GC

Low-level Thinking in High-level

Shading Languages
A
@

GAME DEVELOPERS CONFERENCE'

SAN FRANCISCO, CA
MARCH 25-28, 2013
EXPO DATES: MARCH 27-28

Emil Persson
Head of Research, Avalanche Studios

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Problem formulation

“Nowadays renowned industry luminaries include
Shader snippets in their GDC presentations where
trivial transforms would have resulted in a faster
shader”

This topic has grown on me over the years as | have
seen shader code on slides at conferences, by
brilliant people, where the code could have been
written in a much better way. Occasionally | hear an
“this is unoptimized” or “educational example”
attached to it, but most of the time this excuse doesn't
hold. | sometimes sense that the author may use
“‘unoptimized” or “educational” as an excuse because
they are unsure how to make it right. And then again,
code that's shipping in SDK samples from IHVs aren't
always doing it right either.

When the best of the best aren't doing it right, then
we have a problem as an industry.

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Goal of this presentation

“Show that low-level thinking is still relevant today”

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Background

. Inthe good ol' days, when grandpa was young ...

. Shaders were short

. SM1: Max 8 instructions, SM2: Max 64 instructions
. Shaders were written in assembly

. Already getting phased out in SM2 days
. D3D opcodes mapped well to real HW

. Hand-optimizing shaders was a natural thing to do
def co, 0.3f, 2.5f, @, © def co, -0.75f, 2.5f, @, @

tex1ld re, te texld re, te
sub re, re, co.x mad re, re, cl.y, c0.x
mul re, re, cé.y

(x—0.3)*2.5 = x* 2.5+ (-0.75)

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Background

. Low-level shading languages are dead
. Unproductive way of writing shaders

. No assembly option in DX10+

. Nobody used it anyway
. Compilers and driver optimizers do a great job (sometimes ...)
. Hell, these days artists author shaders!

. Using visual shader editors

. With boxes and arrows
. Without counting cycles, or inspecting the asm
. Without even consulting technical documentation
. Argh, the kids these day! Back in my days ..

. Consequently:
. Shader writers have lost touch with the HW

Assembly languages are dead. The last time | used
one was 2003. Since then it has been HLSL and
GLSL for everything. | haven't looked back.

So shading has of course evolved, and it is a natural
development that we are seeing higher level
abstractions as we're moving along. Nothing wrong
with that. But as the gap between the hardware and
the abstractions we are working with widens, there is
an increasing risk of losing touch with the hardware. If
we only ever see the HLSL code, but never see what
the GPU runs, this will become a problem. The
message in this presentation is that maintaining a
low-level mindset while working in a high-level
shading language is crucial for writing high
performance shaders.

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Why bother?

. How your shader is written matters!

return (n_dot 1 * atten) * (shadow * ao) * (Diffuse * LightColor);

3 \&e Ry LS
RO.y, Re.y, Rl.y VEC_e21
RO.Z, X VEC_120

)
RO.x,

2
RO.x,
Re.y, Y,
R@.z, R8.x,

This is a clear illustration of why we should bother
with low-level thinking. With no other change than
moving things around a little and adding some
parentheses we achieved a substantially faster
shader. This is enabled by having an understanding
of the underlying HW and mapping of HLSL
constructs to it.

The HW used in this presentation is a Radeon HD
4870 (selected because it features the most readable
disassembly), but most of everything in this slide
deck is really general and applies to any GPU unless
stated otherwise.

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Why bother?

. Better performance

. “We're not ALU bound ...”

. Save power
. More punch once you optimize for TEX/BW/etc.
. More headroom for new features

. “We'll optimize at the end of the project ...”
. Pray that content doesn't lock you in ...
. Consistency
. There is often a best way to do things
. Improve readability

. It's fun!

Hardware comes in many configurations that are
balanced differently between sub-units. Even if you
are not observing any performance increase on your
particular GPU, chances are there is another
configuration on the market where it makes a
difference.

Reducing utilization of ALU from say 50% to 25%
while bound by something else (TEX/BW/etc.)
probably doesn't improve performance, but lets the
GPU run cooler. Alternatively, with today's fancy
power-budget based clocks could let the hardware
maintain a higher clock-rate than it could otherwise,
and thereby still run faster.

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

"The compiler will optimize it!”

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

"The compiler will optimize it!”

. Compilers are cunning!
. Smart enough to fool themselves!
. However:
. They can't read your mind
. They don't have the whole picture
. They work with limited data

. They can't break rules
. Well, mostly ... (they can make up their own rules)

Compilers only understand the semantics of the
operations in the shader. They don't know what you
are trying to accomplish. Many possible optimizations
are “unsafe” and must thus be done by the shader
author.

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

"The compiler will optimize it!”

Will it go mad? (pun intended)

float main(float x : TEXCOORD) : SV_Target

{
}

return (x + 1.8f) * 0.5F;

This is the most trivial example of an piece of code
you may think could be optimized automatically to
use a MAD instruction instead of ADD + MUL,
because both constants are compile time literals and
overall very friendly numbers.

