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Introduction 

Clouds are integral part of outdoor scenes 

Rendering good-looking and fast clouds is 

challenging 

Different approaches to the problem exist 

• Billboards 

• Ray-marching 

• Direct volume rendering (slicing) 
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Existing methods - Particles 

• Represents the clouds as collection of camera-facing 

polygons (quads) 

• Can combine simple shapes (radial fall-of textures) as 

well as more complex objects 

• (+) Gives good control over clouds shape and location 

• (-) Billboards are flat 

• (-) Lighting is usually precomputed, clouds are static  

• Impostors are related concept  

• Pre-renders clouds into camera-facing billboards 
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Existing methods – Ray Marching 

• The cloud density is represented as 3D noise 

• Ray marching is performed through the volume to 

accumulate lighting 

• (+) Good looking result 

• (-) Control over cloud shape and location is intricate 

• (-) Many ray marching steps can be required to 

eliminate aliasing 

• (-) Lighting usually limited to single scattering 
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Existing methods – Direct Volume Rendering 

• Direct volume rendering methods can be applied to 
render clouds 

• The volume is sliced with planes; the planes are alpha-
blended to get final result 

• Half-angle slicing can account for occlusion by light at 
the same time as rendering from the camera 

• (+) Lighting can be rather sophisticated (multiple 
forward scattering) 

• (-) Control over cloud shape and location is intricate 

• (-) Many slicing planes can be required to eliminate 
aliasing 
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Our method 

• Attempts to combine control of particle-based approaches with quality of ray 

marching and slicing techniques 

• Key ideas: 

• Use volumetric particles representing the actual 3D-shapes 

• Use physically-based lighting 

• Pre-compute lighting and other quantities to avoid expensive computations at 

run time 

• Perform volume-aware blending instead of alpha blending 
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Algorithm overview 

Initial step – modeling clouds with spherical particles 
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Algorithm overview 

Add pre-computed cloud density and transparency 
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Algorithm overview 

Add pre-computed light scattering 
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Algorithm overview 

Add light occlusion 
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Algorithm overview 

Add volume-aware blending (enabled by Pixel Sync) 

12 



Algorithm overview 

Add light scattering 
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Scattering physics 

Light interacts with the tiny (2-8 µm) particles 

distributed in the cloud: 

 A photon can be scattered 

 In-scattering is scattering in the view 

direction 

 Out-scattering is scattering out of the view 

direction 

 Absorbed 

14 



Scattering physics 
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Scattering physics 

Optical depth integral 

Light gets attenuated while it travels through the cloud 

Since there is no absorption, only out-scattering 
attenuates the light 

Optical depth is the amount of scattering matter on the 
way of light: 

 

 

Transmittance through the cloud is the fraction of light 
survived out-scattering: 
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𝑇(𝐀 → 𝐁) =  𝛽 𝐏
𝐁

𝐀

𝑑𝑠 

𝐿 = 𝑒−𝑇(𝐀→𝐁) ∙ 𝐿𝐼𝑛 

𝐿𝐼𝑛 𝐿 

𝐴 𝐵 



Scattering physics 

In clouds, absorption is negligible and almost all 

the light is scattered 

• The clouds color is defined by the scattered 

light 

Phase function defines direction of a photon 

after scattering event 

• The phase function of cloud particles 

exhibit strong forward peak 

• Almost all light is scattered in forward 

direction 
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Scattering physics 

Single-scattering integral: 

 

 

𝐿 𝐏  is the light intensity at point P 

𝛽 𝐏  is the scattering coefficient at point P 

𝑇 𝐏 → 𝐂  is the optical thickness of the media between 

points P and C 

𝑝 𝜃  is the phase function 
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𝐿𝐼𝑛 = 
𝐶 𝑂 

𝑝 𝜃  𝐿 𝐏   
𝐎

𝐂

 𝑒−𝑇 𝐏→𝐂  𝛽 𝐏  𝑑𝑠 

𝜃 

𝑒−𝑇 𝐏→𝐂  

𝑃 



Scattering physics 

Light is also attenuated in the cloud before it reaches 

the scattering point: 

 

𝐿 is the light intensity outside the cloud 

Let’s now look at our integral: 
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𝑃 𝐶 𝑂 
𝐿 𝐏 = 𝐿 𝑒−𝑇 𝑨 →𝑷  

