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PS4, PSSL, and Beyond 
-  Today we will discuss 

-  The PS4 architecture  
-  Developing for PS4 
-  PSSL on PS4 
-  Beyond PC with PSSL on PS4 
-  Join the discussion 
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PlayStation®4 
- Next Gen PlayStation Console  

-  Powerful game machine 
-  Modern Graphics features  
-  PC based architecture 
-  Lightning fast Memory   
-  New networking and  

 interface features 
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Modern GPU 
-  DirectX 11.2+/OpenGL 4.4 feature set  

-  With custom SCE features 

-  Asynchronous compute architecture 
-  800MHz clock, 1.843 TFLOPS 
-  Greatly expanded shader pipeline compared to PS3™ 
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Fast GDDR5 RAM 
-  8GB 256 bit GDDR5 
-  Fully unified address space 
-  176 GB/s total bandwidth 
- Massively faster than DDR3 

-  128 bit at ~40GB/s max bandwidth 
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State of the art CPU 
- Modern 64-bit x86 architecture 
-  8 cores, 8 HW threads 

-  Atomics  
-  Threads  
-  Fibers 
-  ULTs (user-level threads) 
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GPU+RAM+CPU = Beyond Fast! 
-  Plenty of power for a true Next Gen Game Experience 

-  8 CPU cores 
-  High polygon throughput 
-  High pixel performance 
-  Efficient branching in  

 GPU Shaders 
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But what about development? 
-  PS4 is very approachable for development  

-  DX11/OpenGL 4.4 level Shader language in PSSL 
-  Powerful Graphics API 
-  C++11 CPU Compiler 
-  All the expected system libraries and utilities 

- Networking, Codecs, Controllers, Input and more 
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Familiar PC-like Development Platform 
-  Full Visual Studio Integration 
- Minimal work for good performance 
-  Built for AAA Games and Indies alike 
-  Built to enable developers to push the system 

-  Good is just the start! 
-  Once you are ready for the deep dive we support you there as well  
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What is PSSL 
-  PSSL is the PlayStation Shader Language for PS4 
-  Supports modern graphics development 

- Vertex 
- Pixel 
- Geometry 
- Hull 
- Domain 
- Compute 
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Vertex and Pixel Shaders 
- Next generation VS and PS Shaders 
-  Extended support based on our hardware 

-  RW_Textures and Atomics in all shaders 
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Geometry Shaders 
-  Supports special cases GS like  

-  GS Tessellation 
-  Instancing  
-  Cube mapping  
-  Streamout 
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Hull, and Domain 
-  Supports HS DS Tessellation  

-  Parametric surface conversion 
-  Optimal Geometry generation  
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Compute 
-  Support modern compute 

shaders 
-  Parallel Multithreaded 

execution 
-  This cross wave and group 

synchronization primitives like 
barriers and atomics 

-  Various Local and Global 
memory pools for complex 
thread interaction 
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What does PSSL look like? 
-  It follows the PC conventions for shaders 
-  ANSI C style syntax and coding rules 
-  Includes the expected: 

-  Vectors 
-  Standard libs  
-  C++ style structs with members  
-  Supports static and dynamic control flow 
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A simple vertex shader 
struct	
  VS_INPUT	
  
{	
  
	
  	
  	
  	
  float3	
  Position	
  	
  	
  	
  	
  :	
  POSITION;	
  
	
  	
  	
  	
  float3	
  Normal	
  	
  	
  	
  	
  	
  	
  :	
  NORMAL;	
  
	
  	
  	
  	
  float4	
  Tangent	
  	
  	
  	
  :	
  TEXCOORD0;	
  
	
  	
  	
  	
  float2	
  TextureUV	
  	
  	
  	
  :	
  TEXCOORD1;	
  
};	
  
	
  
VS_OUTPUT	
  main(	
  VS_INPUT	
  input	
  )	
  
{	
  

VS_OUTPUT	
  Output;	
  
	
  
Output.Position	
  =	
  mul(	
  float4(input.Position.xyz,1),	
  m_modelViewProjection	
  );	
  
