# A/B Testing for Game Design Iteration: A Bayesian Approach

Steve Collins CTO / Swrve Steve @ Surve. Com

# Biography













**Targeting & Analytics** 



A/B Testing



**Push Notifications** 



**In-App Messaging** 

# Introduction to A/B Testing



**Game Service** 



#### ROI = LTV - UAC

lifetime?

$$\mathbf{ROI} = \sum_{\mathbf{d}=1} \mathbf{ARPU_d} - \mathbf{UAC}$$



-High -Mean -Low

Install-day-cohort 30-day revenue

#### **Understand**

Metrics -> Analytics -> Insight



#### **Test Hypotheses**

Data driven



Take action

Iterate, fail-fast





### What to test?

### Message layouts / content







#### **Tutorial Flow**



#### **Promotion Discounts**



# Elasticity testing: exchange rate



### Store Inventory

Price set A



Price set B



Price set C





Value of first purchase

# Timing





#### Conversion over time



## Canacandycrushbalt\*



Day 1 retention = 30%

<sup>\*</sup> Apologies to King and Adam Saltsman

#### **Beta Test**







**New Version** 

# Expecting 30% day-1 retention After 50 users, we see 0% Is this bad?

# Null Hypothesis Testing (NHT) View

#### The Null Hypothesis



$$H_0$$
:  $\overline{x} = \mu$ 



# Conclusion: 30% is <u>unlikely to be</u> the retention rate

# Issue #1 p-value

# p-Value



## p-Value

The probability of observing <u>as extreme a result</u> assuming the null hypothesis is true

OR

The probability of the data given the model

# Null Hypothesis: Ho



## p-Value

p < 0.05

#### All we can ever say is either

- not enough evidence that retention rates are the same
- the retention rates are different, 95% of the time

# actually...

p < 0.05

The evidence supports a rejection of the null hypothesis, i.e. the probability of seeing a result as extreme as this, assuming the retention rate is actually 30%, is less than 5%.

# Issue #2 "Peeking"

Number of participants per group



#### To get 5% false positive rate you need...

| Peeks | 5% Equivalent |
|-------|---------------|
| 1     | 2.9%          |
| 2     | 2.2%          |
| 3     | 1.8%          |
| 5     | 1.4%          |
| 10    | 1%            |

i.e. 5 times

# Issue #3 Family-wise Error

### Family-wise Error

$$p=P({
m Type-I}\ Error)=0.05$$
  
 $P({
m no}\ {
m Type-I}\ Error)=0.95$ 

5% of the time we will get a false positive - for **one** treatment

P( no Type-I Error for 2 treatments) = (0.95)(0.95) = 0.9025P( at least 1 Type-I Error for 2 treatments) = (1 - 0.9025) = 0.0975

## Bayesian View

#### "Belief"



#### New "belief" after 0 retained users



The probability of the model given the data



p(heads) = p(tails) = 0.5

## Tossing the Coin



THTHTTTHHTHH...

## Tossing the Coin



Long run average = 0.5

## Terminology

$$p(x)$$
 Probability of  $x$ 

$$p(x,y)$$
 Probability of  $x$  and  $y$  (conjoint)

$$p(x|y)$$
 Probability of  $x$  given  $y$  (conditional)

#### The Bernoulli distribution

Head (H) = 1, Tails (T) = 0

A single toss: 
$$p(x|\theta) = \theta^x (1-\theta)^{(1-x)}$$

For a "fair" coin,  $\theta$  = 0.5

$$p(heads = 1|0.5) = 0.5^{1}(1-0.5)^{(1-1)} = 0.5$$
  
 $p(tails = 0|0.5) = 0.5^{0}(1-0.5)^{(1-0)} = 0.5$ 

#### The Binomial

Probability of heads in a single throw:

$$p(x|\theta) = \theta^{x}(1-\theta)^{(1-x)}$$

Probability of *x* heads in *n* throws:

$$p(x|\theta,n) = \binom{n}{x} \theta^x (1-\theta)^{(n-x)}$$



20 tosses of a fair coin



20 tosses of an "un-fair" coin

$$p(x|\theta,n) = \binom{n}{x} \theta^x (1-\theta)^{(n-x)}$$

Likelihood of  $\theta$  given observation i of x heads in n throws:

$$L(\theta|x_i, n_i) = \begin{pmatrix} n_i \\ x_i \end{pmatrix} \theta^{x_i} (1 - \theta)^{(n_i - x_i)}$$

"Binomial Likelihood"

#### The Likelihood



Increasing likelihood of  $\theta$  with more observations...

### A recap...

 ${\mathcal X}$  The observations (#heads)

 $\theta$  The model parameter (e.g. fair coin)

 $p(x|\theta)$  Probability of data given model

 $p(\theta|x)$  We want to know this

Note that 
$$p(x|\theta) \neq p(\theta|x)$$

$$p(cloudy|raining) \neq p(raining|cloudy)$$

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} \qquad p(x) = \sum_{y} p(x|y)p(y)$$

#### Bayes' Rule

$$p(y|x) = \frac{p(x|y)p(y)}{\sum_{y} p(x|y)p(y)} \qquad p(y|x) = \frac{p(x|y)p(y)}{\int p(x|y)p(y)dy}$$
 discrete form continuous form