𝜃 

𝑒−𝑇 𝐏→𝐂  

𝐴 

𝑒−𝑇 𝑨 →𝑷  

𝐿𝐼𝑛 = 𝑝 𝜃  𝑒−𝑇 𝐏→𝐂 𝛽 𝐏 𝐿 𝑒−𝑇 𝑨 →𝑷
𝐎

𝐂

𝑑𝑠 

 𝛽 𝐏
𝐂

𝐏

𝑑𝑠  𝛽 𝐏
𝐏

𝐀

𝑑𝑠 



Scattering physics 

In clouds, a photon is usually scattered multiple 

times before it leaves the clouds 

This multiple scattering is crucial to cloud 

appearance and cannot be ignored 

• In contrast, air is much more optically 

thinner media thus single scattering models 

produce convincing results 
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Scattering physics 

Multiple scattering 

 

 

 

 

 

 

𝛀 is the whole set of directions 
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𝐿 = 𝑝 𝜃  𝐿 𝐏   
𝐎

𝐂

 𝑒−𝑇 𝐏→𝐂  𝛽 𝐏  𝑑𝑠 𝐽 𝐏  

𝐽 𝐏 =  𝐿

𝛀

𝑝 𝜃 𝑑𝜔 

𝐶 𝑃 

𝐽 𝐏  



Pre-computed lighting 

The idea main idea is to  

• Precompute physically-based lighting 

for simple shapes 

• Construct clouds from these simple 

shapes 

• The term Particle will now refer to these 

basic shapes (not individual tiny droplets)  
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Pre-computing optical depth 

Typical way to evaluate optical depth is ray marching 

 Impractical to do in real-time 

For a known density distribution, the integral can be 

evaluated once and stored in a look-up table for all 

possible viewpoints and directions 

 No ray marching at run-time 

 Fast evaluation for the price of memory 
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𝑇(𝐀 → 𝐁) =  𝛽 𝐏
𝐁

𝐀

𝑑𝑠 



Pre-computing optical depth 

Parameterization 

 We need to describe all start points on the sphere and all 

directions 

 Two angles describe start point on the sphere 

 Two angles describe view direction 

 4D look-up table is required 
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𝑇(𝐀 → 𝐁) =  𝛽 𝐏
𝐁

𝐀

𝑑𝑠 

Ray Direction 

Start Point 



Pre-computing optical depth 

Integration 

 Integration is performed by stepping along the ray and 

numerically computing optical thickness 

 Cloud density at each step is determined through 3D 

noise 

 4D look-up table is implemented as 3D texture 

 For look-up, manual filtering across 4th coordinate is 

necessary 
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𝑇(𝐀 → 𝐁) =  𝛽 𝐏
𝐁

𝐀

𝑑𝑠 

Start Point 



Pre-computing optical depth 

3D Noise generation 
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Radial falloff+3D noise Thresholding Pyroclastic style 



Pre-computing optical depth 

Resolution 

 32x64x32x64 look-up table 

 Interpolation artifacts can be visible from close look-ups 

 OK from distance 
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Pre-computing optical depth 
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Pre-computing scattering 

 Let’s consider spherically symmetrical 

particle 

 Any start point on the sphere can be 

described by a single angle 

 View direction is described by two angles 

 Thus 3 parameters are necessary to describe 

any start point and view direction -> 3D 

look-up table 
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𝐿 =  
𝐎

𝐂

 𝑒−𝑇 𝐏→𝐂  𝛽 𝐏  𝑑𝑠  𝐿

𝛀

𝑝 𝜃 𝑑𝜔  



Pre-computing scattering 

Intermediate 4D table is used to store radiance for every point in the sphere 

For each scattering order: 

1. Compute 𝐽 𝐏  for every point and direction inside the sphere by 

integrating previous order scattering 

 

 

 

 

2. Compute current order inscattering by numerical integration of 𝐽𝑛: 

 

 

 

 

3. Add current scattering order to the total look-up table 
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𝐽𝑛 =  𝐿𝑛−1(𝜔)𝑝 𝜃 𝑑𝜔

𝛀

 

𝑃 

𝐽 𝐏  

𝐿𝑛 =  𝑒
−𝑇 𝐏→𝐂 𝛽 𝐏 𝐽𝑛 𝐏 𝑑𝑠

𝑶

𝑪

 