10

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013

"The compiler will optimize it!”

Will it go mad? (pun intended)

float main(float x : TEXCOORD) : SV_Target

{

return (x + 1.8f) * 0.5F;

What about the driver?

add r@.x, ve.x, 1(1.000000)
mul 0@.x, re.x, 1(0.5600000)

GOCONF.COM

Turns out fxc is still not comfortable optimizing it.

11

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

"The compiler will optimize it!”

Will it go mad? (pun intended)

float main(float x : TEXCOORD) : SV_Target

{
return (x + 1.0f) * 0.5f;

00 ALU: ADDR(32) CNT(2)
add r@.x, vo.x, 1(1.000000) © y: ADD =y RO 1.0f
mul 00.x, r@.x, 1(0.500000) 1 x: MUL_e RO.x, PVO.y, 0.5
@1 EXP_DONE: PIXQ, RO.x___

@

The driver is bound by the semantics of the provided
D3D byte-code. Final code for the GPU is exactly
what was written in the shader.

You will see the same results on PS3 too, except in
this particular case it seems comfortable turning it into
a MAD. Probably because the constant 1.0f there.
Any other constant and it behaves just like PC here.

The Xbox360 shader compiler is a funny story. It just
doesn't care. It does this optimization anyway,
always, even when it obviously breaks stuff. It will
slap things together even if the resulting constant
overflows to infinity, or underflows to become zero.
1.#INF is your constant and off we go! Oh, zero, |
only need to do a MUL then, yay! There are of course
many more subtle breakages because of this, where
you simply lost a whole lot of floating point precision
due to the change and it's not obvious why.

12

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Why not?
. The result might not be exactly the same

. May introduce INFs or NaNs

. Generally, the compiler is great at:
. Removing dead code
. Eliminating unused resources
. Folding constants
. Register assignment
. Code scheduling
. But generally does not:
. Change the meaning of the code
. Break dependencies
. Breakrules

We are dealing with IEEE floats here. Changing the
order of operations is NOT safe. In the best case we
get the same result. We might even gain precision if
order is changed. But it could also get worse,
depending on the values in question. Worst case it
breaks completely because of overflow or underflow,
or you might even get a NaN where the unoptimized
code works.

Consider x = 0.2f in this case:
sqgrt(0.1f * (0.2f - x)) returns exactly zero
sqrt(0.02f - 0.1f * x) returns NaN

The reason this breaks is because the expression in

the second case returns a slightly negative value

under the square-root. Keep in mind that neither of

0.1f, 0.2f or 0.02f can be represented exactly as an

IEEE float. The deviation comes from having properly
rounded constants. It's impossible for the compiler to

predict these kinds of failures with unknown inputs. 13

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Therefore:

Write the shader the way you want the hardware to run it!

That means:
Low-level thinking

Relying on the shader compiler to fix things up for
you is just naive. It generally doesn't work that way.

What you write is what you get. That's the main
principle to live by.

14

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Rules
. D3D10+ generally follows IEEE-754-2008 [']
. Exceptions include []
. 1 ULP instead of 0.5
. Denorms flushed on math ops
. Except MOVs
. Min/max flush on input, but not necessarily on output
. HLSL compiler ignores:
. The possibility of NaNs or INFs
. €.0.x*0=0, despite NaN * 0 = NaN
. Except with precise keyword or IEEE strictness enabled
. Beware: compiler may optimize away your isnan() and isfinite() calls!

While the D3D compiler allows itself to ignore the
possibility of INF and NaN at compile time (which is
desirable in general for game development), that
doesn't mean the driver is allowed to do so at
runtime. If the D3D byte-code says “multiply by zero”,
that's exactly what the GPU will end up doing.

15

Universal* facts about HW

. Multiply-add is one instruction — Add-multiply is two
. abs, negate and saturate are free

. Except when their use forces a MOV
. Scalar ops use fewer resources than vector

. Shader math involving only constants is crazy
. Not doing stuff is faster than doing stuff

* For a limited set of known universes

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

This has been true on all GPUs | have ever worked
with. Doesn't mean there couldn't possibly be an
exception out there, but | have yet to see one.

Some early ATI cards had a pre-adder such that add-
multiply could be a single instruction in specific
cases. There were some restrictions though, like no
swizzles and possibly others. It was intended for fast
lerps IIRC. But even so, if you did multiply-add
Instead of add-multiply you freed up the pre-adder for
other stuff, so the recommendation still holds.

