
Realistic Cloud Rendering Using Pixel
Synchronization
Egor Yusov

Legal
Copyright © 2014 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND
THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR
NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third
parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole
risk of the user.

Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel’s current plan of record product
roadmaps.

Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information go to
http://www.Intel.com/performance

Iris™ graphics is available on select systems. Consult your system manufacturer.

Intel, Intel Inside, the Intel logo, Intel Core and Iris are trademarks of Intel Corporation in the United States and other countries.

2

Introduction

Clouds are integral part of outdoor scenes

Rendering good-looking and fast clouds is

challenging

Different approaches to the problem exist

• Billboards

• Ray-marching

• Direct volume rendering (slicing)

3

Existing methods - Particles

• Represents the clouds as collection of camera-facing

polygons (quads)

• Can combine simple shapes (radial fall-of textures) as

well as more complex objects

• (+) Gives good control over clouds shape and location

• (-) Billboards are flat

• (-) Lighting is usually precomputed, clouds are static

• Impostors are related concept

• Pre-renders clouds into camera-facing billboards

 4

Existing methods – Ray Marching

• The cloud density is represented as 3D noise

• Ray marching is performed through the volume to

accumulate lighting

• (+) Good looking result

• (-) Control over cloud shape and location is intricate

• (-) Many ray marching steps can be required to

eliminate aliasing

• (-) Lighting usually limited to single scattering

5

Existing methods – Direct Volume Rendering

• Direct volume rendering methods can be applied to
render clouds

• The volume is sliced with planes; the planes are alpha-
blended to get final result

• Half-angle slicing can account for occlusion by light at
the same time as rendering from the camera

• (+) Lighting can be rather sophisticated (multiple
forward scattering)

• (-) Control over cloud shape and location is intricate

• (-) Many slicing planes can be required to eliminate
aliasing

6

Our method

• Attempts to combine control of particle-based approaches with quality of ray

marching and slicing techniques

• Key ideas:

• Use volumetric particles representing the actual 3D-shapes

• Use physically-based lighting

• Pre-compute lighting and other quantities to avoid expensive computations at

run time

• Perform volume-aware blending instead of alpha blending

7

Algorithm overview

Initial step – modeling clouds with spherical particles

8

Algorithm overview

Add pre-computed cloud density and transparency

9

Algorithm overview

Add pre-computed light scattering

10

Algorithm overview

Add light occlusion

11

Algorithm overview

Add volume-aware blending (enabled by Pixel Sync)

12

Algorithm overview

Add light scattering

13

Scattering physics

Light interacts with the tiny (2-8 µm) particles

distributed in the cloud:

 A photon can be scattered

 In-scattering is scattering in the view

direction

 Out-scattering is scattering out of the view

direction

 Absorbed

14

Scattering physics

15

Scattering physics

Optical depth integral

Light gets attenuated while it travels through the cloud

Since there is no absorption, only out-scattering
attenuates the light

Optical depth is the amount of scattering matter on the
way of light:

Transmittance through the cloud is the fraction of light
survived out-scattering:

16

𝑇(𝐀 → 𝐁) = 𝛽 𝐏
𝐁

𝐀

𝑑𝑠

𝐿 = 𝑒−𝑇(𝐀→𝐁) ∙ 𝐿𝐼𝑛

𝐿𝐼𝑛 𝐿

𝐴 𝐵

Scattering physics

In clouds, absorption is negligible and almost all

the light is scattered

• The clouds color is defined by the scattered

light

Phase function defines direction of a photon

after scattering event

• The phase function of cloud particles

exhibit strong forward peak

• Almost all light is scattered in forward

direction

17

𝜃

Scattering physics

Single-scattering integral:

𝐿 𝐏 is the light intensity at point P

𝛽 𝐏 is the scattering coefficient at point P

𝑇 𝐏 → 𝐂 is the optical thickness of the media between

points P and C

𝑝 𝜃 is the phase function

18

𝐿𝐼𝑛 =
𝐶 𝑂

𝑝 𝜃 𝐿 𝐏
𝐎

𝐂

 𝑒−𝑇 𝐏→𝐂 𝛽 𝐏 𝑑𝑠

𝜃

𝑒−𝑇 𝐏→𝐂

𝑃

Scattering physics

Light is also attenuated in the cloud before it reaches

the scattering point:

