GBC

Computational Geometry

(representation and manipulation)

Graham Rhodes
Senior Software Developer, Applied Research
Associates, Inc.

GAME DEVELOPERS CONFERENCE’

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Outline

o Part 1: Explicit boundary representations
o Half edge data structure
o Editing geometry on the CPU
e Part 2: Higher order surface modeling
« Subdivision surfaces using half edge data structure
« Higher order surfaces on the GPU

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Part 1: Explicit Boundary Representations

GAME DEVELOPERS CONFERENCE" 2013

Some Perspective

MARCH 25-29,2013 GDCONF.COM

« In-game models usually made of meshes

o Typically triangles
» Indexed triangle meshes

wertex Coords | “\ Triangles
() <-5.0,0> |02
(De0.0. 0> | Liarr
(2) <-.5, 075> 2,3,4
3/<0, o, .5> 1,6,3

4| <-.25,0, 1> 3,6,8

5/ <-.5,1,0> 3,8,9

6| <0, 1, 0> 3,9, 4

7| <-.5,1, .5>

8| <0, 1, .5>

9| <-.25, 1, 1>

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Is a triangle mesh enough?

» Good for rendering “fixed” geometry

« Maybe not always
» Inconvenient for editing a mesh
» Inconvenient for subdivision modeling

o Inconvenient whenever the triangle
connectivity (topology) needs to change

By “fixed” I mean the topology is fixed. Model can be dynamic
in that it moves either due to a changing overall
transformation matrix or via some per-control vertex
transformation such as skinned animation.

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Data Structures for Editable Meshes

« Manifold
» Winged Edge (Baumgart, 1972)
» Half Edge (presented here)
» Quad edge
 Non-manifold
« Radial edge

e Generalized non-manifold
« (some game DCC tools, CAD, ...)

Generalized non-manifold is the type of data structure used in
computer aided design software. It completely separates
geometry and topology, and is much more rigorous that what
we need to be concerned with for games. It is also far more
difficult to implement. The complete division between
geometry and topology makes this quite non-intuitive.

The open source modeling software, Blender, and other digital
content creation tools used in the game industry, are based on
non-manifold data topology structures.

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Half Edge Data Structure (HEDS)

« HE points to next half edge in traversal direction
« Start point of HE.next is HE.endPt

H struct HalfEdge
W

- > endPt {

p HalfEdgeVert *endPt;

HalfEdge *next;
HE b

Note that for a close polygon, such as a triangle, we can find
traverse the polygon’s boundary loop simply using HE.next
recursively.

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Half Edge Data Structure (HEDS)
« HE may point to a face on its left side

 All half edges in a loop point to same face

struct HalfEdge
{

Face(HalfEdgeVert *endPt;
HalfEdge *next;
HE HalfFEdgeFace *face;

1

The truth is, the face is on the left side only depending on
viewpoint. If we look at the half edge from a point-of-view
where the loop is traversed in a counterclockwise fashion, the
face is on the left of the edge....while walking along the edge
we would turn towards the left to see the face. If we looked at
this same object from behind, the face would appear to be on
the right.

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Half Edge Data Structure (HEDS)
« HE points to its opposite half edge

o Which is attributed as above

struct HalfEdge

{
HalfEdgeVert *endPt;
HalfEdge *next;
HalfFEdgeFace *face;
HalfEdge *opposite;

i

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Half Edge Data Structure (HEDS)
« HE points to its opposite half edge

o It can be useful to support custom data

struct HalfEdge

{
HalfEdgeVert *endPt;
HalfEdge *next;
HalfFEdgeFace *face;
HalfEdge *opposite;

void *userData;
unsigned char marker;

Y

Note that due to the orientation flip of the opposite edge, the
opposite face has the same orientation as the original half
edge’s face. Orientation consistency is built into the data
structure.