16

GAME DEVELOPERS CONFERENCE" 2013

. Any linear ramp — mad
. With a clamp — mad_sat

MARCH 25-29, 2013 GOCONF.COM

MAD

. lIfclamp is not to [0, 1] — mad_sat + mad
. Remapping a range == linear ramp

. MAD not always the most intuitive form

. MAD =x * slope +

. Generate slope & offset from intuitive params

(x — start) * slope

(x — start) / (end — start)

(x — mid_point) / range + 0.5f
clamp(s, *+ (X-sy)*(e,-s,)/(€5-Sy), S4, €4)

—

—

—

—

X * slope +

X *(1.0f/ (end - start)) +

X *(1.0f / range) +

saturate(x * (1.0f/(e,-s,)) +)*(ey-s,) +

Any sort of remapping of one range to another should
normally be a single MAD instruction, possibly with a
clamp, or in the most general case be MAD_SAT +

MAD.

The examples here are color-coded to show what the
slope and offset parts are. Left is the “intuitive”
notation, and right is the optimized.

Example 1: Starting point and slope from there.
Example 2: Mapping start to end into 0-1 range
Example 3: Mapping a range around midpoint to 0-1

Example 4: Fully general remapping of [sO, e0] range
to [s1, el] range with clamping.

17

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

MAD
. More transforms

X *(1.0f = x) o —X*X
X * (y + 1.0f) — X *y+
(x+c)*(x-c) — X * X+
(x+a)/b — X*(1.0f/b)+
Xx+=a*b+c*d; — +=a *b;

+=c * d;

More remapping of expressions. All just standard
math, nothing special here.

The last example may surprise you, but that's 3
Instructions as written on the left (MUL-MAD-ADD),
and 2 on the right (MAD-MAD). This is because the
semantics of the expression dictates that (a*b+c*d) is
evaluated before the += operator.

18

Division
. a/ b typically implemented as a * rcp(b)
. D3D asm may use DIV instruction though

. Explicit rcp() sometimes generates better code
. Transforms

al(x+b) — rcp(x * (1.0t /a) +)
al/(x*Db) — rep(x) * (a/b)

rep(x * (b / a))
al/(x*b+c) o rcp(x*(b/a)+)
(x+a)/x — + a * rcp(x)
(x*a+b)/x — + b * rep(x)

. It's all junior high-school math!

. It's all about finishing your derivations! [3]

Given that most hardware implement division as the
reciprocal of the denominator multiplied with the
numerator, expressions with division should be
rewritten to take advantage of MAD to get a free
addition with that multiply. Sadly, this opportunity is
more often overlooked than not.

19

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

MADnNess

. From our code-base:

float AlphaThreshold(float alpha, float threshold, float blendRange)
{
float halfBlendRange = @.5f*blendRange;
threshold = threshold*(1.8f + blendRange) - halfBlendRange;
float opacity = saturate((alpha - threshold + halfBlendRange)/blendRange);
return opacity;

: ADD , kce[e].y, 1.
z: MUL_e , Kce[e]l.y, e.

mul r@.x, cba[e].y, 1(0.500000)
add r@.y, cbe[e].y, 1(1.000000)
mad r@.x, cbe[@].x, ré.y, -re.x

of

5

: RCP_e .y, Kce[e].y

¢: MULADD e , Kce[®].x, PVe.y, -PV@.z

W: ADD , RB.X, -PV1.x

z: MULADD e __ , Kce[e].y, ©.5, PV2.w |

x: MUL_e .X, PV3.z, RO.y CLAMP N /Z
Z A

A <
il
A
\

3

add re.x, -re.x, ve.x
mad r@.x, cbea[@].y, 1(0.50008), ro.x
div_sat o®.x, re.x, cbhe[e].y

A quick glance at this code may lead you to believe
It's just a plain midpoint-and-range computation, like
In the examples in a previous slide, but it's not. If the
code would be written in MAD-form, this would be
Immediately apparent.

However, in the defense of this particular code, the
Implementation was at least properly commented with
what it is actually computing. Even so, a seasoned
shader writer should intuitively feel that this
expression would boil down to a single MAD.

20

GAME DEVELOPERS CONFERENCE" 2013

MARCH 25-29, 2013 GOCONF.COM

MADness
. AlphaThreshold() reimagined!

float AlphaThreshold(float alpha, float scale, float offset)
{

return saturate(alpha * scale + offset);

}

mad_sat 08.x, v@.x, cbe[@].x, cbe[@].y © x: MULADD e R@.x, RO®.x, KCO[@].x, KCe[@].y CLAMP

L

As we simplify the math all the way it gets apparent
that it's just a plain MAD computation. Once the scale
and offset parameters are found, it's clear that they
don't match the midpoint-and-range case.

21

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Modifiers

. Free unless their use forces a MOV
. abs/neg are on input
. saturate is on output

float main(float2 a : TEXCOORD) : SV_Target float main(float2 a : TEXCOORD) : SV_Target
{ {

return abs(a.x) * abs(a.y); return abs(a.x * a.y);

RO.x, |R@.x|,

You want to place abs() such that they happen on
Input to an operation rather than on output. If abs() is
on output another operation has follow it for it to
happen. If more stuff happens with the value before it
gets returned, the abs() can be rolled into the next
operation as an input modifier there. However, if no
more operations are done on it, the compiler is forced
to insert a MOV instruction.

