RENDERING THE
WORLD OF FAR
CRY#

Let me preface my talk by saying that I’'m the one lucky enough to be standing here
today to talk about Far Cry 4, but really I'm presenting the work done by the whole
graphics team at Ubisoft Montreal.

We started with the technology from Far Cry 3.

But we also knew where the problems were and what we wanted to improve from
Far Cry 4. I'm going to go over some of these improvements.

FAR CRY 4

Open world first person shooter.

— Day-night cycle.

— Set in Kyrat, a country based upon Nepal.
Cross-platform and cross-generation development.
— Xbox 360, PS3, Xbox One, PS4, PC.

Deferred shading.

Physically based shading.

With time of day changes, there is no hiding place...

Our mandate as a graphics team was to lead on current-gen, keeping the last-gen
engine the same as what shipped Far Cry 3. That gave us a lot of constraints as we
had to keep the last-gen working, which affected a lot of our decisions throughout
the project. By the end of the project, as was probably inevitable, we had to go back
to the PS3 and Xbox 360 and polish those up, but it meant that we had a better
product than FC3 on all platforms.

But thus today, I'm going to be talking almost exclusively about our work on Xbox One
and PS4, but I'll drop a few titbits of information about the old consoles when | get
the chance.

OVERVIEW

Materials
Lighting

Vegetation
Antialiasing IR Y :
Terrain [Chen2015] s .

e

- 2‘_

We focused on five main areas of improvement, but I’'m only going to talk about the
first four today. Hopefully you all attended Ka Chen’s presentation earlier today, which
talked about the virtual texturing we developed to improve our terrain rendering.

MATERIALS

« EarCry 8:
— Physically based shading. [McAuley2012]
— Glossiness and reflectivity material parameters.
— Monochrome specular only.
» (oal: Improve the appearance of metals:
— (old and other coloured metals.
— Weapons cover large proportion of the screen.

| spoke about physically based shading in Far Cry 3 at SIGGRAPH 2012.

MATERIALS: BRDF

 Based on Disney model [Burley2012]:
— Anisotropic GGX specular BRDF

» With corresponding Smith geometry term

— Lambertian diffuse
« Expose the following parameters in [0, 1] range:
— Glossiness
Reflectance
Metallic
Anisotropy

Like everyone else, we’re using the Disney BRDF. Disney call the “reflectance”
parameter “specular”, but | think the former works a lot better, plus they have
“roughness” instead of “glossiness”, but we had to stick with the latter for legacy
reasons. We'll change it in the future.

We tried the Disney diffuse but it just didn’t seem to make enough of a difference.

MATERIALS: BRDF

 Based on Disney model [Burley2012]:
— Anisotropic GGX specular BRDF

» With corresponding Smith geometry term

— Lambertian diffuse
* Expose the following parameters:
— Glossiness
Reflectance
Metallic
Anisotropy

We're going to talk about metallic and anisotropy today.

MATERIALS: METALLIC

* Metallic parameter:
— Blend monochrome specular reflectance to albedo.
— Blend out diffuse albedo.

float3 specularReflectance = lerp(reflectance, albedo, metallic);

albedo *= 1.0f - metallic;

If we used a full specular colour, we’d have to find three G-Buffer channels which
wasn’t an option on PS3 and 360. Instead, we could just replace the reflectivity
channel.

10

MATERIALS: METALLICITY

* Metallic parameter:
— Single channel in G-Buffer for coloured specular.
— Fix reflectance at 0.03 for last-gen.

— Artists need training:
 Behaviour of “diffuse” textures changes with metallic.
* Metal values much brighter than for diffuse albedo.

"YYYYYTTITY

»

~—
UBISOFT’

11

MATERIALS: ANISOTROPY

* Anisotropy parameter:
— For brushed metals and certain types of cloth.

If we used a full specular colour, we’d have to find three G-Buffer channels which
wasn’t an option on PS3 and 360. Instead, we could just replace the reflectivity
channel.

12

MATERIALS: ANISOTROPY

* Recall anisotropic GGX distribution formula [Burley2012]:

()= 1! 1

" magay((h-x)%/a% + (h-y)2/al + (h-n)?)?

13

MATERIALS: ANISOTROPY

* Recall anisotropic GGX distribution formula [Burley2012]:

()= 1! 1

* Need two glossiness terms plus normal, tangent and
binormal.

* How do we pack full tangent space into a G-Buffer?

| guess | should note hear that technically the alpha parameters are roughness, not
glossiness, and we really should be calling glossiness “smoothness” as it’s a more
accurate representation of what it is. Still, we kept with the legacy naming from Far
Cry 3.

" Tagay((h-%)2/ok + (b - y)/al + (h-n)2)2

14

MATERIALS: QUATERNIONS

» Store tangent space in G-Buffer as a quaternion.
[Frey2011]

X, Y,Zor W X,,Zorw [N, Zor W findext
 Store in 10:10:10:2 format [Frykholm2009]:

— Three smallest components.
* Inrange [-1/42, +1/7/2].
— Index of missing component.

