
Achieving the Best Performance with Intel Graphics
Tips, Tricks, and Clever Bits
Blake Taylor, Graphics Software Development and Validation (GSDV)

GDC 2014

Agenda

 Application

 Platform

 IA Graphics

 Sampler

 Fillrate

 Arithmetic Logic

 Geometry

 Scaling Your Game

 Conclusion

2

Application
Performance starts at the top

3

Efficient GPU Programming

4

Making the most of the pipeline!

 Optimizations within the IA software stack

 Application specific

 Generic

 Greatest impact from application optimization

 Meet your friendly AE!

Application

Driver

GPU

Low

High

Scope of Optimizations

Draw

Draw…Frame

Big Picture!

Tooltip!

- Use GPA™ to find and optimize GPU hotspots

Draw Dispatching and Resource Update

Be conscious of memory access patterns

of dispatched operations

 3D / 2D operation scheduling

 State / shader changes

 Resource locality

5

Resource A Resource B

Draw 0 Draw 1

Resource A

Draw 2

Vs.

Resource A Resource A

Draw 0 Draw 1 (2)

Resource B

Draw 2 (1)

Large Surfaces (high latency)

Resource A Resource B

Draw 0 Draw 1

Resource A

Draw 2

Small Surfaces (low latency)

Write to same RT region

Platform
More than just the sum of it’s parts…

6

Platform

7

Graphics is only part of the puzzle

 Unique architecture characteristics

 Power & performance

 Memory hierarchy

 Paired platform

 CPU

 System memory

 Other constraints

 Thermal

 Power

Memory

CPU GPU

Un-core

Package

Display Peripherals

Platform

CPU Optimization

Relationship between CPU / GPU

 CPU or GPU bottleneck

 CPU can limit GPU

 Whaaa?....

8

0

2

4

6

8

10

12

0 5 10 15

W
a
tt

s

Power (15W Total)

CPU

GPU

Uncore

0

200

400

600

800

1000

1200

1400

0 5 10 15

M
H

z

Frequency (GPU Peak 1.15Ghz)

CPU

GPU
Tooltip!

- Use VTune™ to find and optimize CPU hotspots

Cache Locality Is King

Optimize memory accesses for both CPU and GPU

 Memory bandwidth bound

 Hierarchy varies with platform

 Optional CPU + GPU Caches

– Last Level Cache (LLC)

– Embedded DRAM (eDRAM)

 GPU

9

GPU Caches

CPU + GPU

GPU
Memory Interface

DRAM

Last Level Cache eDRAM

Varying availability

IA Graphics
This is what you came for right?

10

Architecture

11

Architectural components

 Non-Slice

 Fixed function

– Transformation

– Clipping

 Slice

 Slice common

– Rasterization

– Shader dispatch

– Color back-end

 Sub-slice(s)

– Shader execution

Fixed Function

Slice

Shader Execution
Non-Slice

Sub-Slice

Shader Execution

Sub-Slice

Rasterization … Color back-end

Slice Common

M
e

m
o

ry
 In

te
rf

a
ce

Architecture Scaling

12

Scaling Components

 Slice

 Parallel primitive processing

 Sub-slice

 Parallel span processing

Prim 0

Ex. Post Clip Primitive Processing (4x4 pixel spans)

Prim 1

Slice Scaling (1 – N Slices)

…

Sub-Slice Scaling (1 – N Sub-Slices)

…..

Sampler

13

1 Sampler Per Sub-Slice

 Local texture cache (Tex$)

 Backed by common L3$

Fixed Function

Slice

Non-Slice

Sub-Slice

Sub-Slice

Slice Common

M
e

m
o

ry
 In

te
rf

a
ce

Tex$ Sampler

Tex$ Sampler

L3$

0

0.2

0.4

0.6

0.8

1

1 2 4 N

T
h

ro
u

g
h

p
u

t

Sub-Slices

Ex. Synthetic Throughput vs. Sub-slice Count

Architectural Peak

Sampler Performance

14

Remember Cache Locality?

 Throughput

 Format

 Sampling pattern

 Poor access pattern

 Increased memory b/w

 Increased latency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 N

T
h

ro
u

g
h

p
u

t

Sub-Slices

Good

Bad

Ex. Synthetic Throughput Good vs. Bad Access Pattern
Architectural Peak

Texture Compression

15

Utilize as much as possible!

