The Separating Axis Test between
Convex Polyhedra

Dirk Gregorius — Valve Software

- Welcome! My name is Dirk Gregorius and | am software engineer at Valve working

on collision detection and rigid body simulation.

- The talk today will be about the SAT between convex polyhedra




Collision Detection between Convex
Polyhedra

Why shall we use the SAT?

The SAT is versatile algorithm and can tell us things like :

Whether two convex polyhedra overlap

The touching features

The penetration distance

The direction in which we need to resolve the penetration (axis of minimum
penetration)




Talk Outline

» Show examples of convex polyhedra and define
convexity

» Use simple sphere-sphere collision detection to
introduce concept Minkowski difference

» Develop a Separating Axis Test (SAT) between convex
polygons/polyhedra (2D and 3D)

» Use Gauss Maps of convex polyhedra to optimize the
SAT in 3D

» Show an efficient implementation

- Before we start | will give you a quick talk outline




Examples of Convex Polyhedra

- Before we start some examples of convex polyhedra (tetrahedron, box and a

convex hull)

- Notice cylinder and cone as approximation for quadric shapes!




Convexity

Convex Concave

The line between any two points inside a convex shape must be completely contained
=>» The shape is completely behind each face plane if convex




Overlap between Spheres

d > 0,separated

d=|ci—cy| '(7’1+T2)=>{d < 0, overlapping

- We will start with a simple overlap test between two spheres
- Two spheres overlap if the distance between the centers is less then the sum of
the radii.




The Separating Axis

Shape AO Shape BO
| | | -
| | | |

Min A Max A MinB MaxB

Project both spheres onto axis through center points

Then test intervals for overlap

If interval not overlapping, we say we detected a separating axis

The axis through the center points is the only possible separating axis because of
the sphere symmetry




Minkowski Difference between two
Spheres

Sphere B A-B

—

Sphere

| would also like to use this example to introduce the concept of Minkowski
difference

What is the Minkowski Difference between two spheres?

Handwaveingly: Inflate A up by the radius of B

Shrink B to a point




Minkowski Difference between two
Spheres (2)

Shape B A-B

Shape A m :>
AN

If two convex shapes overlap the Minkowski difference must contain the origin!

Why is this a good idea?

Mathematically: Subtract all points of B from all points of A

It can be shown: If two convex shapes overlap the Minkowski difference must
contain the origin!

Explanation: If you subtract all points in B from all points in A and they share a
common point one of the differences must be the zero vector

Another way of thinking about this is: By subtracting each point in B from each
point in A and there are no two points with zero distance, then the shapes must be
disjoint




Overlap between Point and Sphere
A + (-B)

s=|ley-ol -1y

The original problem is transformed into a point inside sphere problem.

Why is this a good idea?

The Minkowski difference between two spheres transforms the original problem
into a point inside sphere problem.

Not big win here, but will become useful for more complex problems later
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Overlap between Convex Polygons
(2D)

Shape A Shape B

- Now that we understand what separating axes and Minkowski differences are, lets
move on to SAT between convex polygons

- Examine the problem in Minkowski space since we cannot write down the solution
immediately.
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Minkowski Difference between Convex
Polygons (2D)

—

Shape A ShapeB

- How do we build the Minkowski difference between two polygons?

- Inflate quad by area of flipped triangle

- Shrink triangle to point

- Need to flip triangle to account for Minkowski difference

- The Minkowski difference between two convex polygons is also convex polygon
itself
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Point inside Convex Polygon

L.

Origin outside -> Separation Origin inside -> Overlap

This transforms the original problem into a point inside convex polygon problem
Simple to solve: If origin is inside the Minkowski difference the original shapes
overlap. If it outside, the shapes are separated

This is a possible solution, but we don’t want to build the Minkowski difference
explicitly
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Face Normals of Minkowski Difference
define possible Separating Axes

—

Shape A ShapeB A +(-B)

- It can be shown that the possible separating axes between two convex polygons
are the face normals of the Minkowski difference

- The faces of the Minkowski difference are the faces of original shapes, but pushed
out

- So we know the face normals of the Minkowski difference and therefore the
possible separating axes

- We could now project both shapes onto each possible separating axis and
compare the intervals, but I'd like to show you a slightly more efficient and
intuitive way
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Finding support points

S(v)

