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Application 
Performance starts at the top 
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Efficient GPU Programming 
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Making the most of the pipeline! 

 Optimizations within the IA software stack 

 Application specific 

 Generic 

 Greatest impact from application optimization 

 Meet your friendly AE! 
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Scope of Optimizations 

Draw 

Draw…Frame 

Big Picture! 

Tooltip! 

- Use GPA™ to find and optimize GPU hotspots 



Draw Dispatching and Resource Update  

Be conscious of memory access patterns 

of dispatched operations 

 3D / 2D operation scheduling 

 State / shader changes 

 Resource locality  
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Resource A Resource B 

Draw 0 Draw 1 

Resource A 

Draw 2 

Vs. 

Resource A Resource A 

Draw 0 Draw 1 (2) 

Resource B 

Draw 2 (1) 

Large Surfaces (high latency) 

Resource A Resource B 

Draw 0 Draw 1 

Resource A 

Draw 2 

Small Surfaces (low latency) 

Write to same RT region 



Platform 
More than just the sum of it’s parts… 
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Platform 

7 

Graphics is only part of the puzzle 

 Unique architecture characteristics 

 Power & performance 

 Memory hierarchy 

 Paired platform 

 CPU 

 System memory 

 Other constraints 

 Thermal 

 Power 
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CPU GPU 

Un-core 

Package 

Display Peripherals 

Platform 



CPU Optimization 

Relationship between CPU / GPU 

 CPU or GPU bottleneck 

 CPU can limit GPU 

 Whaaa?.... 
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Tooltip! 

- Use VTune™ to find and optimize CPU hotspots  



Cache Locality Is King 

Optimize memory accesses for both CPU and GPU 

 Memory bandwidth bound 

 Hierarchy varies with platform 

 Optional CPU + GPU Caches 

– Last Level Cache (LLC) 

– Embedded DRAM (eDRAM) 

 GPU 
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GPU Caches 

CPU + GPU 

GPU 
Memory Interface 

DRAM 

Last Level Cache eDRAM 

Varying availability 



IA Graphics  
This is what you came for right? 
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Architecture 

11 

Architectural components  

 Non-Slice 

 Fixed function 

– Transformation 

– Clipping 

 Slice 

 Slice common 

– Rasterization  

– Shader dispatch 

– Color back-end 

 Sub-slice(s) 

– Shader execution 
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Architecture Scaling 
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Scaling Components 

 Slice 

 Parallel primitive processing 

 Sub-slice 

 Parallel span processing 

 

 

 

 

 

 

Prim 0 

Ex. Post Clip Primitive Processing (4x4 pixel spans) 

Prim 1 

Slice Scaling (1 – N Slices) 

… 

Sub-Slice Scaling (1 – N Sub-Slices) 

….. 



Sampler 
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1 Sampler Per Sub-Slice 

 Local texture cache (Tex$) 

 Backed by common L3$ 
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Sampler Performance 
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Remember Cache Locality?  

 Throughput  

 Format 

 Sampling pattern 

 Poor access pattern 

 Increased memory b/w 

 Increased latency 
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Texture Compression 
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Utilize as much as possible! 

 Offline compression 

 Dynamic compression 

 

BC1 Error with BC1 BC7 Error with BC7 

Original Surface 



Fillrate 
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Per Slice-Common  

 Pixel Back-End 

 Color Cache (RCC$) 
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Ex. Synthetic Fillrate vs. Slice Count 
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Fillrate Performance 

17 

Pumping out color 

 Throughput  

 Format 

 Dimension + region 

 Other factors 

 Rasterization 

 Early Z/STC 

 Pixel Shader Execution 

 Late Z/STC 

 Blend function + mode 
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Sub-Slices 

Non-Blended

Blended

Ex. Synthetic Fillrate Blended vs. Non-Blended 

Architectural Peak 
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Surface Format 

Select the appropriate format for color range 

 Intermediate / final render targets 

 Cause 

 Higher precision format chosen un-necessarily 

 Effect 

 Reduced fill rate 

 Increased memory bandwidth 

 

 

HDR (R16G16B16A16) 

HDR (R10G10B10A2) 



Arithmetic Logic 
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Block Per Sub-Slice 

 Execution Units (EUs) 

 Instruction Cache (IC$) 
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Arithmetic Logic Performance 
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Algorithmic Complexity 

 Control flow 

 Math 

 Extended math 

 Max concurrent registers 
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Synthetic Relative Performance - EU Operations 
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Synthetic SIMD8 vs. SIMD16 