𝐿 is the light intensity outside the cloud

Let’s now look at our integral:

19

𝑃 𝐶 𝑂
𝐿 𝐏 = 𝐿 𝑒−𝑇 𝑨 →𝑷

𝜃

𝑒−𝑇 𝐏→𝐂

𝐴

𝑒−𝑇 𝑨 →𝑷

𝐿𝐼𝑛 = 𝑝 𝜃 𝑒−𝑇 𝐏→𝐂 𝛽 𝐏 𝐿 𝑒−𝑇 𝑨 →𝑷
𝐎

𝐂

𝑑𝑠

 𝛽 𝐏
𝐂

𝐏

𝑑𝑠 𝛽 𝐏
𝐏

𝐀

𝑑𝑠

Scattering physics

In clouds, a photon is usually scattered multiple

times before it leaves the clouds

This multiple scattering is crucial to cloud

appearance and cannot be ignored

• In contrast, air is much more optically

thinner media thus single scattering models

produce convincing results

20

Scattering physics

Multiple scattering

𝛀 is the whole set of directions

21

𝐿 = 𝑝 𝜃 𝐿 𝐏
𝐎

𝐂

 𝑒−𝑇 𝐏→𝐂 𝛽 𝐏 𝑑𝑠 𝐽 𝐏

𝐽 𝐏 = 𝐿

𝛀

𝑝 𝜃 𝑑𝜔

𝐶 𝑃

𝐽 𝐏

Pre-computed lighting

The idea main idea is to

• Precompute physically-based lighting

for simple shapes

• Construct clouds from these simple

shapes

• The term Particle will now refer to these

basic shapes (not individual tiny droplets)

22

Pre-computing optical depth

Typical way to evaluate optical depth is ray marching

 Impractical to do in real-time

For a known density distribution, the integral can be

evaluated once and stored in a look-up table for all

possible viewpoints and directions

 No ray marching at run-time

 Fast evaluation for the price of memory

23

𝑇(𝐀 → 𝐁) = 𝛽 𝐏
𝐁

𝐀

𝑑𝑠

Pre-computing optical depth

Parameterization

 We need to describe all start points on the sphere and all

directions

 Two angles describe start point on the sphere

 Two angles describe view direction

 4D look-up table is required

24

𝑇(𝐀 → 𝐁) = 𝛽 𝐏
𝐁

𝐀

𝑑𝑠

Ray Direction

Start Point

Pre-computing optical depth

Integration

 Integration is performed by stepping along the ray and

numerically computing optical thickness

 Cloud density at each step is determined through 3D

noise

 4D look-up table is implemented as 3D texture

 For look-up, manual filtering across 4th coordinate is

necessary

25

𝑇(𝐀 → 𝐁) = 𝛽 𝐏
𝐁

𝐀

𝑑𝑠

Start Point

Pre-computing optical depth

3D Noise generation

26

Radial falloff+3D noise Thresholding Pyroclastic style

Pre-computing optical depth

Resolution

 32x64x32x64 look-up table

 Interpolation artifacts can be visible from close look-ups

 OK from distance

27

Pre-computing optical depth

28

Pre-computing scattering

 Let’s consider spherically symmetrical

particle

 Any start point on the sphere can be

described by a single angle

 View direction is described by two angles

 Thus 3 parameters are necessary to describe

any start point and view direction -> 3D

look-up table

29

𝐿 =
𝐎

𝐂

 𝑒−𝑇 𝐏→𝐂 𝛽 𝐏 𝑑𝑠 𝐿

𝛀

𝑝 𝜃 𝑑𝜔

Pre-computing scattering

Intermediate 4D table is used to store radiance for every point in the sphere

For each scattering order:

