

OVERVIEW

- Designing the look and feel for Smoke and Neon powers
- The creation of a new toolset and pipeline for I:SS
- Pros and cons from our new workflow and lessons learned attempting to make something new

CASE STUDY | SMOKE POWERS

- Defining the visual language of Smoke
- The parameters of the game design
- Powers, from concept to completion
 - Smoke Dash
 - Vent Travel

CONCEPT | SMOKE BOLT

CONCEPT | SMOKE AMBIENT

CONCEPT | SMOKE ORBITAL WAVE

SMOKE | THE VISUAL LANGUAGE

- Lots of pre-production concepts
- What qualities make smoke feel real or more importantly, believable
- Reference pointed us towards these pillars
 - Wind and turbulence
 - Lighting and compositing in the scene
- Experimentation with third party pre-rendered visuals led to our creation of a real-time curl noise implementation

SMOKE | THE DESIGN

Problems:

- Early tests had difficulty in feeling powerful
- It was problematic to track the powers as they moved through space or see them during dark times of day and shadowed areas

Result:

- Smoke needed to be the contrail but not the impacting force
- Add ash and lights to aid in visual tracking

CONCEPT | SMOKE DASH

SMOKE | DASH

- Dematerialize hero into smoke and ash using the hero's mesh
- The hero's particle mesh has positional, UV, normal and color data
 - essentially a low-res version of the hero
- The same particles that leave from where the hero dematerialized reform into the hero on the dash exit
- Smoke ribbons spawned off the surface of the hero mesh help carry directionality of motion

TECH | PARTICLE MESHES

Mesh Emitter OFF

Mesh Emitter ON

SMOKE DASH

World Update

A) Particles from Head

Hero Mesh Pos

B) Particles from Feet

Lerp

CONCEPT | SMOKE VENT TRAVEL

SMOKE VENT TRAVEL

- Dematerialize hero like Smoke Dash
- Wisps created with ribbons using parent/child relationships
- Ribbon parents rotate and translate upward over their lifetime
- Ribbons utilize curl noise and a velocity vector to blow away in the wind
- Work closely with Animation team on timing

SMOKE VENT TRAVEL

FXP_CHR_HRO_SMK_VENT_EXIT [FX] - OUTLINER
File Edit Display Create Build+Play Window

w fxp_chr_hro_smk_vent_exit

KITCLE STSTEW EDITOR		
	parent_wisps_wide	
class	PARTICLE_EMITTER_NEW	
▼ GENERATION		
emit_parent	Nil	
emit_kind	Emit ▼	
emit_events	burst(4)	
emit_ratio		
emit_space	kWorld	
emit_pos	convert_pos(rot1 + offset + cne, kParticleSystem, kWorld)	
emit_v	000	
lifetime	[0.5, 0.15]	
coalesce_particles ▼ MOTION		
bounce_kind	None ▼	
update_space	kWorld	
gravity	0.0	
damping	0.0	
pos	INTEGRATE(convert_pos(rot1 + offset + cne, kParticleSystem, kWorld), V, DV)	E
	INTEGRATE(V, DV)	
dv	VECTOR(0, 0, -GRAVITY) + SPRING(PREV_VAL(v), VECTOR(0,0,0), DAMPING)	E
▼ APPEARANCE		
draw_pos		
material_color	100	
emissive_color	0.0 0.0 0.0	
emissive_hdr_brightness	0.0	
additive_blend	0.0	
	1	18 2

FXP_CHR_HRO_SMK_VENT_EXIT [FX] - OUTLINER

File Edit Display Create Build+Play Window

▼fxp_chr_hro_smk_vent_exit

l_point_flash parent_wisps_tight parent_wisps_wide child_wisps_tight_Y child_wisps_tight_y_demo child_wisps_wide_Y child_wisps_wide_y_demo smoke_column ash_burst smoke_basering

▼ PARAMETERS

Add Parameters Delete Parameters

750 sHeight uCurl uWind uNoiseScale ▼ OTHER splice_from_file splice comments

CASE STUDY | NEON POWERS

- Defining the visual language of Neon
- Powers, from concept to completion
 - Sign Drain
 - Neon Dash

CONCEPT | NEON MELEE

CONCEPT | NEON SHOCKWAVE

NEON | THE VISUAL LANGUAGE

- Concepts developed simultaneously with the visual effects
- Light writing complex lingering shapes
- Casting lights
- Neon as a plasma
- Utilize curl noise in different ways than smoke

CONCEPT | NEON FLOAT STUDIES

LASER FLOAT TREATMENTS

CONCEPT | STASIS GRENADE STUDIES

NEON | DRAIN

- Design goal: Drain neon particles from an in-game neon sign.
 - Uses a variant of the hero particle mesh tech
- Particles attempt to spawn only at areas above a specific brightness value
- Grabs the color from the valid position and passes to the particle system
- Accelerates towards a swirling galaxy near the hero's hand before condensing into a single point of light

CONCEPT | NEON DRAIN

TECH PARTICLE MESHES

Emissive Texture

Sign Particle Mesh

NEON | DASH

- Break the hero down into a strobing silhouette
- Leave behind a lingering light-writing trail
- Body crawls with energy on exit
- Work with variable run distances
 - You can run for infinity!

