

Designing Games with Procedural Content and Mechanics

Joris Dormans
Gameplay Engineer @ Ludomotion

About me

 Gameplay Engineer @ Ludomotion www.ludomotion.com

 Senior Researcher @ Amsterdam University of Applied Sciences www.jorisdormans.nl

My biggest claim to fame

What to expect from this talk

- PCG we did for a game about to release
- PCG we are doing for a game in development
- Resent research trends that inspired the way we do PCG
- Relationship between PCG and game design

What (do I think) is PCG?

- Generative techniques to produce or adapt content for games
- In this case "Content" is a contested term: it includes visuals, levels, mechanics, and so on

Quick observations about PCG

- Some game genres have more affordance for PCG (e.g. Rogue-likes)
- Much work is done in the visual domain (e.g. generated trees)
- Many techniques rely on brute force random algorithms

"Bottom-up PCG"

- Starts from an interesting algorithm
- Usually quick
- Little control over result
- Poor scaling

"4-5 rule" cellular automata cave generator

What I really want to talk about

 PCG that generates and supports gameplay and game structure

PCG that mimics and supports game design

PCG is game design?

PCG in **Bezircle**

Bezircle Trailer

Emergent Gameplay & PCG

- Bezircle's gameplay is highly emergent.
- This makes PCG easy, but not unnecessary!
- Not any random combination of orbs works.

Constraints for PCG in Bezircle

- Perform
 - <0.5 seconds on mobile device
- Consistent quality
 - Controllable size, etc.
- Consistent generation
 - Same seed should generate same level on different platforms

Bezircle uses a two step generation process:

- Step 1: Generate a level 'recipe'
- Step 2: Use that recipe to generate the level

 Think of the recipe as the plan for the level; it is a "top-down" approach to PCG

Step 1: Generating Level Recipes

- Recipes describe how levels should be generated
- Transformational grammars are used generate recipes
- Each level type has a different recipe grammar

Example *Casa* Recipe Grammar

```
S > Start Players Grow1 Grow2 Options Setsize PowerUps Finish
  | StartCircle PlayersCircle Grow1 SpaceCircle Grow2
      EndCircle Setsize PowerUps Finish
...
Grow1 > AddPower AddOrb AddOrb | AddCenOrb AddPower AddOrb
Grow2 > ExtraCenOrb ExtraOrb | ExtraOrb
Options > AddVampire | AddKing | AddExploder | Ø | Ø
...
```

```
118
                Files["casa.grm"] =
119
     @"start: STRING S
     rule: S > Start Players Grow1 Grow2 Options SetSize PowerUps Finish
120
     rule: CircleVariant(probability=0.4) = S > StartCircle PlayersCircle Grow1 SpaceCircle Grow2 EndCircle SetSize PowerUps F:
121
122
     rule: StartCircle > ""openGrammar(circleGeneration.grm)"" ""clear()"" ""iterateRule(StartCircle)""
     rule: PlayersCircle > ""executeRule(AddCirclePlayer,@players-1)"" ""doLayout(10)"" ""executeRule(AddCircleDistancer)"" ""u
123
     rule: SpaceCircle > ""if(@players<3)"" ""addNode(spacer(x=0,y=0,size=80))"" ""else"" ""if(@players<4)"" ""addNode(spacer(:
124
     rule: EndCircle > ""openGrammar(basic.grm)""
125
     rule: Start > ""openGrammar(basic.grm)"" ""clear()""
126
     rule: Players > ""executeRule(AddPlayer,@players)"" ""doLayout(10)"" ""executeRule(AddDistancer)"" ""doLayout(10)""
127
     128
     rule: Grow1 > ""iterateRuleLSystem(GrowCentralOrb)"" ""untangle()"" ""iterateRuleLSystem(GrowPowerUp)"" ""untangle()"" "":
129
     rule: Grow2 > ""executeRule(AddExtraCentralOrb,3)"" ""executeRule(AddExtraOrb,2D@players)"" ""untangle()"" ""doLayout(20)
130
     rule: Grow2 > ""executeRule(AddExtraOrb,3+2D@players)"" ""untangle()"" ""doLayout(20)""
131
     rule: AddVampire > ""openGrammar(specialPowerUps.grm)"" ""executeRule(CentralOrbToVampire,D@players)""
132
     rule: AddKing > ""openGrammar(specialPowerUps.grm)"" ""executeRule(CentralOrbToKing,1)""
133
     rule: CentralEnergizer > ""changeSymbols(CentralOrb,energizer)""
134
     rule: AddExploders > ""openGrammar(specialPowerUps.grm)"" ""iterateRuleLSystem(OrbToExploderChance)""
135
     rule: Energize > ""doLayout(20)"" ""untangle()"" ""connectNeighbors(Edge,20)"" ""openGrammar(specialPowerUps.grm)"" ""exe-
136
137
     rule: SetSize > ""openGrammar(setSizes.grm)"" ""executeRuleCellular(EqualStartOrbs)"" ""executeRuleCellular(LargeCentralOr
     rule: SetSize > ""openGrammar(setSizes.grm)"" ""executeRuleCellular(EqualStartOrbs)"" ""executeRuleCellular(MediumCentral
138
     rule: SetSize > ""openGrammar(setSizes.grm)"" ""executeRuleCellular(EqualStartOrbs)"" ""executeRuleCellular(MediumCentral(
139
     rule: PowerUps > ""openGrammar(basicPowerUps.grm)"" ""executeCellular()""
140
     rule: Finish > ""openGrammar(specialPowerUps.grm)"" ""iterateRuleLSystem(SetCasa)"" ""iterateRuleLSystem(CasaHasInputsOnl
141
     rule: CentralSpacers > ""executeRule(AddCentralSpacer,3)"" ""doLayout(5)""
142
     rule: Spacers > ""executeRule(AddSpacer,2+D@players)"" ""doLayout(5)""
143
     rule: Options > Spacers | Spacers | CentralSpacers Spacers | """";
144
```