22

GAME DEVELOPERS CONFERENCE" 2013

float main(float2 a : TEXCOORD) : SV_Target

{

Modifiers

Free unless their use forces a MOV

. abs/neg are on input
. saturate is on output

{

return -a.x * a.y;

float main(float2 a

return -(a.x * a.y);

RO. X,

MARCH 25-29, 2013

RO.x,
-PVO.y

: TEXCOORD) : SV_Target

RO.y

GOCONF.COM

Same thing with negates.

23

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Modifiers

. Free unless their use forces a MOV

. abs/neg are on input
. saturate is on output

float main(float a : TEXCOORD) : SV_Target float main(float a : TEXCOORD) : SV_Target

{ {
return 1.8f - saturate(a); return saturate(1.ef - a);

}

@ y: MoV , R@.x CLAMP 0.%, -R8.x, 1.0f CLAMP
1 x: ADD R@.x, -PVe.y, 1.ef

saturate() on the other hand is on output. So you
should avoid calling it directly on any of your inputs
(interpolators, constants, texture fetch results etc.),
but instead try to roll any other math you need to do
on it inside the saturate() call. This is not always
possible, but prefer this whenever it works.

24

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Modifiers

. saturate() is free, min() & max() are not

. Use saturate(x) even when max(x, 0.0f) or min(x, 1.0f) is sufficient
. Unless (x > 1.0f) or (x < 0.0f) respectively can happen and matters
. Unfortunately, HLSL compiler sometimes does the reverse ...
. saturate(dot(a, a)) — “Yay! dot(a, a) is always positive” — min(dot(a, a), 1.0f)

. Workarounds:

. Obfuscate actual ranges from compiler
. e.g. move literal values to constants
. Use precise keyword
. Enforces IEEE strictness
. Be prepared to work around the workaround and triple-check results
. The mad(x, slope, offset) function can reinstate lost MADs

Most of the time the HLSL compiler doesn't know the
possible range of values in a variable. However,
results from saturate() and frac() are known to be in
[0,1], and in some cases it can know a variable is
non-negative or non-positive due to the math
(ignoring NaNs). It is also possible to declare unorm
float (range [0, 1]) and snorm float (range [-1, 1])
variables to tell the compiler the expected range.
Considering the shenanigans with saturate(), these
hints may actually de-optimize in many cases.

25

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

HLSL compiler workaround
. Using precise keyword

. Compiler can no longer ignore NaN
. saturate(NaN) ==

float main(float3 a : TEXCOORD®) : SV_Target float main(float3 a : TEXCOORD®) : SV_Target

{ {

return saturate(dot(a, a)); return (precise float) saturate(dot(a, a));

dp3 r@.x, vO.xyzx, v@.Xyzx dp3_sat 00.x, v@.xyzx, vO.Xyzx
min 0@.x, r@.x, 1(1.000000)

: DOT4_e ,» RO.x, RO.x X: DOT4_e RO.x, RO.x, RO.x CLAMP
: DOT4_e , RB.y, RO.y : DOT4_e , RO.y, RO.y CLAMP
z: DOT4_e » RB.z, RO.z z: DOT4_e » Ro.z, RO.z CLAMP

: DOT4_e (9x80000000, -0.0f).x, 0.0f v: DOT4_e , (Px80000000, -8.9f).x, 0.8f CLAMP

2
<: MIN_DX1@ R@.x, PVe.x, 1.ef

The reason precise works is that it enforces IEEE
strictness for that expression. saturate(x) is defined
as min(max(x, 0.0f), 1.0f). If x is NaN the result
should be 0. This is because min or max with one
parameter as NaN returns the other parameter
according to the IEEE-754-2008 specification. So
max(NaN, 0.0f) = 0.0f. Would this be optimized away
the final result would be 1.0f instead in this case.

This is rare case of precise actually improving
performance rather than reducing it. Naturally, the
preferred way would be for the compiler to treat
saturate() as a first-class citizen rather than as a
sequence of max and min, which would have avoided
this problem in the first place.

26

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Built-in functions
. rep(), rsqrt(), sgrt()* map directly to HW instructions

. Equivalent math may not be optimal ...

. 1.0f/ x tends to yield rcp(x)

. 1.0f / sqgrt(x) yields rcp(sqrt(x)), NOT rsqgrt(x)!
. exp2() and log2() maps to HW, exp() and log() do not

. Implemented as exp2(x * 1.442695f) and log2(x * 0.693147f)
. pow(Xx, y) implemented as exp2(log2(x) *y)

. Special cases for some literal values of y

. Z¥ pow(x, y) =exp2(log2(x) *y + log2(z))

. Free multiply if log2(z) can be precomputed

. e.g. specular_normalization * pow(n_dot_h, specular_power)

sgrt() maps to a single instruction on DX10+ HW.
Current-gen consoles do not have it, so it will be
Implemented as rcp(rsqri(x)). Note that implementing
sgrt(x) as x * rsgrt(x) typically is preferable to calling
sgrt(x) on these platforms, whereas on DX10+ GPUs
you should prefer just calling sgrt(x).

