
Intelligent Sound Bubbles

Dragica Kahlina
sound artist & musician (www.kahlina.com)

About me

● Mus ic ian and sound des igner
● was AI coder (C++) for (RTS/RPG-)gam es
● physicist

Thanks

● Alex Cham pandard for ad-hoc m entoring
● Guy Som berg for the tips
● N ika Harper for her ind ie soap box ta lk

Project : Black Island
● Team : wotokah (wotokah.makegames.ch)

● Indie -> no time, no money, just ambition
● 3 People level, code, sound
● Unity

● Game : Open World, Horror, Oculus Rift
● Published : Halloween 13 after 9 month

We needed
● Dynamic soundscapes
● Have more variety
● Make it easier

● To input sounds
● Changing and refining sounds
● Make dynamic sound sets reusable

Important (for everything)

● Ease of use
● Non-b locking m ultithread ing of peop le

Intelligent Sound Bubbles

packaged sound
&

inbuilt intelligence

Multi-threading ?
Sound designer
•- defines moods
•- compiles sound sets
•- fills the set
•- tweaks parameters from
coder (set specific)
•- names set & writes
description for level designer

Level designer
•- places sound bubbles in level
•- puts name of set in

•if there is no fitting set, gives it
a name and hands name +
description to sound designer

•- tweaks parameters from coder
(location specific)
•

Coder
•- writes logic
•- gives parameters to sound
•- bubbles (prefab) for level designer

game time of day
real time of day

season

weather

terrain

player moodplayer health

random

timed

how often

Possible Control Parameters

Use FSM – Finite State Machine
● Mathematical model of computation
● Often used in game AI / enemy behavior
● Different levels of control
● We only use what’s needed
● Concept easy to understand

FSM Example – my states

Talking

Fretting

Walking

Called on stage

Mortified

End talkTripping

Balance back

Not talked

Calm down

Talked

state

transition

So a Finite State Machine
● Has states, but not infinite many
● Is always in one defined state
● Has conditional transitions
● If a transition becomes true
-> one state changes to the next

I defined State as …
● Set of different sounds
● With different parameter

● Time
● Probability
● How often

● Intelligence …

State Intelligence
● State switches between sounds
● Switches are based on parameters
● Different functionality -> states don’t mix

● Use different FSM (OOP)
● Avoid huge monolithic FSM
● Avoid (for now) FSM of FSMs of …

FSM - Different Levels
FSM Engine

code / library

Controls
• States
• State changes
• Wiring
• General & Reusable

Doesn’t have
• State definitions
• Transition definitions

Definitions
code, better data language

(XML, JSON, …)

Has
• State definitions
• Transition Definitions
• Intelligence
• Game Specific

Doesn’t have
• Data / Parameter

Data
data language

(XML, JSON, …)

Has
• Parameters

• Sound file names
• Control parameter

Shouldn’t be
• Complicated
• In need of a special,
homemade editor

Different FSM used
● Local FSM

● use player trigger to wake up
● Moving FSM (creatures, weather)

● state moves around
● Music FSM

● automatic music composition

This leads to Transitions as
● Changes from one sound set to another
● Controled by something called HAI
(Horror AI) which masterminds horror
sounds -> not FSM, avoid overkill

● Based on message system

Intelligent Sound Bubbles
● Dynamic Sound Sets
● Based on one of the base FSM (code)
● Different sets of sounds and parameters
defined in XML-File

● Freely distributable in Level
● Can live in an object (player, creature)

In Unity …
● Have prefabs for different FSM
● Distribute in Level or put into an object
● Fill in set ID
● Non-set-parameters, bubble specific
-> level designer can do last 3

How did I get there …
● Disclaimer: I am no Unity or C# guru
● Good FSM needs all the bells and whistles
● Luckily you can find them

● C++ : Games Programming Gems 2
● C# / Unity : found one at unitygems.com

Next step (still coding)

● M ake ch ildren of the FSM base class
● Input states, functionality, transitions
● Try to have th is in data language

Data language parser

Used XML, because
● I am used to it
● There are editors that help (didn’t find a

good one on Mac for JSON)
● There are XML reader libraries

● Used TinyXML ported for Unity / C#

Data Structure
<Preset>
 <ID>Ghost</ID>
 <States>
 <Ambient>
 <Sound>
 …
 </Sound>
 </Ambient>
 <HORROR1>
 <Sound>
 …
 </Sound>
 </HORROR1>
 </States>
</Preset>

Sound Structure

<Sound>
<Filename>Audio/Ghost1</Filename>
<Timer>100</Timer>
<Probability>100</Probability>
<Points>0</Points>
<Rounds>1</Rounds>

</Sound>

Post Mortem
What worked
● Workflow with XML and sound bubbles
● Level designer could just place sound bubbles
What didn’t work
● My unfamiliarity with Unity / C#
● Not enough sounds
● Not enough control parameters

Also Music FSM wasn’t finished
● My idea

● Ambitious : short (1-8 bar) precomposed pieces
that fit together and change according to some
rules

● Very ambitious : have machine auto-compose and
synthesize on the fly

-> working on it, maybe next year

Need sound ?

Dragica Kahlina (www.kahlina.com)
@gluggergames
(and on Facebook, Linkedin, Xing)

wotokah (wotokah.makegames.ch)
@wotokah

	Intelligent Sound Bubbles Dragica Kahlina Sound Artist (www.kahlina.com)
	I come from Games Programming
	Slide 3
	Project : Black Island
	PowerPoint Presentation
	As a sound designer I use this
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Use of FSM – Finite State Machine
	FSM Example – my states
	So a Finite State Machine
	I defined State as …
	State Intelligence
	FSM - Different Levels
	Different FSM used
	This leads to Transitions as
	Intelligent Sound Bubbles
	In Unity …
	How did I get there …
	Next step (still coding)
	Data language parser
	Data Structure
	Sound Structure
	Post Mortem
	Also Music FSM wasn’t finished
	Need intelligent sound bubbles ?