 Offline compression

 Dynamic compression

BC1 Error with BC1 BC7 Error with BC7

Original Surface

Fillrate

16

Per Slice-Common

 Pixel Back-End

 Color Cache (RCC$)

Fixed Function

Slice

Non-Slice

Sub-Slice

Sub-Slice

M
e

m
o

ry
 In

te
rf

a
ce

Tex$ Sampler

Tex$ Sampler

L3$

0

0.2

0.4

0.6

0.8

1

1 2 N

F
ill

ra
te

Slices

Ex. Synthetic Fillrate vs. Slice Count

Architectural Peak

Pixel
Back-End

RCC$

Rasterizer
Early Z

Early STC

Depth$
Stencil$

Slice Common

Fillrate Performance

17

Pumping out color

 Throughput

 Format

 Dimension + region

 Other factors

 Rasterization

 Early Z/STC

 Pixel Shader Execution

 Late Z/STC

 Blend function + mode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 N

F
ill

ra
te

Sub-Slices

Non-Blended

Blended

Ex. Synthetic Fillrate Blended vs. Non-Blended

Architectural Peak

18

Surface Format

Select the appropriate format for color range

 Intermediate / final render targets

 Cause

 Higher precision format chosen un-necessarily

 Effect

 Reduced fill rate

 Increased memory bandwidth

HDR (R16G16B16A16)

HDR (R10G10B10A2)

Arithmetic Logic

19

Block Per Sub-Slice

 Execution Units (EUs)

 Instruction Cache (IC$)

Fixed Function

Non-Slice

Sub-Slice

Sub-Slice

M
e

m
o

ry
 In

te
rf

a
ce

Tex$ Sampler

Tex$ Sampler

L3$

0

0.2

0.4

0.6

0.8

1

1 3 6

P
e

rf
o

rm
a

n
ce

Sub-Slices

Ex. Synthetic EU Throughput vs. Sub-Slice

Architectural Peak

Pixel
Back-End

RCC$

Rasterizer
Early Z

Early STC

Depth$
Stencil$

L1
IC$

Data Port

EU

Slice Common

EU EU EU

EU EU EU EU

L1
IC$

Data Port

EU EU EU EU

EU EU EU EU

Arithmetic Logic Performance

20

Algorithmic Complexity

 Control flow

 Math

 Extended math

 Max concurrent registers

0

0.2

0.4

0.6

0.8

1

MAX LRP CMP LOG EXP POW ADD MUL MAD

P
e

rf
o

rm
a

n
ce

Synthetic Relative Performance - EU Operations

0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
ce

Synthetic SIMD8 vs. SIMD16

SIMD16

SIMD8

Shader Optimization

Optimal code based on purpose

 Shader scaling

 The case of the generic shader

 Generation of un-used outputs

21

vs_3_0
def c17, 2, -1, 0, 1
def c18, 1.44269502, 0.00999999978, -1.44269502, 0
dcl_position v0
dcl_normal v1
dcl_color v2
dcl_position o0
dcl_texcoord o1
dcl_texcoord1 o2

dcl_texcoord2 o3.xyz
dcl_texcoord3 o4.xyz
dcl_color o5
dcl_texcoord4 o6
dcl_texcoord5 o7
dcl_texcoord6 o8.xy
mul r0, c5, v0.y
mad r0, v0.x, c4, r0
mad r0, v0.z, c6, r0
mad o0, v0.w, c7, r0
.. 76 instructions…
mov o7, v2

vs_3_0
dcl_position v0
dcl_position o0
mul r0, c5, v0.y
mad r0, v0.x, c4, r0
mad r0, v0.z, c6, r0
mad o0, v0.w, c7, r0

