
1

Richard Stenson
Chris Ho
US R&D

PlayStation® Shader Language
for PlayStation®4

2

PS4, PSSL, and Beyond
-  Today we will discuss

-  The PS4 architecture
-  Developing for PS4
-  PSSL on PS4
-  Beyond PC with PSSL on PS4
-  Join the discussion

3

PlayStation®4
- Next Gen PlayStation Console

-  Powerful game machine
-  Modern Graphics features
-  PC based architecture
-  Lightning fast Memory
-  New networking and

 interface features

4

Modern GPU
-  DirectX 11.2+/OpenGL 4.4 feature set

-  With custom SCE features

-  Asynchronous compute architecture
-  800MHz clock, 1.843 TFLOPS
-  Greatly expanded shader pipeline compared to PS3™

5

Fast GDDR5 RAM
-  8GB 256 bit GDDR5
-  Fully unified address space
-  176 GB/s total bandwidth
- Massively faster than DDR3

-  128 bit at ~40GB/s max bandwidth

6

State of the art CPU
- Modern 64-bit x86 architecture
-  8 cores, 8 HW threads

-  Atomics
-  Threads
-  Fibers
-  ULTs (user-level threads)

7

GPU+RAM+CPU = Beyond Fast!
-  Plenty of power for a true Next Gen Game Experience

-  8 CPU cores
-  High polygon throughput
-  High pixel performance
-  Efficient branching in

 GPU Shaders

8

But what about development?
-  PS4 is very approachable for development

-  DX11/OpenGL 4.4 level Shader language in PSSL
-  Powerful Graphics API
-  C++11 CPU Compiler
-  All the expected system libraries and utilities

- Networking, Codecs, Controllers, Input and more

9

Familiar PC-like Development Platform
-  Full Visual Studio Integration
- Minimal work for good performance
-  Built for AAA Games and Indies alike
-  Built to enable developers to push the system

-  Good is just the start!
-  Once you are ready for the deep dive we support you there as well

10

What is PSSL
-  PSSL is the PlayStation Shader Language for PS4
-  Supports modern graphics development

- Vertex
- Pixel
- Geometry
- Hull
- Domain
- Compute

11

Vertex and Pixel Shaders
- Next generation VS and PS Shaders
-  Extended support based on our hardware

-  RW_Textures and Atomics in all shaders

12

Geometry Shaders
-  Supports special cases GS like

-  GS Tessellation
-  Instancing
-  Cube mapping
-  Streamout

13

Hull, and Domain
-  Supports HS DS Tessellation

-  Parametric surface conversion
-  Optimal Geometry generation

14

Compute
-  Support modern compute

shaders
-  Parallel Multithreaded

execution
-  This cross wave and group

synchronization primitives like
barriers and atomics

-  Various Local and Global
memory pools for complex
thread interaction

15

What does PSSL look like?
-  It follows the PC conventions for shaders
-  ANSI C style syntax and coding rules
-  Includes the expected:

-  Vectors
-  Standard libs
-  C++ style structs with members
-  Supports static and dynamic control flow

16

A simple vertex shader
struct	
 VS_INPUT	

{	

	
 	
 	
 	
 float3	
 Position	
 	
 	
 	
 	
 :	
 POSITION;	

	
 	
 	
 	
 float3	
 Normal	
 	
 	
 	
 	
 	
 	
 :	
 NORMAL;	

	
 	
 	
 	
 float4	
 Tangent	
 	
 	
 	
 :	
 TEXCOORD0;	

	
 	
 	
 	
 float2	
 TextureUV	
 	
 	
 	
 :	
 TEXCOORD1;	

};	

	

VS_OUTPUT	
 main(
 VS_INPUT	
 input	
)	

{	

VS_OUTPUT	
 Output;	

	

Output.Position	
 =	
 mul(
 float4(input.Position.xyz,1),	
 m_modelViewProjection	
);	

…	

float3	
 vN	
 =	
 normalize(mul(float4(input.Normal,0),	
 m_modelView).xyz);	

