
1

2

3

4

By “fixed” I mean the topology is fixed. Model can be dynamic
in that it moves either due to a changing overall
transformation matrix or via some per-control vertex
transformation such as skinned animation.

5

Generalized non-manifold is the type of data structure used in
computer aided design software. It completely separates
geometry and topology, and is much more rigorous that what
we need to be concerned with for games. It is also far more
difficult to implement. The complete division between
geometry and topology makes this quite non-intuitive.

The open source modeling software, Blender, and other digital
content creation tools used in the game industry, are based on
non-manifold data topology structures.

6

Note that for a close polygon, such as a triangle, we can find
traverse the polygon’s boundary loop simply using HE.next
recursively.

7

The truth is, the face is on the left side only depending on
viewpoint. If we look at the half edge from a point-of-view
where the loop is traversed in a counterclockwise fashion, the
face is on the left of the edge….while walking along the edge
we would turn towards the left to see the face. If we looked at
this same object from behind, the face would appear to be on
the right.

8

9

Note that due to the orientation flip of the opposite edge, the
opposite face has the same orientation as the original half
edge’s face. Orientation consistency is built into the data
structure.

10

We are focusing on the half edge, but typical implementations
also define special face and vertex data structures. These
enable additional traversals that are useful.

The user data could be assigned to the edge, face, and/or
vertex. It could store, for example, texture or UV mapping
information.

The marker is useful to aid in traversals. For example, if you
want to find he constellation of faces around a given starting
face, then traverse around the face’s loop. For each vertex
around the face, find the ring of faces around that vert, but
skip any face that has a marker value of 1. For any as-yet-
unmarked face, add it to your list, then set marker = 1 for
that face. By using the marker in this way, it indicates that
you’ve already visited a face and so it is already in your
output list. You can also use this for Boolean type searches.
For example, if you want to find faces connected to vert1, but
not to vert2, first find the ring of faces around vert2, and set
marker to 1. Then find the ring of faces around vert1, skipping

11

any face with marker == 1. These are simple examples, but it
should be clear that marker can enable rather complex selection
logic.

The marker can also aid in supporting selection modes. For
example, marker == 0 for non-selected items, and marker == 1 for
selected items.

You could consider treating the marker as a bitfield, with some bits
used for selection, some used to indicate traversal status, some
indicating constraints (e.g., crease/corner edge), etc.

11

12

13

14

15

16

17

18

Note that we add each new edge in constant time, so the net
cost is O(n), where n is the number of edges in the loop.

19

20

The collection of faces that immediately touch the vertex of
interest is called the “1-ring neighborhood”

Supposed you needed to find all faces connected to a
collection of vertices

You can use the approach shown here to collect faces for each
vertex

Use marker values to avoid collecting a given face more than
once

21

22

23

24

25

IMPORTANT NOTE: If the face is part of a mesh, then
edge1 is not necessarily the only edge whose endPt is
vert1. Similarly, edge3 is not necessarily the only edge whose
endPt is vert2. So, in the case of splitting a face in a
mesh, it may be necessary to traverse the ring of edges
around vert1 (and vert2) to find the edge whose endPt
is vert1 (vert2) and whose face is the face of interest.

26

27

28

29

30

Caution! If the outer edges weren’t connected properly to
begin with, will have to traverse edge rings (see following
slides) for each boundary vertex to locate the boundary edges
from the inside. This is more expensive. Best to make sure the
data structure is properly created and maintained, in order to
extract the best performance.

With regard to exterior boundary connectivity, the half edge
data structure is difficult to work with when individual
triangles or triangle groups touch at a single vertex. The lack
of a common edge leads to topological ambiguity with respect
to the orientation of the open boundary edges. As a way of
visualizing this, consider two triangles that share one vertex,
that happen to be coplanar. As you traverse the outside
boundary of one triangle, reaching the common vertex, which
edge of the other triangle do you move to? You may decide
that it is one particular edge, based on a visualization or
drawing of the two triangles. You would possibly choose the
edge that visually suggests a counterclockwise traversal. This
is not necessarily right and not necessarily wrong. Either
triangle could be twisted about the common vertex without

31

changing the topology, and this is where the ambiguity arises. There
simply is not one correct choice for the half edge connectivity when
one triangle or set of triangles touches another at just a single
vertex without a common edge. It is possible to resolve this using
geometric (not topological) reasoning, in some cases.