27

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Built-in functions
. sign()
. Takes care of zero case
. Don'tcare? Use (x>=0)?1:-1
. osign(x)*y —» (x>=0)?y:-y
. sin(), cos(), sincos() map to HW
. Some HW require a short preamble though
. asin(), acos(), atan(), atan2(), degrees(), radians()
. You're doing it wrong!
. Generates dozens of instructions
. cosh(), sinh(), log10()

. Who are you? What business do you have in the shaders?

Conditional assignment is fast on all GPUs since the
dawn of time. There is rarely a good reason to use
sign(), or for that matter step(). A conditional
assignment is not only faster, but is often also more
readable.

Trigonometric functions are OK. There are valid use
cases, but working with angles is often a sign that
you didn't work out the math all the way through.
There could be a more elegant and faster solution
using say a dot-product.

Inverse trigonometric functions are almost
guaranteed a sign that you're doing it wrong.
Degrees? Get out of here!

28

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Built-in functions
. mul(v, m)

« v.x*m[0] + vy *m[1] +v.z*m[2] + v.w * m[3]
. MUL - MAD - MAD — MAD

. mul(float4(v.xyz, 1), m)
. v.xX*m[0] +v.y *m[1] + v.z * m[2] + m[3]
. MUL — MAD - MAD — ADD

. v.x*m[0] + (v.y * m[1] + (v.z * m[2] + m[3]))
. MAD - MAD - MAD

A w value of 1.0f is a very common case. This ought
to be written explicitly in the shader for the benefit of
the shader compiler, rather than relying on implicit
1.0f from the vertex fetch. Unfortunately, it doesn't boil
down to MAD-MAD-MAD by default. With mul()
decomposed and a few parentheses it can be
achieved though. You could roll it into your own mul()-
like function for readability.

29

GAME DEVELOPERS CONFERENCE" 2013

MARCH 25-29, 2013

GOCONF.COM

{

float4 main(floatd v :

return mul(float4(v.xyz, 1.ef), m);

¢ MUL_e
: MUL_e
: MUL_e
N: MUL_e
<: MULADD_e
y: MULADD_e
: MULADD_e
: MULADD_e
: MULADD_e
: MULADD e
: MULADD_e
. MULADD_e
x: ADD
y: ADD
: ADD
: ADD

Built-in functions

TEXCOORD@) : SV_Position floatd4 main(floatd v :

KCB[1].u z: MULADD_e
Kce[1]. : MULADD_e
Kce[1]. ¢ MULADD e
Kce[1].x : MULADD_e
Kce[e]. ¢: MULADD_e
kce[e]. : MULADD_e
Kce[e]. : MULADD_e
kce[e]. : MULADD e
Kce[2].u ¢: MULADD_e
Kce[2].z y: MULADD e
Kce[2]. : MULADD e
Kce[2].x W: MULADD_e
Kca[3].x

KCo[3].)

Kce[3].

KCO[3].u

= N X

N W X

=

TEXCOORD®) : POSITION

return v.x*m[@] + (v.y*m[1] + (v.z*m[2] + m[3]));

Kce[2].
Kce[2].
KCB[2] .
Kce[2].z
KCB[1].u
Kce[1].
Kce[1].
KCO[1].x
Kce[e].x
Kce[e].
Kco[e].
Kce[e].

Kce[3].
Kce[3].
KCe[3].
Kce[3].
PV1.x
PV1.y
RO.z
RO.w
PV2.
PV2.z
PV2.
PV2.Xx

Note that the number of instruction slots did not

decrease due to a read-port limitation on constants
on the HW. However, we freed up lanes that can be
used for other work. In realistic cases the shader will
end up using fewer instruction slots and run faster as

those freed up lanes will be filled with other work.

30

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Matrix math

. Matrices can gobble up any linear transform
. On both ends!

float4 pos =
{ float4 pos = { tex_coord.xy, depth, 1.0f };

tex_coord.x * 2.0f - 1.0f,
1.0f - 2.0f * tex coord.y, float4 1 pos = mul(pos, new mat);
depth, 1.eT

s

float3 light_vec = 1 _pos.xyz / 1_pos.w;
float4 w_pos = mul(cs, mat);

float3 world_pos = w_pos.xvz / W pos.w;
float3 light_vec # world_pos - LightPos;

float4x4 pre_mat = Scale(2, -2, 1) * Translate(-1, 1, @);
floatdx4 post_mat = Translate(-LightPos);

float4x4 new_mat = pre_mat * mat * post_mat;

Here we are converting a screen-space texture
coordinate and depth value into a world-space
coordinate, which is then used for computing a light
vector. These transforms can be merged into the
same matrix. Naturally chained matrix transforms can
also be merged into the same matrix. We have had
real shaders where merging the transforms ended up
more than doubling the performance.

