




• Designing the look and feel for Smoke and Neon powers

• The creation of a new toolset and pipeline for I:SS

• Pros and cons from our new workflow and lessons learned 
attempting to make something new





• Defining the visual language of Smoke

• The parameters of the game design

• Powers, from concept to completion
• Smoke Dash

• Vent Travel









• Lots of pre-production concepts

• What qualities make smoke feel real or more importantly, 
believable

• Reference pointed us towards these pillars
• Wind and turbulence

• Lighting and compositing in the scene

• Experimentation with third party pre-rendered visuals led to our 
creation of a real-time curl noise implementation





• Problems:
• Early tests had difficulty in feeling powerful

• It was problematic to track the powers as they moved through space or 
see them during dark times of day and shadowed areas

• Result:
• Smoke needed to be the contrail but not the impacting force

• Add ash and lights to aid in visual tracking





• Dematerialize hero into smoke and ash using the hero’s mesh

• The hero’s particle mesh has positional, UV, normal and color data 
– essentially a low-res version of the hero

• The same particles that leave from where the hero dematerialized 
reform into the hero on the dash exit

• Smoke ribbons spawned off the surface of the hero mesh help 
carry directionality of motion







Mesh Emitter OFF Mesh Emitter ON









A) Particles from Head B) Particles from Feet Lerp









• Dematerialize hero like Smoke Dash

• Wisps created with ribbons using parent/child relationships

• Ribbon parents rotate and translate upward over their lifetime

• Ribbons utilize curl noise and a velocity vector to blow away in the 
wind

• Work closely with Animation team on timing





















• Defining the visual language of Neon

• Powers, from concept to completion
• Sign Drain

• Neon Dash







• Concepts developed simultaneously with the visual effects

• Light writing complex lingering shapes

• Casting lights

• Neon as a plasma

• Utilize curl noise in different ways than smoke









• Design goal: Drain neon particles from an in-game neon sign.
• Uses a variant of the hero particle mesh tech

• Particles attempt to spawn only at areas above a specific 
brightness value

• Grabs the color from the valid position and passes to the particle 
system

• Accelerates towards a swirling galaxy near the hero’s hand before 
condensing into a single point of light









Emissive Texture Sign Particle Mesh









• Break the hero down into a strobing silhouette

• Leave behind a lingering light-writing trail

• Body crawls with energy on exit

• Work with variable run distances
• You can run for infinity!

















• What we knew the game design required

• What we wanted to achieve artistically

• What production changes we wanted

• What does it mean to be ‘next-gen’ on new hardware?



• Create an expression based system with user parameters

• Accurate lighting/sorting/shading, integrated well into the game 
world

• Real-time* editing
• Constant value adjustments
• Keyframe editor

• Run on gpu allowing more complex expressions/simulations

* Minor compiles necessary when changing math functions



Outliner Property Editor Keyframe Editor



• Expressions:
• Vectors, floats, strings, bools, ints, orientations (quaternion), random ranges

• Uses standard math operations - cos, abs, dot, swizzling, etc.

• Once compiled into constants, values can be edited live

• Variables (user parameters) can be created and used in expressions

• Triangulation & blending methods
• Billboards, Ribbons, Mesh fragments

• Translucent, Deferred, Additive, Distort

• Diffuse and emissive values + light casting abilities



• Basic emit functions
• Emit(time, count)

• Burst(count)

• Pause(time)

• Emit Ratio multiplier

• Supports a range of emit and update spaces
• Local, world, spline, view

• Unlinked emit and update spaces

• Can convert and lerp between spaces (positions)





• System level parameters
• Floats or vectors that can be referenced in any expression on emitters
• Values can be adjusted externally through script and code

• Emitter level parameters
• Evaluated per particle such that a random number will be different on 

each particle per emitter
• Returns the same value (per particle) when referenced multiple times in 

the emitter
• Can evaluate only on emit or return a different value at emit time from 

subsequent frames



• Controls the output of floats, vec2 and vec3

• Linear segments, limited to 16 points

• The x-axis input on the graph can be set to other parameters for 
added power and flexibility









• Cast shadows

• Receive shadows

• Cast lights

• Bounced ambient

• Receive directional sunlight

• Blend correctly with haze

• HDR particle rendering



• Simple multiplicative blob shadows, one per particle

• Tunable shadow strength per emitter

• Deferred rendered geometry meshes cast shadows like all world 
geometry

• Additive blended particles do not cast shadows

• Receive shadows cast from geometry affected by directional 
lighting

• Both dynamic and static objects cast shadows onto particles







• Can cast point lights from any particle

• Falloff & hotspot controls

• HDR values

• All the same positional expressions as a particle

• Does not affect translucent particles





• Spherical Harmonics probe data used on every (non-additive) 
particle emitter

• Simulates local and bounced lighting

• Huge success in shadowed areas which would ordinarily look flat 
from lack of directional sunlight