10

GAME DEVELOPERS CONFERENCE" 2013

MARCH 25-29,2013 GDCONF.COM

C++ half edge class definitions

struct HalfEdge

{
HalfEdgeVert *endPt;
HalfEdge *next;
HalfEdge *opposite;
HalfEdgeFace *face;
void *userData;

unsigned char marker;

struct HalfEdgeFace
{
HalfEdge *halfEdge;
unsigned char marker;
i
struct HalfEdgeVert
{
HalfEdge *halfEdge;
int index;
unsigned char marker;

}i

We are focusing on the half edge, but typical implementations
also define special face and vertex data structures. These
enable additional traversals that are useful.

The user data could be assigned to the edge, face, and/or
vertex. It could store, for example, texture or UV mapping

information.

The marker is useful to aid in traversals. For example, if you
want to find he constellation of faces around a given starting
face, then traverse around the face’s loop. For each vertex
around the face, find the ring of faces around that vert, but
skip any face that has a marker value of 1. For any as-yet-
unmarked face, add it to your list, then set marker = 1 for
that face. By using the marker in this way, it indicates that
you've already visited a face and so it is already in your
output list. You can also use this for Boolean type searches.
For example, if you want to find faces connected to vertl, but
not to vert2, first find the ring of faces around vert2, and set
marker to 1. Then find the ring of faces around vertl, skipping

11

any face with marker == 1. These are simple examples, but it
should be clear that marker can enable rather complex selection
logic.

The marker can also aid in supporting selection modes. For
example, marker == 0 for non-selected items, and marker == 1 for
selected items.

You could consider treating the marker as a bitfield, with some bits
used for selection, some used to indicate traversal status, some
indicating constraints (e.g., crease/corner edge), etc.

11

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

HDS Invariants

o Strict

« halfEdge != halfEdge->opposite
halfEdge != halfEdge->next
halfEdge == halfEdge->opposite->opposite
startPt(halfEdge) == halfEdge->opposite->endPt
o There are a few others...

o Implement in code for convenience
o Vertex == Vertex->halfEdge->endPt

12

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop (HalfEdge *edge)
{
IndexList loop; EEFEEHH
HalfEdge *curEdge = edge; ge
do { »
loop.push back(edge.endPt->index);
curEdge = curEdge->next;
} while (curEdge != edge);
return loop;

b

GODCONF.COM

13

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop (HalfEdge *edge)
{

IndexList loop;
HalfEdge *curEdge = edge; ,////
do { o

loop.push back(edge.endPt->index);) A
curEdge = curEdge->next;

} while (curEdge != edge);

return loop;

b

GODCONF.COM

14

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop (HalfEdge *edge)
{
IndexList loop;
HalfEdge *curkEdge = edge;
do { ~
loop.push back(edge.endPt->index);) \\\\‘\;
curEdge = curEdge->next;
} while (curEdge != edge);
return loop;

b

GODCONF.COM

15

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop (HalfEdge *edge)
{
IndexList loop;
HalfEdge *curkEdge = edge;
do {
loop.push back(edge.endPt->index);
curEdge = curEdge->next;
} while (curEdge != edge); //

return loop; 0
bi -

GODCONF.COM

16

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop (HalfEdge *edge)
{
IndexList loop;
HalfEdge *curkEdge = edge;
do {
loop.push back(edge.endPt->index);
curEdge = curEdge->next;

} while (curEdge != edge);

b

return loop; o \\\\\\\‘

GODCONF.COM

17

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop (HalfEdge *edge)
{
IndexList loop;
HalfEdge *curkEdge = edge;
do {
loop.push back(edge.endPt->index);
curEdge = curEdge->next;
} while (curEdge != edge);
return loop;

b

GODCONF.COM

18

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Simple Traversals
Find vertex loop defined by a half edge

IndexList FindVertexLoop (HalfEdge *edge)
{
IndexList loop; ¢ o
HalfEdge *curkEdge = edge;
do {
loop.push back(edge.endPt->index);
curEdge = curEdge->next;
} while (curEdge != edge);

return loop;

Note that we add each new edge in constant time, so the net
cost is O(n), where n is the number of edges in the loop.