1. Compute 𝐽 𝐏 for every point and direction inside the sphere by

integrating previous order scattering

2. Compute current order inscattering by numerical integration of 𝐽𝑛:

3. Add current scattering order to the total look-up table

30

𝐽𝑛 = 𝐿𝑛−1(𝜔)𝑝 𝜃 𝑑𝜔

𝛀

𝑃

𝐽 𝐏

𝐿𝑛 = 𝑒
−𝑇 𝐏→𝐂 𝛽 𝐏 𝐽𝑛 𝐏 𝑑𝑠

𝑶

𝑪

Pre-computing scattering

31

Pre-computed scattering for different light orientations

Pre-computing scattering

32

Combining pre-computed lighting and pre-computed cloud density

Pre-computing scattering

33

Compositing clouds

34

Computing light occlusion

35

Computing light occlusion

Tiling

 The scene is rasterized from the light over the tile grid

 One tile is one pixel

 Each particle is assigned to the tile

 Screen-size buffer is used to store index of the first

particle in the list

 Append buffer is used to store the lists elements

 Pixel Shader Ordering is used to preserve original

particle order (sorted from the light)

36

Computing light occlusion

Traversing lists

 Processing is done by the compute shader

 Each particle finds a tile it belongs to

 The shader then goes through the list of the tile and

computes opacity of particles on the light path

 Since particles are ordered from the light, the loop can

be terminated as soon as current particle is reached

 The loop can also be terminated when total

transparency reaches threshold (0.01)

 Early exit gives up to 2x speed-up for opacity

calculation stage

37

Computing light occlusion

38

Volume-aware blending

39

No Pixel Sync – Conventional Alpha Blending

Volume-aware blending

40

Pixel Sync – Volume-Aware Blending

Volume-aware blending

Blending volumetric particles

 If particles do not overlap, blending is trivial

 How can we correctly blend overlapping

particles?

41

Volume-aware blending

Blending volumetric particles

 Suppose we have two overlapping particles with
color and density 𝐶0, 𝜌0 and 𝐶1, 𝜌1

 Back:

 𝑇𝐵𝑎𝑐𝑘 = 𝑒
−𝜌1∙𝑑𝑏∙𝛽

 𝐶𝐵𝑎𝑐𝑘 = 𝐶1 ∙ 1 − 𝑇𝐵𝑎𝑐𝑘

 Front:

 𝑇𝐹𝑟𝑜𝑛𝑡 = 𝑒
−𝜌0∙𝑑𝑓∙𝛽

 𝐶𝐹𝑟𝑜𝑛𝑡 = 𝐶0 ∙ 1 − 𝑇𝐹𝑟𝑜𝑛𝑡

 Intersection:

 𝑇𝐼𝑠𝑒𝑐 = 𝑒
−(𝜌0+𝜌1)∙𝑑𝑖∙𝛽

 𝐶𝐼𝑠𝑒𝑐 =
𝐶0𝜌0+𝐶1𝜌1

𝜌0+𝜌1
1 − 𝑇𝐼𝑠𝑒𝑐

42

𝐶0, 𝜌0 𝐶1, 𝜌1

𝑑𝑓 𝑑𝑖 𝑑𝑏

Back Isec Front

Volume-aware blending

Blending volumetric particles

 Final color and transparency:

 Division by 1 − 𝑇𝐹𝑖𝑛𝑎𝑙 because we do not want alpha

pre-multiplied color

43

𝐶0, 𝜌0 𝐶1, 𝜌1

𝐶𝐹𝑖𝑛𝑎𝑙 =

𝑇𝐹𝑖𝑛𝑎𝑙 = ∙ 𝑇𝐵𝑎𝑐𝑘 ∙ 𝑇𝐼𝑠𝑒𝑐 𝑇𝐹𝑟𝑜𝑛𝑡

𝐶𝐹𝑟𝑜𝑛𝑡 +𝐶𝐼𝑠𝑒𝑐 ∙ 𝑇𝐹𝑟𝑜𝑛𝑡 +𝐶𝐵𝑎𝑐𝑘 ∙ 𝑇𝐹𝑟𝑜𝑛𝑡∙ 𝑇𝐼𝑠𝑒𝑐

1 − 𝑇𝐹𝑖𝑛𝑎𝑙

Volume-aware blending

 DirectX does not impose any ordering on the execution of pixel shader

 Ordering happens later at the output merger stage

 If two threads read and modify the same memory, result is unpredictable

44

Read Modify Write Thread 1

Read Modify Write Thread 2

Time

Memory

Work

Work

Volume-aware blending

Pixel Shader Ordering assures that

 Read-modify-write operations are protected, i.e. no thread can read the

memory before other thread finishes writing to it

 All memory access operations happen in the same order in which

primitives were submitted for rendering

45

Read Modify Write Thread 1

Read Modify Write Thread 2

Time

Memory

Work

Work

Volume-aware blending

Enabling pixel shader ordering

#include "IntelExtensions.hlsl"

...

void YourPixelShader(...)