…	
  
float3	
  vN	
  =	
  normalize(mul(float4(input.Normal,0),	
  m_modelView).xyz);	
  
…	
  
return	
  Output;	
  	
  	
  	
  	
  

}	
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A simple pixel shader 
	
  
SamplerState	
  samp0	
  :	
  register(s0);	
  

Texture2D	
  colorMap	
  :	
  register(	
  t0	
  );	
  

Texture2D	
  bumpGlossMap	
  :	
  register(	
  t1	
  );	
  

	
  

float4	
  main(	
  VS_OUTPUT	
  In	
  )	
  :	
  S_TARGET_OUTPUT	
  

{	
  

...	
  

float4	
  diff_col	
  =	
  colorMap.Sample(samp0,	
  In.TextureUV.xy);	
  

float3	
  spec_col	
  =	
  0.4*normalGloss.w+0.1;	
  

...	
  

return	
  float4(vLight.xyz,	
  diff_col.a);	
  

}	
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How PSSL is being developed 
- World wide collaborative efforts 

-  US R&D Shader Technology Group 
-  PS Vita shader compiler team in ATG 
-  Graphics driver team in ICE 
-  GPU hardware teams and SDK managers 
-  With tight feedback with Sony World Wide Studios 

- QA Team 
-  Thousands of automated tests 
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Let’s see some PSSL shaders in action 
-  This is real-time PS4 game footage 
-  All shaders in these demos were built with the PSSL tool 

chain 
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The video was removed so this version could be emailed 
Video is available upon request or via the ppt version on 
devnet 

Here https://ps4.scedev.net/support/issue/8907 
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Porting to PSSL from the PC 
-  Easy initial port target 

-  Simple conversion of your PC or Xbox 360 Shader  
-  PS3 Cg conversion is fairly trivial  

-  Prototyping on the PC much simpler this generation 
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Maintaining PSSL and PC Shaders 
-  Simpler to maintain code this round 

-  PC and PS4 are now much closer for shaders  
-  All of the shader stages and features are available in PSSL  

- Often have been extended  

-  This means you should be up and running very quickly 
-  The time to “my first tri” will be better 
-  The time to “my game runs!” will be better  
-  The time to “my game is fast on PS4” will also be better! 
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Beyond PC with PSSL on PS4 
-  Extended Buffer Support for all shaders 

-  Not just Pixel and Compute 
-  The hardware is capable so we expose that. 

-  Special Hardware Intrinsics 
-  Some native ISA instructions are natively supported 

- ballot - Good for fine grain Compute control 
-  sad - For multimedia tasks like Motion Estimation for accelerated image 

processing 
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Beyond modern PC shader features 
-  PS4 GPU has many special features  
-  Let’s talk about a specific example 
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Example 
- New features over previous generation 

-  New shader stages 
- Hull, Domain, Geometry, Compute 

-  Atomics and RW_Buffers 
- Accessible in all stages 

-  Partially Resident Textures 

- What can we do with all of this? 
-  Why not Sparse Voxel Octree Cone Tracing! 
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Sparse Voxel Octree Cone Tracing 
- Global Illumination 

solution proposed by 
Crassin et al. in 2011 

-  Trace cones through a 
voxelization of the 
scene to solve for the 
contribution of direct 
and indirect light 
sources 
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Images credit Cyril Crassin’s GTC presentation 
“Octree-Based Sparse Voxelization for Real-Time 
Global Illumination” 
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Sparse Voxel Octree Cone Tracing 
-  Prepass: voxelize static geometry 
- During gameplay: 

1.  Voxelize dynamic geometry 
2.  Light volume 
3.  Build mipmaps 
4.  Render gbuffers 
5.  Cone trace scene  

Images credit Cyril Crassin’s GTC presentation 
“Octree-Based Sparse Voxelization for Real-Time 
Global Illumination” 
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Sparse Voxel Octree Cone Tracing 
- Could do a full implementation 

-  (RW_)Texture3D for bricks 
-  (RW_)RegularBuffer for octree representation 
-  Geometry shader for thin surface voxelization 

- Other useful PSSL features 
-  Partially Resident Textures? 
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Partially Resident Textures 
-  Also called “Tiled Resources” 
-  Hardware Virtual Texturing 
-  Textures broken up into 64KiB tiles 
-  Tile texel dimensions dependent on texture 

dimensionality and underlying texture format 
-  Allows for not all the texture to resident in 

memory at a time 
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Partially Resident Textures 
-  Like this, but in hardware! 