Step 2: Generating Levels

 Graph grammars execute the steps in the recipe to generate the level

Example

Start

Players

AddCenOrb

AddPower

AddOrb

. . .

Learning Points

- PCG blends easily into emergent gameplay
- Nobody notices PCG done right
- Embrace PCG as an aesthetic for your game
- Embrace the opportunities PCG brings

Bezircle challenges

- Daily, Weekly, Monthly
- Local

Research trends

- Increased interest in generating gameplay critical 'content'
- Mixed-initiative PCG
- Model-driven engineering
- Adaptive games

Research trends

- Increased interest in generating gameplay critical 'content'
- Mixed-initiative PCG
- Model-driven engineering
- Adaptive games

Mixed-Initiative PCG

 Designers use smart design tools to create content

Tanagra (Gillian Smith)

Mixed-Initiative PCG

SketchaWorld (Ruben Smelik, et al.)

Game design doesn't work like this:

Instead it looks something like this:

Likewise, PCG shouldn't look like this:

- Make use of separate models to represent different aspects of the game.
- Use model transformations to go from model to model

- Breaks down the PCG problem in small manageable steps
- Creates a flexible and versatile process
- Ties in well with the Mixed-Initiative PCG

- Requires steps in the design process to be represented as models
- Transformations between models are non-trivial

What steps to produce creative solutions?

- Generate variety
- Resolve into something useful

Small Generation steps

Random set

More useful

Very effective way of creating useful variety

All this could lead to powerful, experimental, automated design

tools

But also ties in with certain game design aesthetics

Power Grid

The Tricky part: Correlating concrete and abstract models of the same level

Conrete:

(tilemaps, vertices)

- +accurate, details, representative
- overall shape or structure

Abstract:

(graphs, strings)

- + consistency, flow, overall structure
- hard to map to actual game space

PCG in 'Dules

The Generation Proces in 'Dules

Generating dungeon missions

PCG to reflect the design process

PCG to reflect the design process

Overworld Missions

Dungeon Missions

PCG as a game design aesthetics

Airborne Ranger

PCG gives a different meaning to failure

It counters repetitiveness and loss of time (as put forward by Jesper Juul)

Spelunky

PCG gives a different meaning to winning

Each win is unique.

No win comes after endless repeat tries.

Players don't always expect to win

Take-Aways

- Break down the PCG into multiple steps
- To be successful PCG should model the steps in the design process (top-down, not only bottomup)
- Emergent gameplay creates much affordance for PCG
- Embrace the aesthetic implications PCG brings.

Thank you!

Joris Dormans
www.jorisdormans.nl
jd@jorisdormans.nl
www.ludomotion.com

Some references

Dormans (2010) "Adventures in Level Design"

Dormans (2011) "Level Design as Model Transformations"

Dormans & Leijnen (2012) "Combinatorial and Exploratory Creativity in Procedural Content Generation"

Juul (2010) "In search of Lost Time: on Game Goals and Failure Costs".

Smelik, et al. (2010) "Integrating procedural generation and manual editing of virtual worlds".

Smith, et. al (2010) "Tanagra: A mixed initiative level design tool"

Smith & Mateas (2010) "Answer Set Programming for Procedural Content Generation: A Design Space Approach"

Togelius, et. al. (2010) "What is procedural content generation?"

Togelius, et. al. (2010) "Towards multiobjective procedural map generation"