AN

- We will need to understand support points to test possible separating axes
- A support point is simply the most extreme point into a given direction.
- And if the result is not unique any of those points will be fine
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SAT: Support Function (2D)

Vector2 Polygon::GetSupport( const Vector2& direction ) const

{

|7

for (intindex = 0; index < m_VertexCount; ++index)

Vector2D vertex = m_Vertices[ index |;
float projection = Dot( vertex, direction );

if ( projection > bestProjection )
bestProjection = projection,
bestVertex = vertex;

return bestVertex;

I'd like to quickly show a possible implementation to give you an idea how this
works (if you are not already familiar with this concept)

Iterate all vertices and project each vertex onto the search direction using the dot
product.

Done inside this loop and we keep track of the vertex with the largest projection
Finally we return the best vertex
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Testing a Separating Axis (2D)

d=n-(s-p)

We will now use support points to test a possible separating axis between two
convex polygons

We build a plane for each edge on one polygon and find the support point in the
opposite normal direction on the other polygon

The distance of that support point to the plane is the separation or penetration for
this axis

This is a bit more efficient since we only touch half of the vertices per axis as
compared to projecting both shapes and then comparing intervals
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SAT: Face Directions (2D)

Query QueryFaceDirections( const Polygon& polygonA, const Polygon& polygonB )
{
for (int index = 0; index < polygonA .FaceCount; ++index )
Plane planeA = polygonA .GetPlane( index );
Vector vertexB = polygonB .GetSupport( -planeA.Normal );
float distance= Distance( planeA, VertexB );

if (distance > bestDistance)
bestDistance = distance;

bestindex = index;

return largest distance and associated index of face;

- Let’s write a function that tests all possible separating axes of a polygon

- Iterate edges of A and build plane

- Find support point in opposite normal direction

- The searched distance is then simply the distance of the support point to that
plane

- Thisis a signed distance and if it is negative it is actually a penetration

- Finally return vertex with largest distance
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Example 1: Overlap Test (2D)

bool Overlap( const Polygon& polygonA, const Polygon& polygonB )

{

Query queryA = QueryFaceDirections( polygonA, polygonB ); // Face normals of A
if ( gueryA.m_Separation > 0.0f)
return false;

Query queryB = QueryFaceDirections( polygonB, polygonA ); // Face normals of B
if ( queryB.m_Separation > 0.0f)
return false;

// No separating axis found, the polygons must overlap!
return true;

How do we use this function?

This a simple example which tests the overlap between convex polygons
Possible separating axes are face normals of Aand B

Obviously need to use it twice (once for A and once for B) by simply switching
arguments

Can exit early if we find separating axis

If no separating axis was found the polygons must overlap
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Overlap between two Convex
Polyhedra (3D)

- After some preparation we arrived at actual problem we like to solve today
- Asinthe 2D case we start to investigate problem in Minkowski space
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Minkowski Difference between two

Convex Polyhedra (3D)

‘ﬂ

In order to build the Minkowski difference between two convex polyhedra I'd like
to encourage you to use you imagination from 2D
Inflate polyhedron A by volume of the flipped polyhedron B

B is shrunken to a point
The Minkowski difference between two convex polyhedra is a convex polyhedron

itself
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Minkowski Difference: Faces (3D)

Remember: The face normals of the Minkowski difference define the possible
separating axes

If we inspect the Minkowski difference we can detect conceptually the face planes
of polyhedron A and polyhedron B — pushed out (as in 2D)

In 3D we also identify additional faces from sweeping an edge of A along and edge
of B. And the normal of such a face is the cross product between the edges

These edge face build parallelograms
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Separating Axes between Convex
Polyhedra (3D)

» The possible separating axes between two
convex polyhedra are:
e The face normals of polyhedron A (2D & 3D)
* The face normals of polyhedron B (2D & 3D)

* The cross product between all edge
combinations of A and B (3D only)

Let’s summarize the possible separating axes between two convex polyhedra:
- The face normals of A

- The face normals of B

- The cross products between all edges of A and all edges of B
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Brute-Force Separating Axis Test (3D)

EdgeQuery QueryEdgeDirection( Polyhedron* pPolyA, Polyhedron* pPolyB )
{
for ( int index1; index1 < pPolyA->EdgeCount; ++index1 )
Edge* pEdgel = pPolyl->GetEdge( index1 );
for (int index2; index2 < pPolyB->EdgeCount; ++index2 )
Edge* pEdge2 = pPoly2->GetEdge( index1 );
Vector axis = Cross( pEdgel->GetDirection(), pEdge2->GetDirection() )