The problem described above can arise when constructing a half
edge model from a simple indexed mesh (or polygon soup), even
when the model ultimately has no scenario like the one described.
To avoid the ambiguity while constructing a half edge model from a
simple mesh, it is best to only construct interior edges and faces
until you have added all vertices and triangles to the half edge
model. In some cases, when you add a new face, your new interior
edges will fill in the HE.opposite field of some existing half edge.
This is the case whenever you add a new face with an edge that is
adjacent to the interior edge of an existing face. Those edges/faces
are naturally resolving themselves as being part of the interior of
the mesh. In the end, some edges will have HE.opposite == NULL.
You can fill those in as the last step, and use vertex 1 ring traversals
to fill in the HE.next ordering around the boundary (except, of
course, in the case of a single shared vertex.)

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Implementations of subdivision surfaces typically do not apply
a global subdivision matrix. A global subdivision matrix, which
updates all vertex positions in a single step, is difficult to
formulate accurately, in part due to the need to properly
handle extraordinary vertices (vertices with a non-standard
valence…see references). The global subdivision matrix also
makes it more expensive to perform local subdivision
refinement, which you might want to apply in a view-
dependent level-of-detail application. The reason for the
added expense is that a global subdivision matrix would
operate on even vertices/edges/faces that are not currently
subdivided. Implementations usually smooth the vertices
around local neighborhoods, effectively using a local
subdivision matrix that is a function of the neighborhood
valence. Usually, smoothing is done locally, and in 3 phases:
1) new face vertex positions are computed first (if doing face
subdivision, which inserts a new vertex into each face…NOT
illustrated in this presentation); 2) new edge vertex positions,
from the edge splits illustrated in this presentation, are
computed next using appropriate coefficients and positions of
the pre-smoothed corner vertices and new face vertex
positions; and, 3) finally, the updated positions of the vertices

45

that existed before subdivision are computed using the new face
and edge vertex positions, based on the valence of the vertices.

If you are interested in implementing subdivision surfaces, please
consider reviewing the references and other literature. There is a
wealth of information available on theory and implementation
schemes.

45

46

47

Note that you can compute a u direction tangent at a
parametric patch point (u,v) by taking the u derivative of the
P(u,v) equation on this slide. And you can compute the v
direction tangent (or bitangent) at the same point by taking
the v deriviate of P(u,v). The local surface normal at P(u,v) is
the cross product of the tangent and bitangent. Usually you
need to normalize these before use.

48

49

50

51

52

53

54

55

56

57

58

This is our focus. Simple models with at most two
triangles/polygons touching on common edges.

59

60

61

NOTE: It is straightforward to triangulate/cover an open loop
that is on a plane. Or one that is approximately planar. If the
edges on the loop are not all coplanar, then it is trickier. It
may be possible to find some projection plane in which to
perform the triangulation connectivity (a plane in which the
projection of the edge loop is a simple polygon with all the
original edges visible), but a different triangulation will result
from different project plane choices. Ultimately, the triangles
produced will not be coplanar if the edges were not coplanar,
of course.

62

63

This grid is a portion of the representable floating point
numbers. These two triangles are defined by corners that are
representable points. Points not lying on the intersection of
horizontal and vertical grid lines are not representable. Any
unrepresentable number is approximated by a representable
number.

64

This intersection point is not representable, so the floating
point math system will approximate it with the nearest
representable number coordinate.

65

66

67

68

Here, though the floating point grid is not shown, you will see
that a single non-representable intersection point can lead to
a chain of intersections that aren’t present in the original
perfect geometry.

69

70