{

 IntelExt_Init();

 ...

 IntelExt_BeginPixelShaderOrdering();

 // Access UAV

}

46

Volume-aware blending

Blending volumetric particles - Implementation

 Pixel Shader Ordering must be enabled

 Color, density and min/max extent of the current particle are stored in the

UAV buffer

 Each new particle is tested against the currently stored

 If new particle is in front of the current, the current is blended into the

back buffer and replaced with the new one

 If new particle overlaps with the current, they are blended and stored

 Particles need to be sorted

47

Volume-aware blending

Blending volumetric particles - Implementation

48

UAV Back buffer

Volume-aware blending

Blending volumetric particles – comparison with traditional blending

49

Volume-aware blending

50

Rendering

Low-resolution rendering

 To improve performance, particles are rendered to a low-resolution buffer

 Bilateral filtering is then performed to upscale to original resolution and

preserve edges

51

Particle generation

Cell grid

 Organized as a number of concentric rings centered

around the camera

 Particles in each next ring have twice the size of

the inner ring

 Each cell contains several layers of particles

 Density and size of particles in each cell are

determined by the noise texture

52

Particle generation

Steps:

 Process cell grid and create a list of valid (non-

empty) cells

 One compute shader thread processes

one cell

 Append buffer is used to store indices of

valid cells

53

Particle generation

Steps:

 Process each valid cell and create a list of valid

particles in each cell

 Use DispatchIndirect() to execute the

required number of threads on GPU

 One thread processes one valid cell and

generates several particles

54

Particle generation

Animation:

Clouds are animated by changing particle size and

transparency

55

Particle Rendering

Particle ordering

 Particles must be rendered in back to front order

 Sorting on the GPU is very expensive

 We can sort cells on the CPU

 Not all cells contain actual particles

 Solution:

 Output particles only for valid cells

 Use stream-out to preserve order

 Process 32 particles by one GS thread

56

Particle Rendering

Particle processing

 DispatchIndirect() is used to execute CS computing light opacity

for each valid particle

 DispatchIndirect() is used to execute CS computing visibility for

each valid particle

57

Integration with light scattering technique

 Cloud density texture is rendered from light

 At each ray marching step, it is determined if a point is

above or under the cloud (clouds are assumed to have

constant altitude)

 If point is under the clouds, the cloud density texture is

sampled to get the occlusion by clouds

 Cloud transparency and distance to clouds in screen-

space are used to attenuate scattering along view rays

58

Integration with light scattering technique

59

Integration with light scattering technique

60

Results

61

Results

62

Results

63

Results

64

Results

65

Performance

Pre-computation

Computing optical depth integral takes less than 100 ms

 Switching between different noise generation methods can be done at run

time

Pre-computing scattering requires several minutes

 Final look-up table is only 1 MB and thus can be distributed with the

application

66

Performance

3.5 ms on Iris Pro 5200, 1280x720

Grid size: 136x136x4x4; Half resolution rendering

67

Performance

12 ms on Iris Pro 5200, 1280x720

Grid size: 136x136x4x4; Half resolution rendering

68

Questions?

Thank You

69

Ready for More? Look Inside™.

70

Keep in touch with us at GDC and beyond:

• Game Developer Conference
Visit our Intel® booth #1016 in Moscone South

• Intel University Games Showcase
Marriott Marquis Salon 7, Thursday 5:30pm
RSVP at bit.ly/intelgame

• Intel Developer Forum, San Francisco
September 9-11, 2014
intel.com/idf14

• Intel Software Adrenaline
@inteladrenaline

• Intel Developer Zone
software.intel.com
@intelsoftware