#### prob #heads given model



$$\underbrace{p(\theta|x)}_{\text{posterior}} = \underbrace{p(x|\theta)}_{\text{likelihood}} \underbrace{p(\theta)}_{\text{prior}} / \underbrace{p(x)}_{\text{factor}}$$

normalizing factor 
$$p(x) = \int p(x|\theta)p(\theta)d\theta$$

## The prior

 $p(\theta)$ 

Captures our "belief" in the model based on prior experience, observations or knowledge



$$p( heta|x) = p(x| heta) \; p( heta) \; / \; p(x)$$
 $\hat{p}_0( heta|x_0) = p(x_0| heta) \; p( heta) \; / \; p(x_0)$ 
 $\hat{p}_1( heta|x_1) = p(x_1| heta) \; \hat{p}_0( heta) \; / \; \hat{p}_0(x_1)$ 
 $\hat{p}_n( heta|x_n) = p(x_n| heta) \; \hat{p}_{n-1}( heta) \; / \; \hat{p}_{n-1}(x_n)$ 
Best estimate so far

#### Iterations with more data...

## Selecting a prior

$$p(x|\theta,n) = \binom{n}{x} \theta^x (1-\theta)^{(n-x)}$$

$$p(\theta|x) = \frac{\theta^x (1-\theta)^{(n-x)} p(\theta)}{\int \theta^x (1-\theta)^{(n-x)} p(\theta) d\theta}$$

We'd like the product of prior and likelihood to be "like" the likelihood

We'd like the integral to be easily evaluated

#### "Conjugate prior"

$$p(\bar{\theta}) = p(x|\theta)p(\theta)$$

#### **Beta distribution**

beta
$$(\theta|a,b) = \theta^{(a-1)}(1-\theta)^{(b-1)} / B(a,b)$$

number of heads + 1

number of tails + 1

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \frac{(a-1)!(b-1)!}{(a+b-1)!}$$

#### Beta distribution



#### Putting it together...

binomial likelihood beta prior

$$p(\theta|x,n) = \theta^x (1-\theta)^{(n-x)} \theta^{(a-1)} (1-\theta)^{(b-1)} / B(a,b) p(x)$$

$$= \theta^{x+a-1} (1-\theta)^{(n-x+b-1)} / B(x+a, n-x+b)$$

number of heads x number of tails (n-x)

#### Putting it together...

- 1. Decide on a prior, which captures your belief
- 2. Run experiment and **observe data** for heads, tails
- 3. Determine your **posterior** based on the data
- 4. Use posterior as your **new belief** and re-run experiment
- 5. Rinse, repeat until you hit an actionable certainty





## Uniform prior "Fair" coin

Pretty sure coin is fair



## "Coin is fair" prior "Fair" coin

Very sure coin is fair



## Uniform prior "Biased" coin

Pretty sure coin is unfair



# "Coin is fair" prior "biased" coin

Not sure of anything yet!

# When to reject?

#### The Credible Interval



Uniform prior "Fair" coin

95% credible interval

#### The Credible Interval



Uniform prior "Biased" coin

Outside credible interval

#### The Prior

- Captures our prior belief, expertise, opinion
- Strong prior belief means:
  - we need lots of evidence to contradict
  - results converge more quickly (if prior is "relevant")
- Provides inertia
- With enough samples, prior's impact diminishes, rapidly

### Running a test...





 $\mathbf{A}$ 

## Multiple variant tests

- With 1 or more variants we have a multi-dimensional problem
- Need to evaluate volumes under the posterior
- In general requires numerical quadrature = Markov Chain Monte-Carlo (MCMC)



# Probability of Winning

$$p(\theta_a > \theta_b) = \int_{\theta_a > \theta_b} p(\theta_a | x_a) p(\theta_b | x_b) \ d\theta_a d\theta_b$$







## What's the prior?



### Fit a beta





# Some examples...

|    | Variant ⑦   | Score  ③ | Change<br>② | Probability of<br>beating control ⑦ | Probability of beating all ② | Conversions /<br>Participants ② |
|----|-------------|----------|-------------|-------------------------------------|------------------------------|---------------------------------|
|    | Control     | 0.611    |             |                                     | 0% 🧓                         | 6,870 / 11,243                  |
|    | Treatment 1 | 0.6276   | +2.71%      | 100% 💿                              | 0% 📵                         | 7,037/11,212                    |
| ** | Treatment 2 | 0.7044   | +15.27%     | 100% ②                              | 100% 💿                       | 7,955 / 11,294                  |
|    | Treatment 3 | 0.6755   | +10.55%     | 100% 🔘                              | 0% 📵                         | 7,616/11,274                    |

#### A successful test



Probability of beating all



Observed conversion rates (with CI bounds)

|   | Variant ⑦   | Score ② | Change<br>⑦ | Probability of beating control ② | Probability of beating all ② | Conversions / Participants ② |
|---|-------------|---------|-------------|----------------------------------|------------------------------|------------------------------|
| 쯧 | Control     | 0.3774  |             |                                  | 100% 🕝                       | 15,567 / 41,244              |
|   | Treatment 1 | 0.3477  | -7.88%      | 0% 🧓                             | 0% 🥮                         | 14,385/41,372                |





Probability of beating all



Observed conversion rate (posterior)

### Assumptions

- Users are independent
- User's convert quickly (immediately)
- Probability of conversion is independent of time



**Un-converged conversion rate** 

### Benefits / Features

- Continuously observable
- No need to fix population size in advance
- Incorporate prior knowledge / expertise
- Result is a "true" probability
- A measure of the difference magnitude is given
- Consistent framework for lots of different scenarios

#### **Useful Links**

- https://github.com/CamDavidsonPilon/Probabilistic-Programmingand-Bayesian-Methods-for-Hackers
- "Doing Bayesian Data Analysis: A Tutorial with R and Bugs", John K.
   Kruschke
- http://www.evanmiller.org/how-not-to-run-an-ab-test.html
- http://www.kaushik.net Occam's Razor Blog
- http://exp-platform.com Ron Kovahi et al.

#### **Thanks**

Steve@surve.com @stevec64

#### Multi-arm bandits



#### Multi-arm bandits



Thompson Sampling



https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

# Difficulty tuning

a slight silly example...









Canacandycrushbalt