Pre-computing scattering 
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Pre-computed scattering for different light orientations 



Pre-computing scattering 
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Combining pre-computed lighting and pre-computed cloud density 



Pre-computing scattering 
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Compositing clouds 
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Computing light occlusion 
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Computing light occlusion 

Tiling 

 The scene is rasterized from the light over the tile grid 

 One tile is one pixel 

 Each particle is assigned to the tile 

 Screen-size buffer is used to store index of the first 

particle in the list 

 Append buffer is used to store the lists elements 

 Pixel Shader Ordering is used to preserve original 

particle order (sorted from the light) 
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Computing light occlusion 

Traversing lists 

 Processing is done by the compute shader 

 Each particle finds a tile it belongs to 

 The shader then goes through the list of the tile and 

computes opacity of particles on the light path 

 Since particles are ordered from the light, the loop can 

be terminated as soon as current particle is reached 

 The loop can also be terminated when total 

transparency reaches threshold (0.01) 

 Early exit gives up to 2x speed-up for opacity 

calculation stage 
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Computing light occlusion 
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Volume-aware blending 
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No Pixel Sync – Conventional Alpha Blending 



Volume-aware blending 
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Pixel Sync – Volume-Aware Blending 



Volume-aware blending 

Blending volumetric particles 

 If particles do not overlap, blending is trivial 

 How can we correctly blend overlapping 

particles? 
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Volume-aware blending 

Blending volumetric particles 

 Suppose we have two overlapping particles with 
color and density 𝐶0, 𝜌0 and 𝐶1, 𝜌1 

 Back:  

 𝑇𝐵𝑎𝑐𝑘 = 𝑒
−𝜌1∙𝑑𝑏∙𝛽 

 𝐶𝐵𝑎𝑐𝑘 = 𝐶1 ∙ 1 − 𝑇𝐵𝑎𝑐𝑘  

 Front: 

 𝑇𝐹𝑟𝑜𝑛𝑡 = 𝑒
−𝜌0∙𝑑𝑓∙𝛽 

  𝐶𝐹𝑟𝑜𝑛𝑡 = 𝐶0 ∙ 1 − 𝑇𝐹𝑟𝑜𝑛𝑡   
 

 Intersection: 

 𝑇𝐼𝑠𝑒𝑐 = 𝑒
−(𝜌0+𝜌1)∙𝑑𝑖∙𝛽 

  𝐶𝐼𝑠𝑒𝑐 =
𝐶0𝜌0+𝐶1𝜌1

𝜌0+𝜌1
1 − 𝑇𝐼𝑠𝑒𝑐   
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𝐶0, 𝜌0 𝐶1, 𝜌1 

𝑑𝑓 𝑑𝑖 𝑑𝑏 

Back Isec Front 



Volume-aware blending 

Blending volumetric particles 

 Final color and transparency: 

 

 

 

 

 

 Division by 1 − 𝑇𝐹𝑖𝑛𝑎𝑙 because we do not want alpha 

pre-multiplied color 
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𝐶0, 𝜌0 𝐶1, 𝜌1 

𝐶𝐹𝑖𝑛𝑎𝑙 = 

𝑇𝐹𝑖𝑛𝑎𝑙 = ∙ 𝑇𝐵𝑎𝑐𝑘 ∙ 𝑇𝐼𝑠𝑒𝑐 𝑇𝐹𝑟𝑜𝑛𝑡 

𝐶𝐹𝑟𝑜𝑛𝑡 +𝐶𝐼𝑠𝑒𝑐 ∙ 𝑇𝐹𝑟𝑜𝑛𝑡 +𝐶𝐵𝑎𝑐𝑘 ∙ 𝑇𝐹𝑟𝑜𝑛𝑡∙ 𝑇𝐼𝑠𝑒𝑐                                                                                    

1 − 𝑇𝐹𝑖𝑛𝑎𝑙
 



Volume-aware blending 

 DirectX does not impose any ordering on the execution of pixel shader 

 Ordering happens later at the output merger stage 

 If two threads read and modify the same memory, result is unpredictable 
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Read Modify Write Thread 1 

Read Modify Write Thread 2 

Time 

Memory 

Work 

Work 



Volume-aware blending 

Pixel Shader Ordering assures that 

 Read-modify-write operations are protected, i.e. no thread can read the 

memory before other thread finishes writing to it 

 All memory access operations happen in the same order in which 

primitives were submitted for rendering 
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Read Modify Write Thread 1 

Read Modify Write Thread 2 

Time 

Memory 

Work 

Work 



Volume-aware blending 

Enabling pixel shader ordering 

#include "IntelExtensions.hlsl" 

... 

void YourPixelShader(...) 