…	

return	
 Output;	
 	
 	
 	
 	

}	

17

A simple pixel shader
	

SamplerState	
 samp0	
 :	
 register(s0);	

Texture2D	
 colorMap	
 :	
 register(
 t0	
);	

Texture2D	
 bumpGlossMap	
 :	
 register(
 t1	
);	

	

float4	
 main(
 VS_OUTPUT	
 In	
)	
 :	
 S_TARGET_OUTPUT	

{	

...	

float4	
 diff_col	
 =	
 colorMap.Sample(samp0,	
 In.TextureUV.xy);	

float3	
 spec_col	
 =	
 0.4*normalGloss.w+0.1;	

...	

return	
 float4(vLight.xyz,	
 diff_col.a);	

}	

18

How PSSL is being developed
- World wide collaborative efforts

-  US R&D Shader Technology Group
-  PS Vita shader compiler team in ATG
-  Graphics driver team in ICE
-  GPU hardware teams and SDK managers
-  With tight feedback with Sony World Wide Studios

- QA Team
-  Thousands of automated tests

19

Let’s see some PSSL shaders in action
-  This is real-time PS4 game footage
-  All shaders in these demos were built with the PSSL tool

chain

20

The video was removed so this version could be emailed
Video is available upon request or via the ppt version on
devnet

Here https://ps4.scedev.net/support/issue/8907

21

Porting to PSSL from the PC
-  Easy initial port target

-  Simple conversion of your PC or Xbox 360 Shader
-  PS3 Cg conversion is fairly trivial

-  Prototyping on the PC much simpler this generation

22

Maintaining PSSL and PC Shaders
-  Simpler to maintain code this round

-  PC and PS4 are now much closer for shaders
-  All of the shader stages and features are available in PSSL

- Often have been extended

-  This means you should be up and running very quickly
-  The time to “my first tri” will be better
-  The time to “my game runs!” will be better
-  The time to “my game is fast on PS4” will also be better!

23

Beyond PC with PSSL on PS4
-  Extended Buffer Support for all shaders

-  Not just Pixel and Compute
-  The hardware is capable so we expose that.

-  Special Hardware Intrinsics
-  Some native ISA instructions are natively supported

- ballot - Good for fine grain Compute control
-  sad - For multimedia tasks like Motion Estimation for accelerated image

processing

24

Beyond modern PC shader features
-  PS4 GPU has many special features
-  Let’s talk about a specific example

25

Example
- New features over previous generation

-  New shader stages
- Hull, Domain, Geometry, Compute

-  Atomics and RW_Buffers
- Accessible in all stages

-  Partially Resident Textures

- What can we do with all of this?
-  Why not Sparse Voxel Octree Cone Tracing!

26

Sparse Voxel Octree Cone Tracing
- Global Illumination

solution proposed by
Crassin et al. in 2011

-  Trace cones through a
voxelization of the
scene to solve for the
contribution of direct
and indirect light
sources

Diffuse	

cones	

l	

d	

Light	

source	

n	

n	
 View	
 direc3on	

Images credit Cyril Crassin’s GTC presentation
“Octree-Based Sparse Voxelization for Real-Time
Global Illumination”

27

Sparse Voxel Octree Cone Tracing
-  Prepass: voxelize static geometry
- During gameplay:

1.  Voxelize dynamic geometry
2.  Light volume
3.  Build mipmaps
4.  Render gbuffers
5.  Cone trace scene

Images credit Cyril Crassin’s GTC presentation
“Octree-Based Sparse Voxelization for Real-Time
Global Illumination”

3D	
 MIP-­‐map	
 pyramid	

of	
 pre-­‐filtered	
 values	

Quadrilinearly	

interpolated	

samples	

28

Sparse Voxel Octree Cone Tracing
- Could do a full implementation

-  (RW_)Texture3D for bricks
-  (RW_)RegularBuffer for octree representation
-  Geometry shader for thin surface voxelization

- Other useful PSSL features
-  Partially Resident Textures?