Interval intervall = pPolyA->Project( axis );
Interval interval2 = pPolyB->Project( axis );
float separation = Compare( intervall, interval2 );

|5

Let’s have a look at a possible brute force implementation

O( n”2)in the number of edges

Build cross product to get the possible separating axis

Then we project both polyhedra onto that axis

Need to touch all vertices to do so

Makes the whole test conceptually O( n*3 ) in he complexity of the polyhedra
Not practical -> too slow
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Optimizing Edge Tests (3D)

* Define the Gauss-Map of a convex polyhedron
 Show how we can use the Gauss-Map to
quickly prune edge tests

* Show how to compute the edge-edge axis
separation without computing support points

- Remember that the faces on the Minkowski difference define the possible

separating axes
- You might be able to imagine that not all edge pairs actually build a face on the

Minkowski difference
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The Gauss Map of a Convex

Polyhedron

“x., " - g 0000 2‘ o ) i
| \

Wikipedia: The Gauss map maps the surface of a convex polyhedron onto the unit
sphere:

Let’s have a look how we build a Gauss Map:
1) We make all face normals n of the polyhedron vertices V(f) on the unit sphere

2) For each edge adjacent to two faces we connect the associated vertices V(f1) and
V(f2) of these faces to a great arc A(e)
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Edges and Arcs

- Very abstract, but essentially two critical points here to remember:
- Faces become vertices
- Edges become great arcs
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Example Gauss Maps

OSOE U a

| compiled a bunch of Gauss Maps to get a feeling for this: Try to match some vertices
and faces to edges and arcs!
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Overlaying Gauss Map

=

Two edges build a face on the Minkwoski difference if their two associated arcs intersect!

SLOW NOW:
- We can build the Gauss-Map of a convex polyhedron so lets overlay two of them
on the unit sphere

Remember that vertices on the Gauss Map and faces on the convex poyhedron
correspond

Identifying the vertices of the super-positioned Gauss-Maps actually tells us faces on
the Minkowski difference

And the faces on the Minkowski difference are the possible separating axes

Let’s Inspect the picture and see what we find :

1) Face normals of polyhedron A

2) Face normals of polyhedron B

3) Intersections of arcs from polyhedron A with arcs of polyhedron B

This leads to a nice conclusion: Two edges only build a face on the Minkwoski
difference if their two associated arcs intersect!

Important: We need actually one more step to account for Minkowski difference. |
will show this some slides later.
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Overlap Test

The vertices A, B and C, D of the arcs are the normals of the adjacent faces of the edges!

How do we detect the overlap between two arcs on a sphere”
Funnily: This is a separating axis test itself

1) The vertices A and B of arc 1 are on different sides of the plane through arc 2
2) The vertices C and D of arc 2 are on different sides of the plane through arc 1

Important:
- The vertices A and B of arc 1 are simply the normals of the faces that share edge 1

- The vertices C and D of arc 2 are simply the normals of the faces that share edge 2

So this boils down to very simple plane test, but there is one final gotcha here.
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Hemisphere Test

FPS: 717 (1264, 682) ABRBGEES D2458)
AMD Radeon HD 6770M

Can fail if arcs are on different hemispheres =»The two arcs must be in the same
hemisphere.

To test for the same hemisphere we build a plane through vertex B of arc 1 and vertex
Cofarc2.

If the other two vertices (A and D) are on the same side of this plane this arcs are in
the same hemisphere

Note: This condition is not satisfied in this example!
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Final Overlap Test: Formulas

» Intersection tests:
e lc-(bxa)]-[d-(bxa)] <0
cla-(dxc)]-[b-(dxc)]<O0
» Hemisphere test:
e [a-(cxb)]-[d-(cxb)]>0

Finally some ugly math.

