
100,000 Couters, every 10 seconds
Native Linux throughput in reality

Jon Watte

Technical Director, IMVU Inc

Context

Cluster Diagram Servers

stats Health

Application

Real-time stats

Behavior

Order of magnitude

Persistent File

cpu.idle.host13 93

150,000 counter names
3 files each
100,000 events per second

Resolution Retention Size/Ctr

10 sec 10+ days 2.7 MB

5 min 1+ year 3.4 MB

1 hr 6+ years 1.7 MB

Istatd diagram

Persistent File
T=

1
0

0
, A

vg
=3

T=
1

1
0

, A
vg

=3

T=
1

2
0

, A
vg

=3

T=
1

3
0

, A
vg

=3

T=
1

4
0

, A
vg

=3

T=
1

5
0

, A
vg

=3

T=
1

6
0

, A
vg

=3

T=
0

, A
vg

=3

T=
1

0
, A

vg
=3

T=
2

0
, A

vg
=3

T=
3

0
, A

vg
=3

T=
4

0
, A

vg
=3

RAM Disk Network

cpu.idle.host13 93

Bucket
• Time
• Value
• Avg/sdev
• Min/max Page (unit of I/O)

Two Challenges

T=
1

1−𝑃 +
𝑃

𝑆

T is new throughput multiplier
P is proportion that is parallelized
S is parallel multiplier (up to 24x for 24-core)

L1 Cache 1 ns

L3 Cache 10 ns

DRAM 100 ns

SSD 100,000 ns

Spinny Disk 10,000,000 ns

Amdahl’s Law Latency Hierarchy

Latency: Async File I/O

hFile = CreateFile(…,
 FILE_FLAG_OVERLAPPED, 0);

// Start I/O
OVERLAPPED olp = { … };
ReadFile(hFile, …, &olp);

// In worker thread
GetQueuedCompletionStatus(…);
// … Use data here

fd = open(…);

// Wait for ready
epoll_event ev = { … };
epoll_ctl(…, &ev);

// In worker thread
epoll_wait(…);
read(fd, …);
// … Use data here

Fake Async: Using mmap()

fd = open(“name”, …);

void *ptr = mmap(0, size, PROT_READ|PROT_WRITE,

 MAP_SHARED, fd, offset);

madvise(ptr, length, MADV_WILLNEED);

// … do other stuff for a while …

// use ptr here

?

mmap() Limitations
CPU Usage

vmlinux

istatd

libc.so

Linux VM mapping tree becomes deep and serializes

“Async-ish” I/O Compromise

• Writing is “asynchronous” as long as there is free kernel

buffer space

– Use a task that cyclically flushes open files

• Over-commit on threads, and do synchronous reads

– We know to pre-fetch the high-frequency counters

Contention: Serializing on Locks

• A single hash table for all counters

– Same problem as Linux mmap()!

• Frequent operations on this table ended up serializing on

the lock protecting the table

Solution: Sharded Locking

• If I was to farm out to 24 cores, I’d want 24 locks

• I can’t know exact 1:1 mapping from threads to locks

• Over-allocate locks, so most of them are not held

• 256 separate hash tables, each with 1 lock

– In-memory sharded locking

Reality: Ambient Challenges

• Backing up a heavily loaded, real-time machine

– The Replication Hack

• Occasional “network events”

– Agent-side buffering

• Linux kernels move on

– Actually an opportunity

2.6 -> 3.2 Upgrade
Load

Disk Ops

CPU usage

Memory
Usage

Dropped
Samples

Variance

cached

used

free

A Modest Proposal

Jonathan Swift

Questions?

https://github.com/imvu-open/istatd

@jwatte

jwatte@imvu.com

https://github.com/imvu-open/istatd
https://github.com/imvu-open/istatd
https://github.com/imvu-open/istatd