29

Partially Resident Textures
-  Also called “Tiled Resources”
-  Hardware Virtual Texturing
-  Textures broken up into 64KiB tiles
-  Tile texel dimensions dependent on texture

dimensionality and underlying texture format
-  Allows for not all the texture to resident in

memory at a time

30

Partially Resident Textures
-  Like this, but in hardware!

-  For more information, please refer to the Hardware Virtual Texturing
slides presented at SIGGRAPH 2013

Virtual Texture

Physical Representation

31

PSSL and PRT
-  Exposed in PSSL as a new Sparse_Texture* type

-  All sample-able texture types supported, 1D, 2D, 3D, Cube, Arrays,
etc.

-  Sample() modified to take an extra out parameter to
indicate status

-  It’s not necessary to use the Sparse_Texture type to utilize
partially resident textures, but Sparse_Texture is necessary
if you want status information!
-  Essentially page-fault tolerant GPU memory accesses

32

PSSL Sample Code
Sparse_Texture2D<float4>	
 sparseTexture;	

float4	
 main(VS_OUT	
 inv)	
 :	
 S_TARGET_OUTPUT0	

{	

	
 	
 	
 	
 SparseTextureStatus	
 status;	

	
 	
 	
 	
 float4	
 sampleColor;	

	

	
 	
 	
 	
 //	
 Try	
 the	
 regular	
 LOD	
 level	
 first	

	
 	
 	
 	
 sampleColor	
 =	
 sparseTexture.Sample(status.code,	
 sampler1,	
 inv.tex0);	

	

	
 	
 	
 	
 //	
 If	
 'Sample'	
 fails,	
 handle	
 failure	

	
 	
 	
 	
 if	
 (
 status.isTexelAbsent()	
)	

	
 …	

	

33

SparseTextureStatus
struct	
 SparseTextureStatus	

{	

	
 	
 	
 	
 uint	
 code;	

	

	
 	
 	
 	
 bool	
 isTexelAbsent();	

	
 	
 	
 	
 bool	
 isLodWarning();	

	
 	
 	
 	
 uint	
 getAbsentLod();	
 //	
 LOD	
 of	
 absent	
 texel	

	
 	
 	
 	
 uint	
 getWarningLod();	
 //	
 LOD	
 that	
 caused	
 the	
 warning	

};	

	

34

PRT Applications
-  Megatexturing
-  Ptex
-  Sparse Voxel Cone Tracing

35

Sparse Voxel Octree Cone Tracing
-  Instead of populating an octree, use a partially resident texture!
-  Pros:

-  PRT tiles do not need to be padded for proper interpolation
-  No need to build an octree data structure
-  No need to incur the indirection costs of traversing an octree data structure

-  Cons:
-  PRT tile dimensions not ideal – 64x64x4 for 32-bit 3D textures
-  No fast empty space skip from octree traversal

36

Voxelization
-  Adaptation of Crassin’s

method detailed in
OpenGL Insights

-  Unfortunately no atomic
floats; quantized ints for
accumulation rather than
spin lock

-  Use geometry shader
and hardware rasterizer
to voxelize scene into a
3D texture with a single
pass

x	

x	

y	
 y	

z	

z	

Y-­‐proj	

Z-­‐proj	
 X-­‐proj	

Normal	

Triangle	

Dominant	

Axis	

Selec;on	

Triangle	

Projec;on	

Voxel	

A>ributes	

Computa;on	

Geometry	
 Shader	
 Fragment	
 Shader	

Ha
rd
w
ar
e	

Se
tu
p/

Ra
st
er
.	

Write	
 to	
 3D	

surface	

Edges	

ShiFing	

Fragments	

Clipping	

Conserva;ve	

Rasteriza;on	

VS	

Images credit Cyril Crassin’s GTC presentation
“Octree-Based Sparse Voxelization for Real-Time
Global Illumination”

37

Writing to a empty Sparse Texture?
-  Problem: the texture is unmapped to begin with!