CONCEPT | NEON DASH

TOOLSET | CHALLENGES

- What we knew the game design required
- What we wanted to achieve artistically
- What production changes we wanted
- What does it mean to be 'next-gen' on new hardware?

TOOLSET | DECISIONS

- Create an expression based system with user parameters
- Accurate lighting/sorting/shading, integrated well into the game world
- Real-time* editing
 - Constant value adjustments
 - Keyframe editor
- Run on gpu allowing more complex expressions/simulations

^{*} Minor compiles necessary when changing math functions

TOOLSET PARTICLE EDITOR

	P_CHR_HRO_SMK_MISSILE_H [FX] - OUTLINER Edit Display Create Build+Play Window	
∀ f	fxp_hro_smk_missile_h distortion_shockwave_camera shockwave L_point_flash L_point_linger straight_streaks Flash ashflakes core_rise_anim_slow sparkstreaks_fast smoke_sphere parent_streamers	
	child_streamers_wisps child_streamer_glowhead child_directional_sparks ashflakes_linger smoke_sphere_linger smoke_ground_ring_linger	

PARTICLE SYSTEM EDITOR ×						
name		child_streamers_wisps				
•	class	PARTICLE_EMITTER_NEW	ш			
	▼ GENERATION		-11			
	emit_parent	parent_streamers				
	emit_kind	Emit ▼	-			
	emit_events	emit(-1, 150)				
	emit_ratio					
	emit_space	kParticleSystem				
	emit_pos	000				
	emit_v	000				
	lifetime	parent.childlife * uSmokeLife + parent.plife * abs(1 - parent.L)				
	coalesce_particles					
	▼ MOTION					
	bounce_kind	None ▼				
	update_space	kWorld				
	gravity	750 * eval_emit(parent.trailcolor.x)				
	damping	25				
	pos	INTEGRATE(POS, V, DV)				
		INTEGRATE(V, DV)				
	Compile Force Compile	Trigger Untrigger				

Outliner

Property Editor

Keyframe Editor

TOOLSET | THE BASICS

- Expressions:
 - Vectors, floats, strings, bools, ints, orientations (quaternion), random ranges
 - Uses standard math operations cos, abs, dot, swizzling, etc.
 - Once compiled into constants, values can be edited live
- Variables (user parameters) can be created and used in expressions
- Triangulation & blending methods
 - Billboards, Ribbons, Mesh fragments
 - Translucent, Deferred, Additive, Distort
- Diffuse and emissive values + light casting abilities

TOOLSET | EMIT & UPDATE

- Basic emit functions
 - Emit(time, count)
 - Burst(count)
 - Pause(time)
 - Emit Ratio multiplier
- Supports a range of emit and update spaces
 - Local, world, spline, view
 - Unlinked emit and update spaces
 - Can convert and lerp between spaces (positions)

TOOLSET | USER PARAMETERS

- System level parameters
 - Floats or vectors that can be referenced in any expression on emitters
 - Values can be adjusted externally through script and code
- Emitter level parameters
 - Evaluated per particle such that a random number will be different on each particle per emitter
 - Returns the same value (per particle) when referenced multiple times in the emitter
 - Can evaluate only on emit or return a different value at emit time from subsequent frames

TOOLSET | KEYFRAME EDITOR

- Controls the output of floats, vec2 and vec3
- Linear segments, limited to 16 points
- The x-axis input on the graph can be set to other parameters for added power and flexibility

CASE STUDY | SHADING & LIGHTING

- Cast shadows
- Receive shadows
- Cast lights
- Bounced ambient
- Receive directional sunlight
- Blend correctly with haze
- HDR particle rendering

SHADING & LIGHTING | SHADOWS

- Simple multiplicative blob shadows, one per particle
- Tunable shadow strength per emitter
- Deferred rendered geometry meshes cast shadows like all world geometry
- Additive blended particles do not cast shadows
- Receive shadows cast from geometry affected by directional lighting
- Both dynamic and static objects cast shadows onto particles

SHADING & LIGHTING | CAST LIGHTS

- Can cast point lights from any particle
- Falloff & hotspot controls
- HDR values
- All the same positional expressions as a particle
- Does not affect translucent particles