-  For more information, please refer to the Hardware Virtual Texturing 
slides presented at SIGGRAPH 2013 

Virtual Texture 

Physical Representation 
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PSSL and PRT 
-  Exposed in PSSL as a new Sparse_Texture* type 

-  All sample-able texture types supported, 1D, 2D, 3D, Cube, Arrays, 
etc. 

-  Sample() modified to take an extra out parameter to 
indicate status 

-  It’s not necessary to use the Sparse_Texture type to utilize 
partially resident textures, but Sparse_Texture is necessary 
if you want status information! 
-  Essentially page-fault tolerant GPU memory accesses 
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PSSL Sample Code 
Sparse_Texture2D<float4>	
  sparseTexture;	
  
float4	
  main(VS_OUT	
  inv)	
  :	
  S_TARGET_OUTPUT0	
  
{	
  
	
  	
  	
  	
  SparseTextureStatus	
  status;	
  
	
  	
  	
  	
  float4	
  sampleColor;	
  
	
  
	
  	
  	
  	
  //	
  Try	
  the	
  regular	
  LOD	
  level	
  first	
  
	
  	
  	
  	
  sampleColor	
  =	
  sparseTexture.Sample(status.code,	
  sampler1,	
  inv.tex0);	
  
	
  
	
  	
  	
  	
  //	
  If	
  'Sample'	
  fails,	
  handle	
  failure	
  
	
  	
  	
  	
  if	
  (	
  status.isTexelAbsent()	
  )	
  

	
  …	
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SparseTextureStatus 
struct	
  SparseTextureStatus	
  
{	
  
	
  	
  	
  	
  uint	
  code;	
  
	
  
	
  	
  	
  	
  bool	
  isTexelAbsent();	
  
	
  	
  	
  	
  bool	
  isLodWarning();	
  
	
  	
  	
  	
  uint	
  getAbsentLod();	
  //	
  LOD	
  of	
  absent	
  texel	
  
	
  	
  	
  	
  uint	
  getWarningLod();	
  //	
  LOD	
  that	
  caused	
  the	
  warning	
  
};	
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PRT Applications 
-  Megatexturing 
-  Ptex 
-  Sparse Voxel Cone Tracing 
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Sparse Voxel Octree Cone Tracing 
-  Instead of populating an octree, use a partially resident texture! 
-  Pros: 

-  PRT tiles do not need to be padded for proper interpolation 
-  No need to build an octree data structure 
-  No need to incur the indirection costs of traversing an octree data structure 

-  Cons: 
-  PRT tile dimensions not ideal – 64x64x4 for 32-bit 3D textures 
-  No fast empty space skip from octree traversal 
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Voxelization 
-  Adaptation of Crassin’s 

method detailed in 
OpenGL Insights 

-  Unfortunately no atomic 
floats; quantized ints for 
accumulation rather than 
spin lock 

-  Use geometry shader 
and hardware rasterizer 
to voxelize scene into a 
3D texture with a single 
pass 
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Images credit Cyril Crassin’s GTC presentation 
“Octree-Based Sparse Voxelization for Real-Time 
Global Illumination” 
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Writing to a empty Sparse Texture? 
-  Problem: the texture is unmapped to begin with! 