19

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Simple Traversals
Find edges of 1-ring around vertex

EdgeList FindlRingEdges (HalfEdgeVert *vert)
{
Edgelist ring;
HalfEdge *curEdge = vert->halfEdge;
do {
ring.push back(curEdge);
curEdge = curEdge->next->opposite;
} while (curEdge != vert->halfEdge);
return ring;

b

I

20

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

{

b

Simple Traversals
Find edges of 1-ring around vertex

EdgeList FindlRingEdges (HalfEdgeVert *vert) 4
‘;\\\
Edgelist ring;
—_— o
HalfEdge *curEdge = vert->halfEdge; - ///
dO{) \

ring.push back(curEdge);

curEdge = curEdge->next->opposite;
} while (curEdge != vert->halfEdge);

return ring;

“Valence” : number of edges in
the 1-ring neighborhood of vertex

The collection of faces that immediately touch the vertex of
interest is called the “1-ring neighborhood”

Supposed you needed to find all faces connected to a
collection of vertices

You can use the approach shown here to collect faces for each
vertex

Use marker values to avoid collecting a given face more than
once

21

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Simple Operations
Split an edge

HalfEdge edgel;
HalfEdge edge2 = edgel.opposite;

GAME DEVELOPERS CONFERENCE" 2013

Simple Operations
Split an edge

HalfEdge edge2 = edgel.opposite;
HalfEdge edgel b = new HalfEdge;

edgel b.EndPt = edgel.EndPt;
edgel b.face = edgel.face;
edgel b.next = edgel.next;
edgel.EndPt = splitVert;
edgel.next = edgel b;

edgel b.EndPt.halfEdge = edgel b;

MARCH 25-29, 2013

GODCONF.COM

23

GAME DEVELOPERS CONFERENCE" 2013

Simple Operations
Split an edge
HalfEdge edgel;
HalfEdge edge2 = edgel.opposite;

HalfEdge edgel b = new HalfEdge;
HalfEdge edge2 b

new HalfEdge;

edge2 b.EndPt = edge2.EndPt;
edge2 b.face = edge2.face;
edge2 b.next = edge2.next;
edge2.EndPt = splitVert;
edge2.next = edge2 b;

edge2 b.EndPt.halfEdge = edge2 b;

MARCH 25-29,2013 GDCONF.COM

24

GAME DEVELOPERS CONFERENCE" 2013

Simple Operations
Split an edge
HalfEdge edgel;
HalfEdge edge2 = edgel.opposite;

HalfEdge edgel b = new HalfEdge;
HalfEdge edge2 b

new HalfEdge;

edge2_b.opposite = edgel;

edge2.opposite = edgel b;

edgel b.opposite edge2;
edgel.opposite = edge2 b;

splitVert.halfEdge = edgel;

MARCH 25-29,2013 GDCONF.COM

25

GAME DEVELOPERS CONFERENCE" 2013

Simple Operations
Split a face

HalfEdge edgel = wvertl.halfEdge;
HalfEdge edge2 = edgel.next;
HalfEdge edge3 = wvert2.halfEdge;

el
HalfEdge = edge3.next; \\\G,ffégff”'

*See speaker notes below slide for an important consideration!

MARCH 25-29, 2013

vert2
—__\—__‘—ﬂ.,

edgez

vertl

’>\
“edges —

/

GODCONF.COM

IMPORTANT NOTE: If the face is part of a mesh, then

edgel is not necessarily the only edge whose endPt is

vertl. Similarly, edge3 is not necessarily the only edge whose
endPt is vert2. So, in the case of splitting a face in a
mesh, it may be necessary to traverse the ring of edges
around vertl (and vert2) to find the edge whose endPt

is vertl (vert2) and whose face is the face of interest.

