
Landscape creation and
rendering in REDengine 3

Marcin Gollent
 Senior programmer @ CD Projekt RED

• Located in Warsaw, Poland

• Established in 2002

• Focused on RPGs

• The Witcher (2007, MC:81)

o PC, heavily modified Aurora Engine

• The Witcher 2: Assassins of Kings (2011, MC:88)

o PC, REDengine 1

• The Witcher 2: Assassins of Kings Enhanced Edition (2012, MC:88)

o PC/X360, REDengine 2

• The Witcher 3: Wild Hunt

o REDengine 3

o Releasing in February 2015

o PC/XBO/PS4

• Cyberpunk 2077 (REDengine 3)

o Release date TBD

About CD Projekt RED

The Witcher 3: Wild Hunt
35x bigger than The Witcher 2

• open world

• complex streaming

• a lot of tools refactoring

• different approaches

• DX9 -> DX11

TERRAIN &

VEGETATION

● How we deal with terrain

○ streaming and LOD

○ texturing

○ shadows

○ memory footprint

● How we distribute vegetation and debris

○ on-the-fly distribution

○ offline vegetation generator

● Stamp tool and workflow summary

● Q&A

Agenda

• Support more than 163842 resolution maps

• Less than 0.5 meter inter-vertex spacing

• Various landscape characteristics

• Terrain holes for placing cave mesh

• Paint and fill it with a relatively small team

o Terrain shape generated in World Machine and imported

Terrain – Our objectives (1)

• Big expectations in terms of texturing

oNice material blends

o Slope-based, per-pixel

• Terrain must cast shadows

• Extensive copy-paste functionality over general “landscape”

Terrain – Our objectives (2)

Terrain - Streaming

• Clipmap in memory, having regions
streamed.

o texture array

• Working setup for Novigrad:

o 46x46 tiles, 512x512 each (235522)

owindow res = 1024x1024

o 5 clipmap levels

o inter-vertex space = ~0.37 cm

o~74 km2

Clipmaps
• 3 streamed clipmaps

o elevation (16 bit unorm)

o control map (16 bit uint)

o color (32 bit, reduced resolution

- 40962 in case of a 163842

elevation data set)

• 3 runtime generated clipmaps

o vertical errors (64x64 common

case)

o normals (optional)

o terrain shadows

Terrain - Tessellation

• Inspired by a Gpu Pro 3 article,

similar technique applied to the

clipmap

• Triangle count still very good

• Gives best results with max tess

factors of 8 or 16, which is good

especially for console GPUs

simpl = 0 simpl = 3 simpl = 2 simpl = 1

verticalError[x,y]. r g b

calculate

maxVErr1 maxVErr2 maxVErr3

store

Vertical error maps generation

For each tessellation block [x,y]

(1 control point = 1 tess block)

vertical error clipmap window res = elevation clipmap window res / tessellation block res (common case: 64 = 1024 / 16)

Software tessellation
• Downsample the error maps so we can simplify on a

quad-tree level prior to relying on hardware tessellation.

• Avoids rendering big areas with a dense grid of minimally

tessellated blocks

WORKFLOW DESIGN ver.1.0

Texturing goals

Texturing goals (2)
• Have convincing vistas with virtually no effort

o start the real work from there

• Have nice material blends in closeup

o fine to adjust texel size manually

 with UV-only brush

• Simple to implement

oNo materials streaming

o Just one texture array

(two including normal map)

Texturing – Initial idea

• Define a pair of default materials

o Background and overlay

o Set per game level

o tangent of the background material normal defines visibility

of the overlay material

• Typical material layers on top of that

o controlMapVal <> 0

• Unfortunately - far from achieving all three goals

Texturing - Solution

• More radical approach - paint with two freely picked textures

o Background texture (eg. rock)

oOverlay texture (eg. snow)

o Painting feels differently

 broom - when painting a pathway

 sowing tool - when placing grass

 a bucket of snow

 ...

• 16 bit control-map

o 0-4 overlay texture index

o 5-9 background texture index

o 10-12 UV scale (7 scale values)

o 13-15 Slope threshold (7 threshold values)

Texturing – Slope threshold

• Each of the 3-bit values assigned for slope threshold is associated with a value

• Values go from 0.0 to 1.0

• Compute slope angle of the background material (world space texture normal)

• Compare against threshold value (control map)

0.125 0.375 0.5 0.75

Texturing – Not enough flexibility

• Issue with slope thresholds logic -

problematic to make a thick

snow/grass/sand/* cover

• Start with simple ideas…

• Boost overlay texture

when vertex normal looks up

• Might be good enough for this case,

but ...

slope threshold = 0.1 with boost [bad distribution] slope threshold = 0.1 [proper distribution]

Cobblestones case
• Bad for cobblestones :(

• Smallest threshold value already makes it more than 50% covered

• We want cobblestones to have wide range of protrusion

Texturing – Solution

• Provide some parameter that will save the day

o “slope-based damp”