31

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Scalar math
. Modern HW have scalar ALUs

. Scalar math always faster than vector math

. Older VLIW and vector ALU architectures also benefit
. Often still makes shader shorter
. Otherwise, frees up lanes for other stuff

. Scalar to vector expansion frequently undetected

. Depends on expression evaluation order and parentheses
. Sometimes hidden due to functions or abstractions
. Sometimes hidden inside functions

All NVIDIA DX10+ GPUs are scalar based.

AMDs GCN architecture (HD 7000 series) is scalar
based. Earlier AMD DX10 and DX11 GPUs are VLIW.

Both AMD and NVIDIA DX9-level GPUs are vector
based. This includes PS3 and Xbox360.

32

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Mixed scalar/vector math
. Work out math on a low-level

. Separate vector and scalar parts

. Look for common sub-expressions

. Compiler may not always be able to reuse them!
. Compiler often not able to extract scalars from them!
. dot(), normalize(), reflect(), length(), distance()

. Manage scalar and vector math separately

. Watch out for evaluation order

. Expression are evaluated left-to-right
. Use parenthesis

normalize(), length(), distance() etc. all contain a dot()
call. The compiler only generates one call if they
match in code mixing these functions, but only for
exact matches. For instance, if you have length(a — b)
In your code, distance(a, b) will reuse the shared sub-
expression, whereas for distance(b, a) it won't.

33

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Hidden scalar math
. normalize(vec)
. vector in, vector out, but infermediate scalar values

. normalize(vec) = vec * rsqri(dot(vec, vec))

. dot() returns scalar, rsqrt() still scalar
. Handle original vector and normalizing factor separately

. Some HW (notably PS3) has built-in normalize()
. Usually beneficial to stick to normalize() there

. reflect(i, n) =i—2.0f * dot(i, n) * n
. lerp(a, b, c) implemented as (b-a) *c + a
. Ifcand either a or b are scalar, b *c + a * (1-c) is fewer ops

Instead of normalize(), you could roll a normfactor()
function that computes the scalar normalizing factor.
Any other scalar factor that needs to go in there could
then be multiplied into this factor before the final
multiply with the vector.

Double-check with PS3 if you support this platform as
it has a built-in normalize() that could be faster,
depending on lots of factors such as the phase of the
moon and whether you passed any virgin blood on
the command-line.

34

GAME DEVELOPERS CONFERENCE" 2013

Hidden scalar math

MARCH 25-29, 2013 GOCONF.COM

. 90.0f * normalize(vec) = 50.0f * (vec * rsqgri(dot(vec, vec)))

. Unnecessarily doing vector math

float3 main(float3 vec : TEXCOORD®) : SV_Target
{

return 50.0f * normalize(vec);

R@.x, RO.X

RO.y, RO.y

R@.z, RO.z

(ox80000000, -0.0f).

PV@. x

RO.y, PS1

RO.x, PS1

RO.z, PS1
: _ PV2.y, (©x42480000, 50.0f).x
! MUL_e . PV2.x, (©x42480000, 50.0f).x
. MUL_e .Z PV2.w, (©x42480000, 50.0f).x

float3 main(float3 vec: TEXCOORD) : SV_Target

{

return vec * (50.@f * rsqrt(dot(vec, vec)));

Wi MUL_e
x: MUL_e
: MUL_e
: MUL_e

RO.x, RO.x

RO.y, RO.y

RO.z, RO.z

(0x80000000, -90.0f).x, 0.0f
PVO. X

PS1, (©x42480000, 50.0f).x
RO.x, PV2Z.w

RO.y, PV2.w

RO.z, PV2.w

The straightforward way of making a vector be length
50.0f is to normalize it and then multiply by 50.0f,
which unfortunately is also slower than necessary.
This illustrates the benefit of separating the scalar
and vector parts of an expression.

35

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

q

Hidden common sub-expressions
. normalize(vec) and length(vec) contain dot(vec, vec)

. Compiler reuses exact matches
. Compiler does NOT reuse different uses

. Example: Clamping vector to unit length

float3 main(float3 v : TEXCOORD®) : SV_Target

{
if (length(v) > 1.0f)
v = normalize(v);

: DOT4 e , R@.x, R@.x
: DOT4 e .y, R@.y, R@.y

: DOT4_e 5 Re.z, RO.z

: DOT4 e ~, (ox80oooee0, -
: SQRT e , PVO.X

T SEIGT DX19 , Ps1, 1.ef

: RSQ e , R1.vy

T MUL_e , R@.z, PS2
sqrt ré.y, re.x ! MUL_e , Re.y, PS2

rsq re.x, re.x : MUL_e » R@.x, PS2

MUl —TOTXZIW, rO.XXXX, VO.XXyz x: CNDE_INT RO.w, RO.Xx,
1t re.y, 1(1.e00000), re.y ¢ CNDE_INT Re.w, RO.y,

=N X

return v;

¥

=)+

dp3 _r@.x, vO.xyzx, v@.xyzx

< N < X |t

e

movc 08.xyz, r@.yyyy, r@.xzwx, v@.XyzXx z: CNDE_INT RO.w, RO.Z,

Here is another example. The dot-product is shared,
because the sub-expressions match. However, the
compiler doesn't take advantage of the mathematical
relationship between sqrt(x) and rsgrt(x).