SHADING & LIGHTING | AMBIENT SH PROBE LIGHTING

- Spherical Harmonics probe data used on every (non-additive) particle emitter
- Simulates local and bounced lighting
- Huge success in shadowed areas which would ordinarily look flat from lack of directional sunlight

SHADING & LIGHTING | HDR PIPELINE

- I:SS uses Physically Based Rendering / HDR
- Started out using realistic exposure values for emitters but altered to suit artistic and design needs
- HDR offset per time of day used to compensate
 - 8 different times of day
- Particle textures authored in LDR, very easy to 'blow out' the alpha

CURL NOISE | BASICS

- 1D Simplex noise (variant of Perlin)
 - Returns a float
- 3D noise (built from 1D noise + Bill Rockenbeck magic)
 - Returns a vector
- Contains an input position, frequency, strength & iteration time
 - curl_noise(pos, frequency, strength, dt)

- Nearly limitless power over simulations, the only limit is our understanding of math
- Easy to have engineers prototype functionality that can be switched to code or simplified expression functions later
- Very flexible and unspecialized system
- GPU particles are fast so we can have very large quantities
- Real-time editing a huge boon to iteration time
- Great particle sorting and lighting

- Very flexible and unspecialized system, the only limit is our understanding of math
- Easy to have engineers prototype functionality that can be switched to code or simplified expression functions later
- GPU particles are fast so we can have very large quantities
- Real-time editing a huge boon to iteration time
- Great particle sorting and lighting

- Very flexible and unspecialized system, the only limit is our understanding of math
- Easy to have engineers prototype functionality that can be switched to code or simplified expression functions later
- GPU particles are fast so we can have very large quantities
- Real-time editing a huge boon to iteration time
- Great particle sorting and lighting

- Very flexible and unspecialized system, the only limit is our understanding of math
- Easy to have engineers prototype functionality that can be switched to code or simplified expression functions later
- GPU particles are fast so we can have very large quantities
- Real-time editing a huge boon to iteration time
- Great particle sorting and lighting

- Very flexible and unspecialized system, the only limit is our understanding of math
- Easy to have engineers prototype functionality that can be switched to code or simplified expression functions later
- GPU particles are fast so we can have very large quantities
- Real-time editing a huge boon to iteration time
- Great particle sorting and lighting

- Very flexible and unspecialized system, the only limit is our understanding of math
- Easy to have engineers prototype functionality that can be switched to code or simplified expression functions later
- GPU particles are fast so we can have very large quantities
- Real-time editing a huge boon to iteration time
- Great particle sorting and lighting

- Systems can get extremely complex very quickly
- It can be challenging to work on another artists systems
- Very limited shading options, lack of shader editing
- Not artist-friendly, which makes finding the right effects artists and training them much more difficult
- Our HDR lighting model is much more challenging to work with given different time of day and lighting scenarios

- Systems can get extremely complex very quickly
- It can be challenging to work on another artists systems
- Very limited shading options, lack of shader editing
- Not artist-friendly, which makes finding the right effects artists and training them much more difficult
- Our HDR lighting model is much more challenging to work with given different time of day and lighting scenarios

- Systems can get extremely complex very quickly
- It can be challenging to work on another artists systems
- Very limited shading options, lack of shader editing
- Not artist-friendly, which makes finding the right effects artists and training them much more difficult
- Our HDR lighting model is much more challenging to work with given different time of day and lighting scenarios

- Systems can get extremely complex very quickly
- It can be challenging to work on another artists systems
- Very limited shading options, lack of shader editing
- Not artist-friendly, which makes finding the right effects artists and training them much more difficult
- Our HDR lighting model is much more challenging to work with given different time of day and lighting scenarios

- Systems can get extremely complex very quickly
- It can be challenging to work on another artists systems
- Very limited shading options, lack of shader editing
- Not artist-friendly, which makes finding the right effects artists and training them much more difficult
- Our HDR lighting model is much more challenging to work with given different time of day and lighting scenarios

- Systems can get extremely complex very quickly
- It can be challenging to work on another artists systems
- Very limited shading options, lack of shader editing
- Not artist-friendly, which makes finding the right effects artists and training them much more difficult
- Our HDR lighting model is much more challenging to work with given different time of day and lighting scenarios

POST-MORTEM | DOING SOMETHING NEW

- If you know how to do it, that means people have already seen it
- Use first principles, don't pre-constrain your options
- "What do we need to communicate to the player here?"

THE END!

QUESTIONS?

mattv@suckerpunch.com

COME VISIT US!

www.suckerpunch.com soniaj@suckerpunch.com

THE INFAMOUS: SECOND SON PARTICLE SYSTEM ARCHITECTURE

Bill Rockenbeck

Room 2020, West Hall

Friday, March 21

10:00am-11:00am