• We can categorize background materials as:

o artificial materials (cobblestone, brick, path) that appear mostly on horizontal surfaces

o natural (crust, rock, etc.) ones that appear widely in nature

• The parameter will be close to 0 for the first case and close to 1 for the second case

• Do it separately for normals

Dampen = 0.5

Texturing – Dampening (3)

Dampen = 0.5

Normal damp = 0.8

Texturing – Dampening (4)

Dampen = 0.5
Dampen = 0.5

Normal damp = 0.8

No damp

Blend sharpness
• Different transitions to the background material

o rather blurry - mud, ice, dirt

o rather sharp - snow, sand, grass

• Simple to implement - just stretch the distance between some lerp coefficients (see next slide)

1.Compute world space normal of a background surface (combinedVerticalNormal)

2.Compute world space normal of an overlay surface (combinedHorizontalNormal)

3.Measure vertex-level slope angle (vertexSlope)

4.Compute a flattened version of pt1. based on vertexSlope (flattenedCombinedVerticalNormal)

5.Lerp between a pt.1 and pt.4 based on slopeBasedDamp (biasedFlattenedCombinedVerticalNormal)

Pixel shader – combining and dampening

Pixel shader – blending (+ normal dampening)

1.Compute tangent of the background surface (verticalSurfaceTangent)

a.linear step between slopeThreshold and (slopeThreshold + blendSharpness)

2.Combine background and overlay normals through partial derivatives, considering

slopeBasedNormalDamp. (fullNormalCombination)

3.Lerp colors and normals based on verticalSurfaceTangent.

Assembling new textures
● Combining textures with each other

● Different results depending on which texture is a background

Must have tools
• Freely enable/disable each component of the brush, eg.:

owant to influence texel size only

owant to influence threshold only

owant to change overlay/background texture only

• increment/decrement threshold

• optional but very useful: value falloff on brush radius

Per-texture params
• Horizontal

o blend sharpness

• Vertical

o dampen color on low slopes

o dampen normals on low slopes

• Horizontal/Vertical

o custom ones, eg.: falloff, roughness

o grass brush (more about that later)

Triplar mapping - performance

• No triplanar mapping for overlay texture

• For background texture sample with

triplanar mapping

oChoose which planes contribute (prefer

branching over texture fetches)

• Tighten the blend zone as much as

possible without introducing glitches

RED - three samples YELLOW - two samples GREEN - one sample

TIGHTEN_FACTOR = 0.3 TIGHTEN_FACTOR = 0.576

Blend zone tightening

TIGHTEN_FACTOR=0.3 TIGHTEN_FACTOR=0.576

Terrain holes performance
• Solutions unavailable:

oCan’t just render terrain with “discard” instruction inside, as it disables early-Z and hi-Z.

oCan’t manipulate indices when using hardware tessellation

Terrain holes - our solution
• Know that there is a hole inside a given tessellation block

oDetermine that during vertical error clipmap update

oCheck that during hull shader processing

• Split terrain drawcall into two drawcalls (#ifdef’d shaders)

o 1: cull tessellation block if it contains a hole

 usually covers over 99% of the terrain

 no discard instruction - hiZ on

o 2: draw tessellation block if it contains a hole

 with discard instruction

 best/closest clipmap level only

Terrain shadows

Terrain shadows clipmap
● Store maximum height that’s in shadow

● Update when streaming clipmap or changing time of day

● Has to be tightly coupled with clipmap computations to avoid shadows shimmering

● Allow a few huge meshes to cast terrain shadows

Terrain shadows algorithm
1. Lay down terrain depth - sun perspective

2. Render to the slices of shadows clipmap

For each texel

o At a corresponding elevation texel, calculate a full world space position (wsPos)

o For i=0 to n // n=13 works just fine 

 transform wsPos to the sun-space position

 compare z value of the sun-space position with the one fetched from pt.1 texture

 if position is occluded, increase wsPos.z by step, halve step

 if position is not occluded, decrease wsPos.z by step

o Store the last z component value in the terrain shadow map

= ~53 (63) MB

+ Texture Arrays

Terrain – memory footprint

5 clipmap levels, 1024x1024 window size

• elevation + normal + control map = 30 MB

• color map = 12 MB

• vertical errors map = 327 KB

• shadow map = 10 MB

 +10 for meshes casting terrain shadows

Vegetation - overview

• Using SpeedTree Forest library for culling and LODing

o Shared culling grid for all tree types

o Separate culling grid per grass type (grass layer)

 various cell sizes and draw distances

• Track grass visibility cells as they come in and out of view

o Populate newly visible cells in two steps:

 pass prebaked instances

 generate and append dynamic ones

oUpdate instance buffers

• Introduce a vegetation brush resource

owraps a set of vegetation types along with their densities and scales/scale vars.

Grass/debris - goals

• Distribute procedurally because

o… instances take a lot of memory

o… painting takes a lot of time

• Match terrain material

• Make it look diverse

• Allow for masking out

• Make it fast

oCPU or GPU?