- Remember: A, B, C, and D are the vertices of the two arcs.
- Use simple scalar triple product for plane tests

- No need for normalization — just checking signs!
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Optimizing Plane Tests

» ldentities:
ca-(cxb)=c-(bxa)
ced-(cxb)=b-(dXc)

» Final minimal test:
» |CBA|-|DBA| < 0 and
. |ADC| - |BDC| < 0 and
 |CBA|-|BDC| >0

- We can optimize this a bit using the scalar triple product identity
- Reuse terms of first two intersection test in hemisphere test
- This makes the final test pretty compact
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Pseudo Code: Edge Pruning

bool IsMinkowskiFace( Vector3 A, Vector3 B, Vector3 C, Vector3 D)

{

// Test if arcs AB and CD intersect on the unit sphere
Vector3 B _x A =Cross( B, A);
Vector3 D_x_C=Cross(D, C);

float CBA=Dot(C,B x A);
float DBA = Dot(D, B_x_A);
float ADC = Dot(A,D_x_C);
float BDC = Dot( B, D_x_C);

return CBA * DBA <0 && ADC * BDC < 0 && CBA * BDC > 0;

We pass the vertices A and B of arc 1 and C and D of arc 2

Remember that the vertices are simply the normals of the adjacent faces of both
edges

Build cross and dot products and the finally check the signs of the plane tests
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Avoiding Cross Products

<

€1

e ll (ng X ny)

Inspect a shared edge on a convex polyhedron

The edge has same direction as the cross product between the face normals

We can avoid the cross products and use a simple subtraction of the edge vertices
instead

No need to normalize
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Double Sided Triangle

ny

nlin,=>nyxn, =0

n;

Extreme case:

Cross product is zero vector for double sided triangle
This would break our plane tests

When using edge directions this works again
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Triangle Gauss Map

Here is another picture to help understanding this:

Even though the cross product is not defined in this configuration, we still can setup
the plane through the associated arc of a triangle edge.

If you look at the picture you should see that the edge is orthogonal to a plane
through the corresponding arc and defines the plane normal that we seek
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Optimized Edge-Edge Distance

L R L ey )
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- Now that we can prune edge pairs that don’t build a face on the Minkowski
difference we need a method to compute the distance between the remaining
edge combinations

- The Gauss Map essentially defines the directions that the corresponding feature
might get in contact with

- Obviously if two arcs overlap and build a Minkowski face the colliding features
must be supporting edges

The Gauss map does not only allow us to prune edge combinations. It also allows us

to compute the distance between the edges efficiently.

- Build the plane through one edge (with the edge cross product as the normal)

- Compute the distance of any vertex on the other edge to that plane

- As opposed to the brute force version this is now O(1) — no need for support
points!
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Consistent Normal Orientation

if (dot{n,v—c)<0)n=-n

- Small gotcha here: We need a well defined normal direction to get the sign of the
distance right

- E.g.from A toward B

- Simple compare the normal against the vector from centroid to any of the two
edge vertices and flip if necessary
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Half-Edge Mesh

o
Twin(e)
Head( e) gz > Tail(e)
Half-Edge e
Next( e) Prev(e)
d Face(e)

So after quite some theory lets investigate one possible implementation

There are endless possibilities to describe a convex polyhedron.

Personally | use the half-edge mesh which is an edge centric mesh representation.
Allows to efficiently access the two associated faces of a shared edge.
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SAT: Edge Directions (3D)

EdgeQuery QueryEdgeDirection( Polyhedron* pPolyA, Polyhedron* pPolyB )
{
for (int indexA; indexA < pPolyA->EdgeCount; indexA += 2 )
HalfEdge* pEdgeA = pPolyA->GetEdge( indexA );
for (int indexB; indexB < pPolyB->EdgeCount; indexB += 2 )
HalfEdge* pEdgeB = pPolyB->GetEdge( indexB );

if ( BuildMinkowskiFace( pEdgeA, pEdgeB) )
float separation = Distance( pEdgeA, pEdgeB, pPolyA );
// Keep track of largest separation and associated edges

return indices of edge pair with minimum separation and distance

5

- Finally let’s look at optimized for version of the SAT using the Gauss Map

- We iterate over all edge combination and discard all combinations that don’t build
a face on the Minkowski difference

- If we detect an edge combination that realizes a potential separating axis we can
now compute the distance between these two edges in constant time