{ 

 IntelExt_Init(); 

 ... 

 IntelExt_BeginPixelShaderOrdering(); 

 // Access UAV 

 

} 
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Volume-aware blending 

Blending volumetric particles - Implementation 

 Pixel Shader Ordering must be enabled 

 Color, density and min/max extent of the current particle are stored in the 

UAV buffer 

 Each new particle is tested against the currently stored 

 If new particle is in front of the current, the current is blended into the 

back buffer and replaced with the new one 

 If new particle overlaps with the current, they are blended and stored 

 Particles need to be sorted 
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Volume-aware blending 

Blending volumetric particles - Implementation 
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UAV Back buffer 



Volume-aware blending 

Blending volumetric particles – comparison with traditional blending 
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Volume-aware blending 
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Rendering 

Low-resolution rendering 

 To improve performance, particles are rendered to a low-resolution buffer 

 Bilateral filtering is then performed to upscale to original resolution and 

preserve edges 
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Particle generation 

Cell grid 

 Organized as a number of concentric rings centered 

around the camera 

 Particles in each next ring have twice the size of 

the inner ring 

 Each cell contains several layers of particles 

 Density and size of particles in each cell are 

determined by the noise texture 
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Particle generation 

Steps: 

 Process cell grid and create a list of valid (non-

empty) cells 

 One compute shader thread processes 

one cell 

 Append buffer is used to store indices of 

valid cells 
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Particle generation 

Steps: 

 Process each valid cell and create a list of valid 

particles in each cell 

 Use DispatchIndirect() to execute the 

required number of threads on GPU 

 One thread processes one valid cell and 

generates several particles 
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Particle generation 

Animation: 

Clouds are animated by changing particle size and 

transparency 
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Particle Rendering 

Particle ordering 

 Particles must be rendered in back to front order 

 Sorting on the GPU is very expensive 

 We can sort cells on the CPU 

 Not all cells contain actual particles 

 Solution: 

 Output particles only for valid cells 

 Use stream-out to preserve order 

 Process 32 particles by one GS thread 
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Particle Rendering 

Particle processing 

 DispatchIndirect() is used to execute CS computing light opacity 

for each valid particle 

 DispatchIndirect() is used to execute CS computing visibility for 

each valid particle 
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Integration with light scattering technique 

 Cloud density texture is rendered from light 

 At each ray marching step, it is determined if a point is 

above or under the cloud (clouds are assumed to have 

constant altitude) 

 If point is under the clouds, the cloud density texture is 

sampled to get the occlusion by clouds 

 Cloud transparency and distance to clouds in screen-

space are used to attenuate scattering along view rays 
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Integration with light scattering technique 
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Integration with light scattering technique 
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Results 
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Results 
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Results 
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Results 
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Results 
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Performance 

Pre-computation 

Computing optical depth integral takes less than 100 ms 

 Switching between different noise generation methods can be done at run 

time 

Pre-computing scattering requires several minutes 

 Final look-up table is only 1 MB and thus can be distributed with the 

application 
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Performance 

3.5 ms on Iris Pro 5200, 1280x720 

Grid size: 136x136x4x4; Half resolution rendering 
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Performance 

12 ms on Iris Pro 5200, 1280x720 

Grid size: 136x136x4x4; Half resolution rendering 
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Questions? 

Thank You 
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Ready for More?  Look Inside™. 
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Keep in touch with us at GDC and beyond: 

• Game Developer Conference 
Visit our Intel® booth #1016 in Moscone South 

• Intel University Games Showcase 
Marriott Marquis Salon 7, Thursday 5:30pm 
RSVP at bit.ly/intelgame  

• Intel Developer Forum, San Francisco 
September 9-11, 2014 
intel.com/idf14 

• Intel Software Adrenaline 
@inteladrenaline 

• Intel Developer Zone 
software.intel.com 
@intelsoftware 