SIMD16

SIMD8



Shader Optimization 

Optimal code based on purpose 

 Shader scaling  

 The case of the generic shader 

 Generation of un-used outputs  
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vs_3_0 
def c17, 2, -1, 0, 1 
def c18, 1.44269502, 0.00999999978, -1.44269502, 0 
dcl_position v0 
dcl_normal v1 
dcl_color v2 
dcl_position o0 
dcl_texcoord o1 
dcl_texcoord1 o2 

dcl_texcoord2 o3.xyz 
dcl_texcoord3 o4.xyz 
dcl_color o5 
dcl_texcoord4 o6 
dcl_texcoord5 o7 
dcl_texcoord6 o8.xy 
mul r0, c5, v0.y 
mad r0, v0.x, c4, r0 
mad r0, v0.z, c6, r0 
mad o0, v0.w, c7, r0 
.. 76 instructions… 
mov o7, v2 

vs_3_0 
dcl_position v0 
dcl_position o0 
mul r0, c5, v0.y 
mad r0, v0.x, c4, r0 
mad r0, v0.z, c6, r0 
mad o0, v0.w, c7, r0 
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Geometry 
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Single Non-Slice 

 Fixed Function 

 VS 

 HS 

 TE 

 DS 

 GS 

 SOL 

 Clipper 

 Setup Front-End 
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Optimizing Geometry for Algorithmic Complexity 

Optimal definitions for a single piece of 

geometry 

 Quality scaling with platform 

 Purpose 

 Lighting, depth, animation… 
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Model with Hard Edges 

Model with Soft Edges 
Before (Hard Edge) After (Soft Edge) 

Duplicate Vertex 

Merged Vertex + Normal 

Ex. Edge Softening 



Optimizing Primitive Ordering 

24 

Primitive scheduling within a single draw 

 Ordering primitives for both locality and latency 

 Two cases 

 View dependent 

 View independent 

 Sample example (HDAO10.1) 

 Primitive dispatch color coded (green -> red) 

 2%-13% performance gain  

 

 

Original Ordering 

View Dependent Ordering 



Scaling Your Game 
Burn baby burn, heat inferno… 

25 
Lost Planet 2 : Images courtesy of Capcom 



Why do you care? 

Wide Range of Platforms + CPU + GPU 

 Each with unique performance characteristics 

 All of which the user hopes to run your game 

 And run it well  
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Better selling point? more platforms + happy users == more money? $$$  
 



How Well Does Your Game Scale? 

 Created a game 

 Quality settings 
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Tablet 
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Phone 

Ultra Low? 
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Desktop 

Ultra 



Memory Bandwidth 
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It’s all about the memory.. baby 

 Will vary greatly with platform 

 Why do you care? 

 Read from memory 

 Write to memory 
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Goal 

- Establish memory ceiling (budget) 



Sampler Throughput 
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Varies with architecture and platform 

 Measure all use cases 

 Dimension 

 Format 

 Filtering mode 
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Fill Rate 
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Multiple surface types 

 Render target 

 Format 

 Dimension 

 Blended / Non-blended 

 Depth 

 Read +/ Write 

 Stencil 

 Read +/ Write 
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Synthetic Relative Performance – Fullscreen Primitive 

Goal 

- Understand relative performance 

- Optimal format, dimension, and algorithm 



Geometry Throughput 
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Fixed function bandwidth and Arithmetic Logic 

 Fixed function 

 Clip / Cull 

 Rasterization 

 Geometry transformation 

 ALU  

 

 

 

 

 

 

 

 

 

Goal 

- Optimal geometry and algorithm 0
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Synthetic Relative Performance - EU Operations 

Vs. 

Ex. Geometry Selection Low vs. High Throughput 



Conclusion 
Wrapping it all up in a bow.. 
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THE END 



Looking Forward 
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Same game for desktop to phone 

 Wide array of platforms 

 Adaptable quality settings 

 Scaling algorithms 

 Optimization 

 

Thanks for attending! 

 

And everything in-between... 



Questions? 
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Contact Information 

 E-mail : robert.b.taylor@intel.com 



Ready for More?  Look Inside™. 
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Keep in touch with us at GDC and beyond: 

• Game Developer Conference 
Visit our Intel® booth #1016 in Moscone South 

• Intel University Games Showcase 
Marriott Marquis Salon 7, Thursday 5:30pm 
RSVP at bit.ly/intelgame  

• Intel Developer Forum, San Francisco 
September 9-11, 2014 
intel.com/idf14 

• Intel Software Adrenaline 
@inteladrenaline 

• Intel Developer Zone 
software.intel.com 
@intelsoftware 





Up Next… 
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12:30 – 1:30 

Realistic Cloud Rendering using Pixel Synchronization  

 

Presented by:  

 Egor Yusov - Intel  