26

GAME DEVELOPERS CONFERENCE" 2013

Simple Operations

Split a face

HalfEdge edgel = wvertl.halfEdge;
HalfEdge edge2 = edgel.next;
HalfEdge edge3 = wvert2.halfEdge;
HalfEdge = edge3.next;
HalfEdge newEdge = new HalfEdge;

edgel.next = newEdge;
newEdge.next = ;
newEdge. face = edgel. face;
newEdge.endPt = vert2;

N

MARCH 25-29, 2013

GODCONF.COM

27

GAME DEVELOPERS CONFERENCE" 2013

MARCH 25-29, 2013

Simple Operations

Split a face

HalfEdge edgel = wvertl.halfEdge;
HalfEdge edge2 = edgel.next;
HalfEdge edge3 = wvert2.halfEdge;
HalfEdge = edge3.next;
HalfEdge newEdge = new HalfEdge;

edgel.next = newEdge;
newEdge.next = ;
newEdge. face = edgel. face;
newEdge.endPt = vert2;
edgel.face.halfEdge = edgel;

/
N

GODCONF.COM

28

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Simple Operations
Split a face vert2

HalfEdge newEd2 = new HalfEdge; N

o]

k]

] /
newEd2.next = edge2; <] -

newkd?2.endPt = vertl; _,ff”’f;!:
vertl

edge3.next = newEd2;

newEdge.opposite = newEdZ2;
newEd2.opposite = newEdge;

GAME DEVELOPERS CONFERENCE" 2013

Simple Operations

Split a face

newFace = new HalfEdgeFace

newFace.halfEdge = edge2;

HalfEdge *curkEdge = edgel;

do {
curEdge->face = newFace;
curkEdge = curEdge->next;
} while (curEdge != edge2);

N

MARCH 25-29, 2013

vert2

-~ 0

newFac

,/ff”tr’;;rtl

/

GODCONF.COM

30

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Pop Quiz!

Find the open boundary vertices! .

- °
[

IndexList Boundary; 4
B y
Boundary = o o
FindVertexLoop (startEdge->opposite) ; 4
d N
%)
»
(But what if the boundary > [©
isn't connected properly?) S

*See speaker notes below slide for an important consideration!

Caution! If the outer edges weren’t connected properly to
begin with, will have to traverse edge rings (see following
slides) for each boundary vertex to locate the boundary edges
from the inside. This is more expensive. Best to make sure the
data structure is properly created and maintained, in order to
extract the best performance.

With regard to exterior boundary connectivity, the half edge
data structure is difficult to work with when individual
triangles or triangle groups touch at a single vertex. The lack
of a common edge leads to topological ambiguity with respect
to the orientation of the open boundary edges. As a way of
visualizing this, consider two triangles that share one vertex,
that happen to be coplanar. As you traverse the outside
boundary of one triangle, reaching the common vertex, which
edge of the other triangle do you move to? You may decide
that it is one particular edge, based on a visualization or
drawing of the two triangles. You would possibly choose the
edge that visually suggests a counterclockwise traversal. This
is not necessarily right and not necessarily wrong. Either
triangle could be twisted about the common vertex without

31

changing the topology, and this is where the ambiguity arises. There
simply is not one correct choice for the half edge connectivity when
one triangle or set of triangles touches another at just a single
vertex without a common edge. It is possible to resolve this using
geometric (not topological) reasoning, in some cases.

The problem described above can arise when constructing a half
edge model from a simple indexed mesh (or polygon soup), even
when the model ultimately has no scenario like the one described.
To avoid the ambiguity while constructing a half edge model from a
simple mesh, it is best to only construct interior edges and faces
until you have added all vertices and triangles to the half edge
model. In some cases, when you add a new face, your new interior
edges will fill in the HE.opposite field of some existing half edge.
This is the case whenever you add a new face with an edge that is
adjacent to the interior edge of an existing face. Those edges/faces
are naturally resolving themselves as being part of the interior of
the mesh. In the end, some edges will have HE.opposite == NULL.
You can fill those in as the last step, and use vertex 1 ring traversals
to fill in the HE.next ordering around the boundary (except, of
course, in the case of a single shared vertex.)