- Remember that this was the bottleneck in the brute force version

- Hint: If you use a half-edge data structure store two half edges (edge and twin)

after each other. This allows us to iterate unique edges efficiently! In the slide
every second edge is skipped for this reason!
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SAT: Edge Pruning (3D)

bool BuildMinkowskiFace( HalfEdge* pEdgeA, HalfEdge* pEdgeB )
{
// Extract face normals which define the vertices of the two arcs!
Vector3 a = pEdgeA->GetNormall();
Vector3 b = pEdgeA->GetNormal2();
Vector3 ¢ = pEdgeB->GetNormall();
Vector3 d = pEdgeB->GetNormal2();

// Negate normals c and d to account for Minkowski difference!
return IsMinkowskiFace( a, b, -c, -d );

j

We extract the associated normals of each edge and call the IsMinkowskiFace()
function.
In order to account for the Minkowski difference we need to negate one pair of
normals.
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SAT: Edge-Edge Distance (3D)

float Distance( HalfEdge* pEdgeA, HalfEdge* pEdgeB, Polyhedron* pPolyA )

{

Vector3 edgeA = pEdgeA->Direction();

Vector3 pointA = pEdgeA->Head();

Vector3 edgeB = pEdgeB-> Direction();

Vector3 pointB = pEdgeB->Head();

if ( AreEdgesParallel( edgeA, edgeB ) ) return —FLT_MAX; // Skip parallel edges

Vector3 normal = NormalizedCross( edgeA , edgeB );
if ( Dot( normal, pointA - pPolyA->Centroid() );

normal = -normal; // Assure normal points from A -> B

return Dot( normal, pointB — pointA ); // No need to compute support points: O(1)

Finally we have two edges that define a possible separating

Skip parallel edges, because they can also not build a face on the Minkowski
difference

Assure consistent normal orientation to get a correct sign for distance calculation
Finally build plane through edge A and compute distance of a vertex on edge B to
that plane

43




Overlap Test (3D)

bool Overlap( Polyhedron* pPolyA, Polyhedron* pPolyB )

{

7

FaceQuery faceQueryA = QueryFaceDirections( pPolyA, pPolyB ); // Faces A (as 2D)
if ( faceQueryA > 0.0f ) return false;

FaceQuery faceQueryB = QueryFaceDirections( pPolyB, pPolyA ); // Faces B (as 2D)
if (faceQueryB > 0.0f ) return false;

EdgeQuery edgeQuery = QueryEdgeDirections( pPolyA, pPolyB ); // Edges A & B
if (edgeQuery > 0.0f ) return false;

return true;

As we did in 2D a simple example of the overlap test in 3D

Face directions same as in 2D

Also need to test edge combinations in 3D — otherwise test is not complete which
might result in false positives since we would skip possible separating axes
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SAT Comparison:
Brute-Force vs. Gauss Map

» Convex hulls of random points on sphere:
* 4 Vertices: 2x speed-up
* 8 Vertices: 6x speed-up
* 16 Vertices: 20x speed-up
* 32 Vertices: 40x speed-up

» No extra memory needed

Speed-up is essentially what you would expect when optimizing an algorithm from
O(n”3) to O(n"2)

This makes this test actually a candidate for collision detection between small convex
hulls

This algorithm is heavily used in production code and not just theory!
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Face Contact (3D)

Since this is the physics tutorial I'd also like to talk about contact creation using the
SAT:

Create a contact between the features that define the axis of minimum
penetration.

If axis of minimum penetration comes from face

Clip one face against the side planes of the other.
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Face Contact (3D) - Overview

» ldentify axis of minimum penetration using the
SAT (this defines the reference face)

» Find the most anti-parallel face the on other
shape (this defines the incident face)

» Clip incident face against side planes of reference
face

» Keep all vertices below reference face

Let’s see how this works in a little bit more detail:

- I recommend Sutherland-Hodgman clipping in the third step.

- Some engines also clip against the reference face in the end, but | cannot
recommend this step. This adds additional contact points that don’t add to the
manifold stability
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Edge Contact

If the axis of minimum penetration is realized by an edge pair compute the closest
points between the two edge segments and are done
So you see that the SAT makes contact point creation pretty straight forward
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Thanks!

* Thanks to Valve!

* Thanks to Ted, Sergiy, Ali, Oliver, Erwin and
especially Anoush for exhaustive rehearsing!

* Special thanks to Erin Catto for sharing these
ideas on the Bullet forum!

Thinks closes the talk.
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Questions?

This closes the talk and hopefully there is some time left for questions! Thank you
very much...
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