0

50000

100000

150000

Cycles

Original

Optimized

0

200

400

600

800

1000

Cache Entries

Original

Optimized

Geometry

22

Single Non-Slice

 Fixed Function

 VS

 HS

 TE

 DS

 GS

 SOL

 Clipper

 Setup Front-End

Non-Slice

Sub-Slice

Sub-Slice

M
e

m
o

ry
 In

te
rf

a
ce

Tex$ Sampler

Tex$ Sampler

L3$
Pixel

Back-End
RCC$

Rasterizer
Early Z

Early STC

Depth$
Stencil$

L1
IC$

Data Port

EU

Slice Common

EU EU EU

EU EU EU EU

L1
IC$

Data Port

EU EU EU EU

EU EU EU EU

VF

VS

HS

TE

DS

GS

SOL

CL

SFE

T
D

G

Optimizing Geometry for Algorithmic Complexity

Optimal definitions for a single piece of

geometry

 Quality scaling with platform

 Purpose

 Lighting, depth, animation…

23

Model with Hard Edges

Model with Soft Edges
Before (Hard Edge) After (Soft Edge)

Duplicate Vertex

Merged Vertex + Normal

Ex. Edge Softening

Optimizing Primitive Ordering

24

Primitive scheduling within a single draw

 Ordering primitives for both locality and latency

 Two cases

 View dependent

 View independent

 Sample example (HDAO10.1)

 Primitive dispatch color coded (green -> red)

 2%-13% performance gain

Original Ordering

View Dependent Ordering

Scaling Your Game
Burn baby burn, heat inferno…

25
Lost Planet 2 : Images courtesy of Capcom

Why do you care?

Wide Range of Platforms + CPU + GPU

 Each with unique performance characteristics

 All of which the user hopes to run your game

 And run it well

26

Better selling point? more platforms + happy users == more money? $$$

How Well Does Your Game Scale?

 Created a game

 Quality settings

27

Tablet

Low

Phone

Ultra Low?

Mobile

Medium

Desktop

Ultra

Memory Bandwidth

28

It’s all about the memory.. baby

 Will vary greatly with platform

 Why do you care?

 Read from memory

 Write to memory

Sharp turn ahead!

Low

High

M
e

m
o

ry
 B

a
n

d
w

id
th

Goal

- Establish memory ceiling (budget)

Sampler Throughput

29

Varies with architecture and platform

 Measure all use cases

 Dimension

 Format

 Filtering mode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.03 0.25 0.3 6 10 16
T

h
ro

u
g

h
p

u
t

Memory Footprint (MB)

32bit (Point/Bilinear)

32bit (Trilinear)

Ex. Synthetic Sampler Throughput 32bit Use Cases

Architectural Peak

Goal

- Select optimal format & dimension

Fill Rate

30

Multiple surface types

 Render target

 Format

 Dimension

 Blended / Non-blended

 Depth

 Read +/ Write

 Stencil

 Read +/ Write

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RT 32bit RT 32bit

(Blend)

Z Fail Z Pass STC Test

P
e

rf
o

rm
a

n
ce

Synthetic Relative Performance – Fullscreen Primitive

Goal

- Understand relative performance

- Optimal format, dimension, and algorithm

Geometry Throughput

31

Fixed function bandwidth and Arithmetic Logic

 Fixed function

 Clip / Cull

 Rasterization

 Geometry transformation

 ALU

Goal

- Optimal geometry and algorithm 0

0.5

1

MAX LRP CMP LOG EXP POW ADD MUL MAD

P
e

rf
o

rm
a

n
ce

Synthetic Relative Performance - EU Operations

Vs.

Ex. Geometry Selection Low vs. High Throughput

Conclusion
Wrapping it all up in a bow..

32

THE END

Looking Forward

33

Same game for desktop to phone

 Wide array of platforms

 Adaptable quality settings

 Scaling algorithms

 Optimization

Thanks for attending!

And everything in-between...

Questions?

34

Contact Information

 E-mail : robert.b.taylor@intel.com

Ready for More? Look Inside™.

35

Keep in touch with us at GDC and beyond:

• Game Developer Conference
Visit our Intel® booth #1016 in Moscone South

• Intel University Games Showcase
Marriott Marquis Salon 7, Thursday 5:30pm
RSVP at bit.ly/intelgame

• Intel Developer Forum, San Francisco
September 9-11, 2014
intel.com/idf14

• Intel Software Adrenaline
@inteladrenaline

• Intel Developer Zone
software.intel.com
@intelsoftware

Up Next…

37

12:30 – 1:30

Realistic Cloud Rendering using Pixel Synchronization

Presented by:

 Egor Yusov - Intel