• I:SS uses Physically Based Rendering / HDR

• Started out using realistic exposure values for emitters but altered 
to suit artistic and design needs

• HDR offset per time of day used to compensate
• 8 different times of day

• Particle textures authored in LDR, very easy to ‘blow out’ the alpha











• 1D Simplex noise (variant of Perlin)
• Returns a float

• 3D noise (built from 1D noise + Bill Rockenbeck magic)
• Returns a vector

• Contains an input position, frequency, strength & iteration time
• curl_noise(pos, frequency, strength, dt)









• Nearly limitless power over simulations, the only limit is our 
understanding of math

• Easy to have engineers prototype functionality that can be 
switched to code or simplified expression functions later

• Very flexible and unspecialized system

• GPU particles are fast so we can have very large quantities

• Real-time editing a huge boon to iteration time

• Great particle sorting and lighting



• Very flexible and unspecialized system, the only limit is our 
understanding of math

• Easy to have engineers prototype functionality that can be 
switched to code or simplified expression functions later

• GPU particles are fast so we can have very large quantities

• Real-time editing a huge boon to iteration time

• Great particle sorting and lighting



• Very flexible and unspecialized system, the only limit is our 
understanding of math

• Easy to have engineers prototype functionality that can be 
switched to code or simplified expression functions later

• GPU particles are fast so we can have very large quantities

• Real-time editing a huge boon to iteration time

• Great particle sorting and lighting



• Very flexible and unspecialized system, the only limit is our 
understanding of math

• Easy to have engineers prototype functionality that can be 
switched to code or simplified expression functions later

• GPU particles are fast so we can have very large quantities

• Real-time editing a huge boon to iteration time

• Great particle sorting and lighting



• Very flexible and unspecialized system, the only limit is our 
understanding of math

• Easy to have engineers prototype functionality that can be 
switched to code or simplified expression functions later

• GPU particles are fast so we can have very large quantities

• Real-time editing a huge boon to iteration time

• Great particle sorting and lighting



• Very flexible and unspecialized system, the only limit is our 
understanding of math

• Easy to have engineers prototype functionality that can be 
switched to code or simplified expression functions later

• GPU particles are fast so we can have very large quantities

• Real-time editing a huge boon to iteration time

• Great particle sorting and lighting



• Systems can get extremely complex very quickly

• It can be challenging to work on another artists systems

• Very limited shading options, lack of shader editing

• Not artist-friendly, which makes finding the right effects artists and 
training them much more difficult

• Our HDR lighting model is much more challenging to work with 
given different time of day and lighting scenarios



• Systems can get extremely complex very quickly

• It can be challenging to work on another artists systems

• Very limited shading options, lack of shader editing

• Not artist-friendly, which makes finding the right effects artists and 
training them much more difficult

• Our HDR lighting model is much more challenging to work with 
given different time of day and lighting scenarios



• Systems can get extremely complex very quickly

• It can be challenging to work on another artists systems

• Very limited shading options, lack of shader editing

• Not artist-friendly, which makes finding the right effects artists and 
training them much more difficult

• Our HDR lighting model is much more challenging to work with 
given different time of day and lighting scenarios



• Systems can get extremely complex very quickly

• It can be challenging to work on another artists systems

• Very limited shading options, lack of shader editing

• Not artist-friendly, which makes finding the right effects artists and 
training them much more difficult

• Our HDR lighting model is much more challenging to work with 
given different time of day and lighting scenarios



• Systems can get extremely complex very quickly

• It can be challenging to work on another artists systems

• Very limited shading options, lack of shader editing

• Not artist-friendly, which makes finding the right effects artists and 
training them much more difficult

• Our HDR lighting model is much more challenging to work with 
given different time of day and lighting scenarios



• Systems can get extremely complex very quickly

• It can be challenging to work on another artists systems

• Very limited shading options, lack of shader editing

• Not artist-friendly, which makes finding the right effects artists and 
training them much more difficult

• Our HDR lighting model is much more challenging to work with 
given different time of day and lighting scenarios



• If you know how to do it, that means people have already seen it

• Use first principles, don’t pre-constrain your options

• “What do we need to communicate to the player here?”







mattv@suckerpunch.com

Bill Rockenbeck

Room 2020, West Hall

Friday, March 21

10:00am-11:00am

www.suckerpunch.com

soniaj@suckerpunch.com


