impulse.

59

You may be thinking that this algorithm (PGS) has no
parallelism.

With more than one body you can get some parallelism by
coloring. What you do is assign colors to contacts such that in
each color each body is referenced at most once. Then you
can process the contacts in each color in parallel, and do the
colors sequentially.

For example, in this diagram, contacts 3 and 5 can be done in
parallel, and then 4 and 6 can be done in parallel.

This is not great though, because the number of contacts that
can be done in parallel is small compared to the number of
bodies.

60

A different thing you could try is assigning one thread to each
contact, and have each thread calculate its contact without
considering what is going on at the other contacts.

In this diagram you can see that this leads to each contact
applying too much impulse.

61

Method 1 (PGS) is provably convergent, but has limited
parallelism, as you saw on the coloring slide. It also suffers
from a problem called jitter, which I will talk more about in the
next slide. The method is widely used though.

Method 2 (Projected Jacobi) was maximally parallel so it
seems like it would be a good choice for a multithreaded
solver, and doesn’t suffer from this jitter problem, but doesn’t
converge in some simple cases and converges too slowly, so is
not used in practice.

62

This video shows the jitter problem. You will see three
concrete columns be destructed. The debris will fall to the
floor, and you’d expect the debris to come to rest in piles.
With PGS with coloring, you don’t see this, instead the pieces
continue to move, and this is called jitter.

63

Jacobi seemed like a good idea, but it doesn’t converge in
some simple cases. Here is an example.

64

I’ll show you how we made an algorithm that is similar to
Jacobi, but does converge, and converges fast enough to be
used.

The problem with the previous example is that the three
impulses on the middle body are calculated without knowledge
of each other, and they just get bigger and bigger, causing
divergence.

The first idea we had was to split the middle body spatially, so
that each force has a separate sub-body, and then join them
back together with fixed joints.

This wasn’t a good idea, splitting a triangle mesh spatially and
recalculating its inertia is expensive, and takes lots of
memory. Also you need extra time and memory for the fixed
joints.

65

This slide shows the progression of ideas that lead to this
dead-end.

66

The next idea we had was that you could split the body non-
spatially. In other words you could take the center of mass,
and split it into 3 pieces that have the same position and
spatial extent, each with 1/3 of the mass. You could then fix
them together using simpler joints at the center of mass.
Splitting the mass is just scalar division, which is much
cheaper than splitting and storing geometry.

67

You still have the joints though. You can solve a system of
contacts and joints in a provably convergent way by
interleaving PGS iterations with matrix solves for the joints.
Solving a matrix for the fixed joints would be too expensive.

We realized that you don’t have to solve a matrix to enforce
the fixed joints, there is a closed form solution, the average of
the sub-body velocities. Averaging a few velocities is very
inexpensive.

68

Here is the slide showing the sequence of ideas again.

We had the idea of splitting the mass non-spatially, then we
realized that there is a cheap closed form solution for the
joints, and we ended up with a method that is parallel,
inexpensive, provably convergent and doesn’t jitter.

69

70

Here is the same system that you saw earlier using the mass
splitting algorithm instead of PGS. As you can see, the jitter is
gone. The computation was implemented using thousands of
threads on a GPU.

71

Here is what you just saw:

• To pile objects you need a consistent set of forces/impulses,
and that you can calculate such a set using a solver.

• You can solve such systems by applying impulses
sequentially, an called algorithm called PGS. This is good for
single threaded solvers.

• If you need to use lots of threads, you could use mass
splitting, which is jitter-free.

Thanks very much.

72

73

74