-  No pages are mapped yet, can’t write to memory that doesn’t exist!
-  Idea: write to the pool texture instead

-  PRT allow us to map the same physical page to multiple virtual locations
-  All tiles are mapped into the pool texture and then doubly mapped to the sparse

texture as need
-  Fragments that need to be written out query a map texture before

writing, and if the tile is ummapped they allocate a tile and write it back
to the map texture
-  Keep free tiles in a Consume buffer, write out re-map info into an Append buffer

38

Tile Allocation
-  Map texture initialized to set a reserved “unallocated bit”
-  AtomicCmpExchange() in a value to flip on an additional

“unallocated-but-I’m-working-on-it” bit for a single thread
-  Consume() a free tile
-  Append() consumed tile with remap data
-  Write out tile location to map texture

-  Write into the tile using pool texture
-  After pass completion, read from append buffer on CPU side to

map tiles from the pool to the sparse texture

39

Tile Allocation

40

const	
 uint	
 unallocated	
 =	
 0x80000000,	
 allocating	
 =	
 0xC0000000;	

do	
 {	

	
 	
 cur	
 =	
 map[tileLoc];	

	
 	
 if(cur	
 ==	
 unallocated)	
 {	

	
 	
 	
 	
 uint	
 output	
 =	
 0xffffffff;	

	
 	
 	
 	
 AtomicCmpExchange(map[tileLoc],	
 unallocated,	
 allocating,	
 output);	

	
 	
 	
 	
 if(output	
 ==	
 unallocated)	
 {	

	
 	
 	
 	
 	
 	
 cur	
 =	
 g_freeTiles.Consume();	

	
 	
 	
 	
 	
 	
 map[tileLoc]	
 =	
 cur;	

	
 	
 	
 	
 	
 	
 g_remaps.Append(…);	

	
 	
 	
 	
 }	

	
 	
 }	

}	

while(cur	
 &	
 unallocated);	

	

Tile Allocation

41

Implementation
-  1024x1024x512 32-bit pool texture

-  16x16x128 tiles, given linear ids (can use shifts/masks to find actual
location)

-  512x512x512 32-bit Sparse Texture to represent the scene
-  8x8x128 map texture for tile allocation
-  Consume buffer for grabbing free tiles
-  Append buffer for noting allocated tiles for remapping

42

Building Mipmaps
-  Compute Kernel that takes an 8x8x8 brick and reduces

it to a 4x4x4 brick
-  LDS for accumulating final values

-  Allocate tiles for new mips in the same manner as
voxelization

-  Pre-map the lowest mips (all that fit into 64KiB)

43

Lighting Voxels
-  Currently naively lit
-  Spawn Compute kernel for entire 3D texture, iterate

over lights if resident
-  Needs optimization

44

Results

45

Results
-  Average frame time: 26ms

-  3ms gbuffer, 11ms indirect + specular reflect, 11ms direct
-  Memory usage:

-  2GiB Pool Texture, ~315MiB allocated after voxelization, ~56%
resident

-  Static geometry voxelization and lighting time:
-  45ms voxelization, 22ms top-mip light, 25ms mip regeneration

-  Still much more optimization possible!

46

PSSL is still evolving
-  Features in consideration:

-  Control of shader resource
layout

-  More exotic compute primitives
for GPGPU

-  Tightly coupled Graphics and
Compute

-  And many more…

47

Join the discussion
- We would like to hear from you!
-  Sign up as a PS4 developer, if you’re not already

-  http://us.playstation.com/develop/
-  There is a link for all territories from this page

- We are looking for solid suggestions with clear benefits
-  Specific performance benefit
-  Special new/novel feature, etc.

48

Push the boundaries with PSSL
-  PS4 is a powerful, but friendly to develop for
-  PSSL is one of the keys for developing for PS4
- Our goals with PSSL

-  Make better Games
-  Push the boundaries on PS4
-  And to be efficient in that process

- Help us help YOU!

49

Q&A
- Questions?

US R&D Shader Technology
Group is hiring!

50