36

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Hidden common sub-expressions
. Optimize: Clamping vector to unit length

Original if (length(v) > 1.6f) float norm_factor =
rngina v = normalize(v); min(rsqrt(dot(v, v)), 1.0f); Extractsub—exp
return v; v *= norm_factor; and flatten
return v;
if (sgqrt(dot(v, v)) > 1.6f) float norm_factor =
Expand. v *= prsqrt(dot(v, v)); saturate(rsqrt(dot(v, v))); R_eplace Clamp
EXPressionsS WuaiiEevs return v * norm_factor; with saturate
. if (rsqrt(dot(v, v)) < 1.6ef) precise float norm_factor = .
Unify : v *= rsqrt(dot(v, v)); saturate(rsqrt(dot(v, v))); HLSL compiler
expressions EasHe v, return v * norm_factor; workaround

The most obvious optimization, i.e. removing the
sgrt() call and comparing the length squared instead,
IS a bit of a dead-end. We get further by unifying the
expressions instead. Once the expressions are
unified, we can pull out the normalizing factor, and
then simply flatten the if-statement though clamping
the factor to 1.0f. As we don't expect any negative
numbers, this clamp can be replaced with saturate().
Finally, HLSL realizes as much too, so we need to
apply the precise workaround.

37

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

float3 main(float3 v : TEXCOORD@) : SV_Target float3 main(float3 v : TEXCOORD@) : SV_Target

{

Hidden common sub-expressions
Optimize: Clamping vector to unit length

{
if (length(v) > 1.ef) if (rsqrt(dot(v, v)) < 1.6f)
v = normalize(v); v *= rsqrt(dot(v, v));
return v; return v;

: DOT4_e , RO.x, RO.X X1 : , RB.x, RO.x
y: DOT4_e , RO.y, RO.y : RO.y, RO.y
z: DOT4_e , RO.z, RO.z RO@.z, RO.z
W: DOT4 e _, (oxB8oo0ooe0e, -0.0f).x, 0.6f (ox80000000, -0.0f).x, 0.0f
PV@. x
RO.y, PS1
RO.x, PS1
1.0f, PS1

t: SQRT_e , PVO.X : RSQ_e
: SETGT_DX1@ R@.w, PS1, 1.ef Xx: MUL_e
t: RSQ e , Rl.y : MUL_e
X: MUL_e , RB.z, PS2 z: SETGT_DX18
y: MUL_e , RO.y, PS2 : MUL_e , RB.z, PS1

z: MUL e , RO.x, PS2 X: CNDE_INT
(: CNDE_INT 0.x, RO.w, RO.x, PV3.z y: CNDE_INT
y: CNDE_INT RO.w, RO.y, PV3.y z: CNDE_INT
Zz: CNDE_INT d.z, RO.w, RO.z, PV3.x

, PV2.z, RO.x, PV2.y
, PV2.z, RO.y, PV2.x
z, PV2.z, RO.z, PV2.w

o o X
o0 ®
< X

Unifying expressions basically only removed the
sgrt() call. Which is not bad of course, it even saved a
VLIW instruction slot here. About the same as the
simple optimization of comparing the square length.
The main advantage of this route is that it allows us to
go further with more optimizations. The key point is
that the rsqgrt() has to be computed anyway, so we
can take advantage of its existence and design the if-
statement on what is already available.

38

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Hidden common sub-expressions
Optimize: Clamping vector to unit length

float3 main(float3 v : TEXCOORD@) : SV_Target

{

. Extends to general case

precise float norm_factor =

saturate(rsqrt(dot(v, v)));
return v * norm_factor;

, RB.x, RO.x
» RO.y, RO.y
, R8.z, RO.z

, (0x80000000, -0.0f).x, 0.of

, PVO.X CLAMP
: _e RO.x, R@.x, PS1
y: MUL_e R@.y, Re.y, PS1
z: MUL_e Re@.z, R@.z, PS1

. Clamp to length 5.0f — norm_factor = saturate(5.0f * rsqrt(dot(v, v)));

Once we have gone all the way through we have a
really short stub left of the original code. This code is
also easily extended to a more general case,
clamping to any given length, and that only adds a
single scalar multiply, whereas it would have added at
least three in the naive implementation.

The general case is of course more useful for real
tasks, such as for instance clamping a motion vector
for motion blur to avoid over-blurring some fast
moving objects, something we did in Just Cause 2 for
the main character. The main takeaway here though
IS that understanding what happens inside of built-in
functions allows us to write better code, and even
built-ins should be scrutinized for splitting scalar and
vector work.