-  No pages are mapped yet, can’t write to memory that doesn’t exist! 
-  Idea: write to the pool texture instead 

-  PRT allow us to map the same physical page to multiple virtual locations 
-  All tiles are mapped into the pool texture and then doubly mapped to the sparse 

texture as need 
-  Fragments that need to be written out query a map texture before 

writing, and if the tile is ummapped they allocate a tile and write it back 
to the map texture 
-  Keep free tiles in a Consume buffer, write out re-map info into an Append buffer 
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Tile Allocation 
-  Map texture initialized to set a reserved “unallocated bit” 
-  AtomicCmpExchange() in a value to flip on an additional 

“unallocated-but-I’m-working-on-it” bit for a single thread 
-  Consume() a free tile 
-  Append() consumed tile with remap data 
-  Write out tile location to map texture 

-  Write into the tile using pool texture 
-  After pass completion, read from append buffer on CPU side to 

map tiles from the pool to the sparse texture 
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Tile Allocation 
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const	
  uint	
  unallocated	
  =	
  0x80000000,	
  allocating	
  =	
  0xC0000000;	
  
do	
  {	
  
	
  	
  cur	
  =	
  map[tileLoc];	
  
	
  	
  if(cur	
  ==	
  unallocated)	
  {	
  
	
  	
  	
  	
  uint	
  output	
  =	
  0xffffffff;	
  
	
  	
  	
  	
  AtomicCmpExchange(map[tileLoc],	
  unallocated,	
  allocating,	
  output);	
  
	
  	
  	
  	
  if(output	
  ==	
  unallocated)	
  {	
  
	
  	
  	
  	
  	
  	
  cur	
  =	
  g_freeTiles.Consume();	
  
	
  	
  	
  	
  	
  	
  map[tileLoc]	
  =	
  cur;	
  
	
  	
  	
  	
  	
  	
  g_remaps.Append(…);	
  
	
  	
  	
  	
  }	
  
	
  	
  }	
  
}	
  
while(cur	
  &	
  unallocated);	
  
	
  

 

Tile Allocation 
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Implementation 
-  1024x1024x512 32-bit pool texture 

-  16x16x128 tiles, given linear ids (can use shifts/masks to find actual 
location) 

-  512x512x512 32-bit Sparse Texture to represent the scene 
-  8x8x128 map texture for tile allocation 
-  Consume buffer for grabbing free tiles 
-  Append buffer for noting allocated tiles for remapping 
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Building Mipmaps 
-  Compute Kernel that takes an 8x8x8 brick and reduces 

it to a 4x4x4 brick 
-  LDS for accumulating final values 

-  Allocate tiles for new mips in the same manner as 
voxelization 

-  Pre-map the lowest mips (all that fit into 64KiB) 



43 

Lighting Voxels 
-  Currently naively lit 
-  Spawn Compute kernel for entire 3D texture, iterate 

over lights if resident 
-  Needs optimization 
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Results 
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Results 
-  Average frame time: 26ms 

-  3ms gbuffer, 11ms indirect + specular reflect, 11ms direct 
-  Memory usage: 

-  2GiB Pool Texture, ~315MiB allocated after voxelization, ~56% 
resident 

-  Static geometry voxelization and lighting time: 
-  45ms voxelization, 22ms top-mip light, 25ms mip regeneration 

-  Still much more optimization possible! 
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PSSL is still evolving 
-  Features in consideration: 

-  Control of shader resource 
layout 

-  More exotic compute primitives 
for GPGPU 

-  Tightly coupled Graphics and 
Compute  

-  And many more… 
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Join the discussion   
- We would like to hear from you!  
-  Sign up as a PS4 developer, if you’re not already  

-  http://us.playstation.com/develop/ 
-  There is a link for all territories from this page  

- We are looking for solid suggestions with clear benefits  
-  Specific performance benefit 
-  Special new/novel feature, etc. 
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Push the boundaries with PSSL  
-  PS4 is a powerful, but friendly to develop for 
-  PSSL is one of the keys for developing for PS4 
- Our goals with PSSL 

-  Make better Games 
-  Push the boundaries on PS4 
-  And to be efficient in that process 

- Help us help YOU! 
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Q&A 
- Questions? 

US R&D Shader Technology 
Group is hiring! 
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