


Overview 
• Define the problem space 

• 3D Local Avoidance 

• 3D Path Planning 

• Results, tips and hints 



What is Warframe 
• Free to play 

• Online co-op 

• Space Ninjas 

• Procedural Levels 



Problem Space 
• Full 3D flight  

• Open Space 

• Scattered chunks of 
complex debris 

• Procedurally Generated 
Levels 

 



Avoidance 
• Velocity Obstacles work well 

in 2D 

• Can be extended to 3D 

 
Kythera.ai 

Star Citizen's Flight Simulation and Combat AI 

http://aigamedev.com/broadcasts/session-star-citizen/ 

 

Paper: 

Navigating Multiple Simple-Airplanes in 3D Workspace  

by Jamie Snape and Dinesh Manocha 

http://aigamedev.com/broadcasts/session-star-citizen/
http://aigamedev.com/broadcasts/session-star-citizen/
http://aigamedev.com/broadcasts/session-star-citizen/
http://aigamedev.com/broadcasts/session-star-citizen/
http://aigamedev.com/broadcasts/session-star-citizen/
http://aigamedev.com/broadcasts/session-star-citizen/
http://aigamedev.com/broadcasts/session-star-citizen/


3D ORCA 



3D ORCA 

50/50 

a1 / (a1 + a2) 



3D ORCA 

Max ΔV 

Solution  
restricted 
to this space 

V 

• ORCA assume instant velocity 
changes 

• Real vehicles have 
momentum and inertia 

• Additional constraints for 
maximum attainable ΔV 

• Increase time horizon to find 
obstacles earlier  



More than spheres 

r 

r 

Rectangle  
Velocity Obstacle 

r Box  
Velocity Obstacle 

r 



3D Path Planning 
• Multiple Layers of NavMesh 

• Connections between layers 

• Suitable for constrained 
environments 

• How many layers for 2Km 
cube? 



3D Path Planning 

2 Km 

2 Km 

2 Km 

• Regular 3D Grids 

• Too memory intensive 

• 2Km cube at 1m resolution 
uses 8 Gb! 

 

• Need a compact, adaptive, 
volumetric representation 



Sparse Voxel Octree 
• Common Rendering 

Structure 

• Compact 

• Neighbour connectivity 

• Morton Code Order helps 
memory access patterns 
and streaming 



Sparse Voxel Octree 
• Construct from bottom up 

• Low res rasterization to determine 
Morton codes for required leafs 
nodes 

• Block allocate all memory 

• Fill out parent-child ptrs on way up 

• Fill out neighbour ptrs on way down 

• Rasterize the final detail leaf nodes 

• Detail leafs are 4x4x4 voxel grids 
packed into 64 bits 

Paper:  

Fast Parallel Surface and Solid Voxelization on GPUs  

by Michael Schwarz and Hans-Peter Seidel 

2D analog of SVO architecture 



Sample SVO build stats 

Simple Test 
32 x 32 x 32 
8 collision polygons 
32,768 regular grid nodes 
3 octree layers 
56 oct nodes, 32 lead nodes 
2,104 pathfind nodes 
2,944 bytes 

Complex Test 
128 x 160 x 96 
40,435 collision polygons 
1,966,080 regular grid nodes 
6 octree layers 
5,680 oct nodes, 4,224 leaf nodes 
276,016 pathfind nodes 
306,432 bytes 

Typical Level 
1024 x 1024 x 1024 
481,417 collision polygons 
1,073,741,824 regular grid nodes! 
8 octree layers 
43,648 oct nodes 30,800 leaf nodes 
2,014,848 pathfind nodes 
2,398,960 bytes 



Pathfinding on SVOs 



Pathfinding on SVOs 



Pathfinding on SVOs 



Pathfinding on SVOs 



Pathfinding on SVOs 



Pathfinding on SVOs 



Pathfinding on SVOs 



A* on SVOs 



Top Tip! 

Always set up debug 
visualization of all the 
stages of your algorithm! 



Leap Ahead and Catch Up 



Greedy A* 

f(n) = g(n) + w ∗ h(n)  
where w > 1 



Node Size Compensation 

cost *= (1.0f - size * comp) 



Complex Case 



Complex Case 

A* 
Node Centers 
Straight Line Distance 
32,916 iterations 
50 path steps 

Greedy A* 
Face Centers 
Manhattan Distance 
3,378 iterations 
58 path steps 

A* 
Face Centers 
Manhattan Distance 
10,692 iterations 
57 path steps 



Complex Case 

Greedy A* 
Face Centers 
Manhattan Distance 
Size Compensation 
2,425 iterations 
49 path steps 

Greedy A* 
Node Centers 
Straight Line Distance 
Size Compensation 
1625 iterations 
59 path steps 



Complex Case 

213 iterations! 
42 path steps 

Greedy A* 
Node Centers 
Straight Line Distance 
Size Compensation 
Unit Node Cost 



Doughnut of Doom! 



Future Optimizations 
• JPA* style jump points 

• O3 searching for jump 
points may not be quicker 
than optimized A* search 

• Hierarchical Search 

• Possible memory bloat to 
store passable flags 
between each face of SVO 
nodes 