31

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

What can we do with this?

» Build a navigation mesh

» Model an underlying terrain or navigation
surface

o "Imprint” obstructions by splitting edges
» Split faces at obstruction boundaries

» Remove faces under obstructions by setting
face pointer of loop edges to NULL

32

GAME DEVELOPERS CONFERENCE" 2013

What can we do with this?

o Traverse navigation mesh
o Either for player or NPC

« Knowing which navigation face
object is currently on, use Half
Edge operations to determine
movement

MARCH 25-29, 2013

GODCONF.COM

33

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

What can we do with this?

o Implement a 3D modeling application

o Use Half Edge (or other data structure) as
underlying data representation

 Implement face, edge, vertex selection

» Provide options to locally modify mesh based
on selections

34

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

What can we do with this?

o Trim a mesh against a cutting plane
o Step 1: Split edges that cross the plane
o Step 2: Split faces with 2 or more split edges
o Step 3: Delete faces on trimmed side of plane
o Step 4: Find open boundary

Step 5: Triangulate the boundary

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Intersection of edge and plane

« Plane equation = > v2
n-P=d L
P“ l)ims - Iine(tims)

e Line equation

f)!ine = ‘71 +t(‘72 _‘_’;1)
« Intersection point /
{ _ (d B ﬁ) 1_/;l) o vl

")

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Rendering the geometry

o Convert into GPU friendly format
o Maintain vector of all vertices during editing
« Maintain vector of all faces during editing
o To convert for rendering on modern GPU’s:
« Triangulate all faces

« Create VBO based on vector of vertices and per-vertex
data such as normal, tangent, UV...

« Create element array buffer based on faces
« Use graphics API to render

37

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Demo

38

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

What can go wrong?

e TOlerance issues /

» Edges not quite collinear
eLocation of intersection point is highly sensitive

» Points nearly collocated
«Possible creation of very short/degenerate edges

« On which side of an edge is a point?
o Which face near an edge does a ray intersect?

39

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Tolerant Geometry

» Treat edges and points as thick primitives

» Assign a radius to be used in intersection
and proximity testing
1 1
Is point on edge? p\

On left face?

On right face? \
2 2

Ambiguous answer depends on: Point is ON the edge
- Edge from 1->2 or 2->1

- Location

40

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Part 2: Higher order surface modeling

41

Higher fidelity geometry

 Modern games display :
models with extraordinary ‘ ‘
geometric detail

« HOw can we represent

such detail? A\
/(I
« More triangles?

+« Yes, but how? And where?

42

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Subdivision surfaces

« Recursively subdivide \<: @

primitives
« Adjust vertex positions

o Outcome is a smooth, high
fidelity surface

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Subdivision surfaces — CPU Approach

o Planar subdivision using Half Edge data structure

HE1

Original Split All Edges Triangulate

44

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Subdivision surfaces — CPU Approach

« Smoothing step

» Adjust vertex positions to smooth surface
e Process

« Pre-smoothing vertex positions are V-

o Create a new vertex array, V*

e« Apply V* = SV- (see slide notes for important details!)