39

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Evaluation order
. Expressions evaluated left-to-right

. Except for parentheses and operator precedence
. Place scalars to the left and/or use parentheses

return Diffuse * n_dot_1 * atten * LightColor * shadow * ao; return Diffuse * LightCol * (n_dot_1 * atten * shadow * ao);

Unfortunately, this optimization opportunity frequently
goes unnoticed, but it is one of the best and most
general applicable optimizations. It benefits all
hardware, and even more so on the most modern
ones. Definitively look out for this one on PC and
next-gen platforms, but even vector based
architectures such as curr-gen consoles typically see
a nice improvement as well. And it's all just about
simple rearrangement of the code that normally
doesn't affect readability at all.

40

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Evaluation order
. VLIW & vector architectures are sensitive to dependencies

. Especially at beginning and end of scopes
. a*b*c*d=((@a*b)*c)*d;
. Break dependency chains with parentheses: (a*b) * (c*d)

return (n_dot_1 * atten) * (shadow * ao iffuse * LightColor);

This is for VLIW and vector architectures. It doesn't
help scalar based hardware, but it doesn't hurt them
either. They are just not affected.

What we are doing here is basically just breaking up
the dependency chain into a “tree” if you will,
basically allowing more parallelism. The number of
operations doesn't change at all, but the required
Instruction slots is reduced, which will result in faster
execution.

41

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Real-world testing
. Case study: Clustered deferred shading

. Mixed quality code

. Original lighting code quite optimized

. Various prototype quality code added later
. Low-level optimization

. 1-2h of work

. Shader about 7% shorter

. Only sunlight: 0.40ms — 0.38ms (5% faster)

. Many pointlights: 3.56ms — 3.22ms (10% faster)
. High-level optimization

. Several weeks of work

. Between 15% slower and 2x faster than classic deferred
. Do both!

High-level optimization, i.e. changing the algorithm,
tends to have a greater impact. Nothing new there.
They also tend to be vastly more costly in terms of
time and effort. The ROI of low-level optimizations
tends to be far greater. But this is not an argument for
or against either, because you should do both if you
aspire to have any sort of technical leadership.

The preferable way is of course not to go stomping on
all the shaders in your code base looking for low-level
optimizations. That's fine say at the end of a project,
or when you need to poke around in shader anyway.
What you really should do is design your high-level
algorithm fully aware of the hardware, and have a
low-level thinking as you're writing the shader to
begin with. Don't just check in what happened to work
first, but make sure you've covered at least the most
obvious low-level optimizations before submitting
anything to production.

42

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

Additional recommendations
. Communicate intention with [branch], [flatten], [loop], [unroll]

. [branch] turns “divergent gradient” warning into error
. Which is great!
. Otherwise pulls chunks of code outside branch

. Don't do in shader what can be done elsewhere

. |V|0V€ Ilnear OpS tO Vel'teX Shader float2 ClipSpaceToTexcoord(float3 Cs)
{
. Unless vertex bound of course LS aushs
' Cs.y = (1.h - Cs.y);
. Don't output more than needed } return Cs.xy;
. SM4+ doesn't require float4 SV_Target

. Don't write unused alphas! float2 tex_coord = Cs.xy / Cs.2;

The [branch] tag is one of the best features in HLSL.
If you intend to skip some work for performance
where applicable, always apply the tag to
communicate this to the compiler. Because if the
compiler fails to do it, there will be an error that you
can fix. Otherwise it will silently flatten the branch,
slowing down the shader rather than speeding it up,
and you may not even notice. And while in this state,
chances are that more branch-unfriendly code will be
added that you will have to fix later.

43

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

How can | be a better low-level coder?
. Familiarize yourself with GPU HW instructions

. Alsolearn D3D asm on PC
. Familiarize yourself with HLSL < HW code mapping
. GPUShaderAnalyzer, NVShaderPerf, fxc.exe
. Compare result across HW and platforms
. Monitor shader edits' effect on shader length
. Abnormal results? — Inspect asm, figure out cause and effect
. Also do real-world benchmarking

For Just Cause 2 we made a shader diff script that
basically showed the changes an edit did to the
number of instructions and registers used by the
shader. Especially when you have something like an
Uber-shader with many specializations it allowed us
to catch cases where a change had impacts on
versions that were expected to be unaffected. You
could also get a great overview of the impact of
updating a function in a central header file used by
everything and see an instruction or two shaved off
from loads of shaders in the project. We made it a
standard practice to attach the diff to code-reviews
that affected shaders, allowing us to also judge the
performance impact on new features or other
changes, as well as staying on top of general shader
code quality.

Optlmlze all the sha?ers'

45

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GOCONF.COM

[1]
[2]
[3]

References

46

EEEEEEEEEEEEEEEEEEEEEEEEEEEE

YW @ Humus_

We are hiring!
New York, Stockholm

Questions?

A
>

AVALANCHE STUDIOS

Join our team!

47