Grass/debris – distribution overview (1)

• Assign brushes to terrain materials

o grass types from those brushes become auto-distributed

omany to many relation

o ~10 types are auto-distributed on our levels

• When a grass cell comes into view, lookup the prebaked occurrence map

o each auto-distributed grass type has one

o if bit is not set -> skip the cell processing

o 125kB per map given 100 m2 cell size on a 10km2 world

o Skips almost all the work compared to the uncooked game

Grass/debris – distribution overview (2)

● For a given cell, perform a number of iterations

○ pick a spot within cell’s bounds

○ verify if the type is assigned there

○ compute background/overlay visibility for that spot

■ replicates terrain PS behaviour, but with vertex-level precision

○ consume the amount of “attempts” based on brush settings

● Optimize by rendering a grass map after a clipmap update

○ fetch instead of the normal map and avoid most of the computation

Grass/debris – VIDEO

?

what we have what we want

Grass doesn’t „sit” on the terrain
• Conventional problem of grass standing out visually

o Takes a lot of artist’s time to hide it

oCritical when populating procedurally

Pigment map
• Render top-down view of the terrain

o 1’st clipmap level (closest area)

oUse lowest mipmaps

oNo interpolation

oNo triplanar mapping

o Account for color map

oNo tessellation - just one huge quad

 provided that pregenerated normal

maps are enabled

Pigment map (2)
Colorize instances by sampling pigment

map in vertex shader

• Bottom-up falloff, adjustable per type

• Slightly less for close instances

• Slightly more for far instances

• Exclude some types (eg.: heather)

Grass/debris – tool

• Assign a brush to the material

• Ignore non-grass types

• Account for density, scale, scale var.

Grass/debris – reminder

● The technique doesn’t exceed the cost of 1ms when running in a cooked game

● Hits the editor performance badly when going overboard with the amount of auto-distributed grass

types

● Users must be able to mask some areas out

○ currently we have a separate mask for that

○ will use occurrence map in a cooked game

● A thing to try: move the distribution to the GPU

○ eg.: run it on a compute shader with limited resources, while processing draw calls

Vegetation generator
• Offline tool, not limited to grass and debris

• Can populate the whole level or chosen contiguous areas

• Simulates water accumulation and light distribution

Vegetation generator tool

Vegetation generator - VIDEO

Vegetation generator algorithm
• For the whole region, allocate a 2d array of “resource” values.

• Perform a number of following iterations:

o For each cell, check the cell and it’s neighbours elevations

oCompute the slopes to/from neighbours, and decrease/increase resource values

(sedimentation of resources)

• For all cells

oCheck the trajectory of the sun and compute the percentage of time when the cell is in

shadow. Compare this value with values assigned to vegetation types to filter them out (for that

cell)

o If the cell’s resource value is bigger than some threshold, then pick a vegetation type, and

spawn it.

 Additionally scale the object based on how it’s environment matches “perfect conditions”,

namely the amount of resource and sunlight

VEGETATION GENERATOR (example)

Stamp tool
• Photoshop-style

• Copy-paste with full package

o elevation, control map, color map, vegetation

o rotating, scaling, paste-combining

o real-time preview

• Allow saving/loading stamps

• Became the most popular tool!

Stamp tool – VIDEO

Workflow
• Import the terrain from World Machine.

• Select any area to export, process, and import back.

oDone very rarely since stamp tool reached polished stage.

• Edit mostly with stamps.

o Artists move away from rise/lower tool

 They keep a set of stamps, with different landscape characteristics.

 It’s critical to make this tool robust, ergonomic, real-time, have undo for it, etc. but it pays off.

 Falling back to rise/lower for quest fine-tuning purposes mostly.

• Painting grass manually only in selected areas

o some intensive action/cutscene/dialogue zone

owhen applying knowledge about relations between foliage types for a more convincing result

• Run vegetation generator iterations for chosen areas.

o Settings are easy to reapply for given area, so redesigning some area is not a big problem.

• When in need to manually place grass and debris, mask out the automatic one.

PROGRAMMERS

Adam Cichocki (Pigment map)

Przemek Czatrowski (Color map, Stamp preview, tools)

Tim Green (Stamp, tools)

Tomasz Jonarski (Shadow map)

Krzysztof Krzyścin (Vegetation Generator)

Konstantinos Michalopoulos (tools)

ARTISTS

Michał Buczkowski

Marcin Michalski

Daniel Olejnik

Thanks to the team!! (in alphabetical order)

References
• Egor Yusov, "Real-Time deformable Terrain Rendering with DirectX 11" , Gpu Pro 3

• Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones “The Clipmap: A

Virtual Mipmap”, Silicon Graphics Computer Systems

• Frank Losasso, Hugues Hoppe, „Geometry Clipmaps: Terrain Rendering Using Nested

Regular Grids”

• Nicolai de Haan Brøgger, „Real-time Rendering of Large Terrains with Support for

Runtime Modifications”

• Michal Valient, „Efficient Real-Time Shadows”

Q&A