« S, a local “subdivision matrix,” is a coefficient matrix that computes a
weighted average at each vertex, based on pre-smoothed locations of
neighborhood

« Weighting factors are a function of a valence(vert)
« Half edge data structure useful to traverse neighborhood

o Example: Catmull-Clark subdivision surfaces

Implementations of subdivision surfaces typically do not apply
a global subdivision matrix. A global subdivision matrix, which
updates all vertex positions in a single step, is difficult to
formulate accurately, in part due to the need to properly
handle extraordinary vertices (vertices with a non-standard
valence...see references). The global subdivision matrix also
makes it more expensive to perform local subdivision
refinement, which you might want to apply in a view-
dependent level-of-detail application. The reason for the
added expense is that a global subdivision matrix would
operate on even vertices/edges/faces that are not currently
subdivided. Implementations usually smooth the vertices
around local neighborhoods, effectively using a local
subdivision matrix that is a function of the neighborhood
valence. Usually, smoothing is done locally, and in 3 phases:
1) new face vertex positions are computed first (if doing face
subdivision, which inserts a new vertex into each face...NOT
illustrated in this presentation); 2) new edge vertex positions,
from the edge splits illustrated in this presentation, are
computed next using appropriate coefficients and positions of
the pre-smoothed corner vertices and new face vertex
positions; and, 3) finally, the updated positions of the vertices

45

that existed before subdivision are computed using the new face
and edge vertex positions, based on the valence of the vertices.

If you are interested in implementing subdivision surfaces, please
consider reviewing the references and other literature. There is a
wealth of information available on theory and implementation
schemes.

45

Higher fidelity geometry

o More triangles? Yes, but...

e Large data size can become ‘ ‘
prohibitive

e CPU to GPU cost

o Cost to transform/animate A
every vertex ‘/.
« How can we solve this? b

46

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Higher order surfaces on GPU

e Continuously smooth

« Evaluate at any resolution ,, pd
« Basic modeling element T

« Control point net

o GPU tessellation and evaluation
e OpenGL 4/DirectX 11

47

GAME DEVELOPERS CONFERENCE" 2013

Rectangular Bicub

1 0 0 0 vV, V.
=33 0 0 VY,
3 -6 3 0 Vv, V,
-1 3 -3 1 V, V,

<

< < <

=)

<<:<<

MARCH 25-29, 2013

c Bézier Patch

WQ
/VS\//

GODCONF.COM

V13
<\ V14
'/-
V15
V1
V7 \ V16
V12)

Note that you can compute a u direction tangent at a
parametric patch point (u,v) by taking the u derivative of the
P(u,v) equation on this slide. And you can compute the v
direction tangent (or bitangent) at the same point by taking
the v deriviate of P(u,v). The local surface normal at P(u,v) is
the cross product of the tangent and bitangent. Usually you
need to normalize these before use.

48

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Rendering on the GPU
o OpenGL 4 tessellation

« Tessellation pipeline StEllens =)
Vertex | | Tessellation . Tessellation | | |
Shader Control sessgliation Evaluation | L |

Setup Patch
(u,v)

W [-

Fragment
Shader

49

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Use Half Edge to generate patches

e Given a closed mesh of tris or quads
o Create a patch per primitive

» Use half edge to extract full 16x16 (for
quads) control net using neighbor information

50

GAME DEVELOPERS CONFERENCE" 2013

Demo with code

MARCH 25-29, 2013

GODCONF.COM

51

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Final Remarks - Topology

« Why use topological data structures such as HE?
« Rapid access to complete local neighborhood (1-ring,
2-ring...) of face/vertex/edge
« Elegant, well-defined interface for editing/modifying
mesh
« Use of markers supports sophisticated selection modes
e Good support for editing subdivision surfaces

52

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Final Remarks - Topology

o Considerations

« Topological data structures typically are not GPU
friendly

« Alternatively, could use spatial partition scheme to
rapidly modify GPU-friendly vertex/index arrays

« E.g., use spatial hash or Kd-tree to locate faces/vertices/edges
for an edit operation
« May need to pack or “defragment” arrays periodically to optimize

memory usage, since editing operations may necessarily leave
portions of linear arrays unused

53

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Final Remarks - Higher Order Surfaces

« Use tessellation sparingly, as it is expensive

« Displacement maps over a GPU-tessellated triangle mesh
« Alternative to modeling a large number of higher order patches
» Especially good for games
« Many game engine art pipelines support this approach

