
Galak-Z, Forever:
Building Space-Dungeons Organically

Zach Aikman
Lead Engineer // 17-BIT

The 4th Cave

How Systems Will Save Us

● Potential for control mastery

● Complex interaction of simple systems

● Ambience and aesthetics of dungeon
regions

● Exploration of unknown spaces

Cellular Automata

Glider Seal

Cellular Automata

Cellular Automata

Cool! We’re done, right?

Binary Space Partitioning

Minimum Spanning Tree

Z-Order Curves
Coords Z-Value
Z(0,0) = 0
Z(1,0) = 1
Z(0,1) = 2
Z(1,1) = 3

•

•

•

Z(3,3) = 15
•

•

•

Z(7,7) = 63

Hilbert Curves //convert (x,y) to d
int xy2d (int n, int x, int y) {

int rx, ry, s, d=0;
for (s = n/2; s > 0; s /= 2) {

rx = (x & s) > 0;
ry = (y & s) > 0;
d += s * s * ((3 * rx) ^ ry);
rot(s, &x, &y, rx, ry);

}
return d;

}

//convert d to (x,y)
void d2xy(int n, int d, int *x, int *y) {

int rx, ry, s, t = d;
*x = *y = 0;
for (s = 1; s < n; s *= 2) {

rx = 1 & (t / 2);
ry = 1 & (t ^ rx);
rot(s, x, y, rx, ry);
*x += s * rx;
*y += s * ry;
t /= 4;

}
}

Hilbert Curves

Hilbert Curves

• Increase curve dimension to
next power of 2

• Randomly offset the dungeon
grid

• Start at d = 0 and walk the
curve until it lies within the grid

• If the curve goes off the grid,
pick up where it comes back on

• If the curve cannot rejoin the
main path when it reenters the
grid, discard the lost cells

Dead Ends

Back to rooms

● Smaller grids (17x17)

● Fixed exits

● Terrain adjustments

● Object nodes

● Metadata

Room Template Editor

● Layer-based pixel
painting

● Build button for
quick previews

Like an onion

Room Previews

Dungeon Zones

Dungeon Zones

● Directional light color / intensity

● Background deco objects

● Interactable / obstacle prefabs

● Enemy types

● Loot types

● Max room count

Blocks to rocks

The Final Product

Space Hulks

Pirate Bases

Tips

● Use consistent frames of reference

● Draw pictures and keep them nearby

● Clear delegation of responsibilities

Tips

● Externalize as much data as possible

● Begin with a small, hand-crafted level

● Refactor when your working memory is
exhausted

● Don’t be afraid to experiment and fail
spectacularly

Zach Aikman
@TheZaikman

zach@17-bit.com
Lead Engineer // 17-BIT

Thank you!