54

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

References and Resources

o These slides
« See http://www.gdcvault.com after GDC
« References for meshes, half-edge
o http://www.cs.cornell.edu/courses/cs4620/2010fa/lectures/05meshe
s.pdf (Shirley & Marschner)

« http://fgiesen.wordpress.com/2012/02/21/half-edge-based-mesh-
representations-theory/
« Nice discussion of invariants

« See also the followup: http://fgiesen.wordpress.com/2012/03/24/half-edge-based-
mesh-representations-practice/

e http://people.csail.mit.edu/indyk/6.838-old/handouts/lec4.pdf

« Polygon triangulation

55

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

References and Resources

References for subdivision surfaces

Warren, Joe, and Henrik Weimer, Subdivision Methods for Geometric Design, Morgan
Kauffman Publishers, 2002

Zorin, Denis, et al., “Subdivision for Modeling and Animation,” SIGGRAPH 2000 Course
Notes, http://www.mrl.nyu.edu/publications/subdiv-course2000/coursenotes00.pdf, 2000

« References for OpenGL tessellation

http://prideout.net/blog/?tag=tessellation

References for robustness issues

L]

Christer Ericson, Real-time Collision Detection

Jonathan Shewchuk’s, "Adaptive Precision Floating-Point Arithmetic and Fast
Robust Predicates for Computational Geometry”

John Hobby, “Practical Segment Intersection with Finite Precision Output”
(snap rounding)

56

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Questions?

57

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Backup Slides

58

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Manifold Topology

» Each edge joins exactly two faces
o Model is said to be watertight

» Open edges that join to one face

are allowed
» Modeling operation consistency Non-manifold
rules Topology

e "“Invariants”

This is our focus. Simple models with at most two
triangles/polygons touching on common edges.

59

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Backup slides: half edge gotchas

60

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

What can go wrong?

« Be careful when clipping concave face
« Clipping against a plane can generate multiple loops
o User marker flags to tag start and stop points
o Recursively traverse to find ears to clip

/O
S

61

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

What can go wrong?

 Some scenarios produce multiple loops

« Holes in a face

» Requires additional triangulation logic

« Nested loops: auxiliary edge to convert to
simple polygon

o Multiple un-nested loops: locate and
triangulate each loop separately

*See speaker notes below slide for an important consideration!

NOTE: It is straightforward to triangulate/cover an open loop
that is on a plane. Or one that is approximately planar. If the
edges on the loop are not all coplanar, then it is trickier. It
may be possible to find some projection plane in which to
perform the triangulation connectivity (a plane in which the
projection of the edge loop is a simple polygon with all the
original edges visible), but a different triangulation will result
from different project plane choices. Ultimately, the triangles
produced will not be coplanar if the edges were not coplanar,
of course.

62

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Backup slides: robustness issues

63

GAME DEVELOPERS CONFERENCE" 2013

Orientation Inversion

MARCH 25-29, 2013

/

GODCONF.COM

This grid is a portion of the representable floating point
numbers. These two triangles are defined by corners that are
representable points. Points not lying on the intersection of
horizontal and vertical grid lines are not representable. Any

unrepresentable number is approximated by a representable
number.

64

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013

Orientation Inversion

GODCONF.COM

This intersection point is not representable, so the floating
point math system will approximate it with the nearest
representable number coordinate.

65

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Orientation Inversion

66

GAME DEVELOPERS CONFERENCE" 2013

Orientation Inversion

>

MARCH 25-29,2013 GDCONF.COM

67

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Orientation Inversion

Polygon is no longer simple (it self-intersects) and no longer
has a consistent orientation

68

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Cascades of Extraneous Intersections

o

Here, though the floating point grid is not shown, you will see
that a single non-representable intersection point can lead to
a chain of intersections that aren’t present in the original

perfect geometry.

69

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GODCONF.COM

Cascades of Extraneous Intersections

70