To store tangent space compactly, we can actually steal ideas from animation
systems. In particular, Crytek did a presentation on packing tangent space as
guaternions for their animation system, as did Niklas Frykholm on the BitSquid blog.

The three smallest components are in the range [-1/V2, +1/V2] because if one was
any bigger, it would have to be the biggest component. We can then rescale that
range to [0, 1] for better precision.

15

MATERIALS: QUATERNIONS

* Find biggest component in only 5 instructions:
— Use GCN-specific instructions. [Drobot2014a]

uint FindBiggestComponent(in float4 q)

{
uint xyzIndex = CubeMapFaceID(q.x, q.y, q.z) * 0.5f;

uint wIndex 35
bool wBiggest = abs(q.w) > max3(abs(q.x), abs(q.y), abs(q.z));

return Select(wBiggest, wIndex, xyzIndex);

For all the shader code for quaternion packing/unpacking, please see the appendix.

16

MATERIALS: QUATERNIONS

 Quality equivalent to naive packing of normals in 8:8:8.
e Faceting on smooth surfaces:

Blinn-Phong GGX
8:8:8 normals 10:10:10:2 quaternions

17

MATERIALS: QUATERNIONS

* Problems:
— Quality of normals.
— Orthonormal tangent space only.
— Speed of packing and unpacking.
— Frame buffer read-back for blending decals.
* Only one layer of decals.

Orthonormal tangent space isn’t so bad, particularly because you can decouple the
tangent space used for shading and the tangent space used for normals. (That’s a
problem if you’re going to do LEAN mapping, but we weren’t.)

For blending decals, having virtual textures helps us a lot here, because all our terrain
decals are baked into the virtual texture. For all other objects not using virtual
texturing, such as decals on buildings, having only one layer was a limitation we
presented to artists and they worked around.

18

ANISOTROPY: REFLECTIONS

« Distort the reflection vector [Revie2011]:

float3 anisotropicTangent
float3 anisotropicNormal
float3 reflectionNormal
float3 reflect

cross(view, binormal);

cross(anisotropicTangent, binormal);
normalize(lerp(normal, anisotropicNormal, anisotropy));
view - 2 * dot(reflectionNormal, view) * reflectionNormal;

I’'m grateful to Matt Pettineo for bringing Don Revie’s article to my attention.

19

ANISOTROPY: REFLECTIONS

Anisotropic highlight Anisotropic highlight
No anisotropy Isotropic reflection Anisotropic reflection

I'll be honest, it’s far, far from perfect... but it’s a hell of a lot faster than importance
sampling and a hell of a lot better than doing nothing.

20

UBISOFT

We solved an interesting problem with adding anisotropy... Our weapons team
always complained that they wanted a fake specular term, as they didn’t always see a
highlight. With anisotropic specular, it completely stopped those complaints as they
always felt they could see something cool going on from all angles. It’s worth pointing
out that this “fake specular” they wanted in fact therefore was a form of anisotropy —
that’s what they felt they were missing from the real world.

21

) L\ LA
»Li \@b
b
~

A

281 aring) theMioe e of P Cry A

*EIBHTING. -

S —

ey %

s

ol

22

LIGHTING: GOALS

Sky occlusion:
— Increase the resolution.
2. Environment maps:
— Time of day changes.
3. Indirect lighting:
— Extend range beyond loading ring.
— Faster update to prevent flickering.

I’'m mentioning work done by three people on our team. Jeremy Moore worked on
the sky occlusion, and Gabriel Lassonde the environment maps, and myself on the
indirect lighting.

Increasing the resolution of the sky occlusion was probably our priority over
increasing the resolution of the indirect lighting, because it was less intrusive
(important because of our cross-generation production) and it’s also easier — we
knew it was achievable.

23

SKY LIGHTING

* Bruneton sky model and Preetham sun model.
H.

24

SKY OCCLUSION

Far Cry 3:

— Sky lighting in light probes with indirect lighting.
Far Cry 4:

— Separate direct sky lighting from indirect lighting.
High resolution “top-down” sky occlusion.

Create visibility second-order SH from height field.

In other words, we generate a height map of our scene and use that to generate
visibility information.

25

SKY OCCLUSION

* Height field rendered on demand:
— World is split into 64x64m sectors.
— Render whenever a sector becomes visible.
— 0.281ms on GPU.
— No streaming cost.
* Resolution of 25cm per texel.

 Blurred before generating SH visibility.

26

SKY OCCLUSION

SSAQO-style approach.

Sample blurred heightfield with rotated poisson disk.
Store proportion of visible samples.

Sum directions of visible samples for directionality.

e

27

SKY OCCLUSION

« Convert direction and visibility into SH.

» (Generate SH for up normal and rotate:

float4 SH2SphericalCap(float cosA)

{

float cos2A = 2 * cosA * cosA - 1;

float4 sh = 0.0f;

sh.x = g _shSphericalCapConstant® * (1 - cosA);
sh.z = g _shSphericalCapConstant2 * (1 - cos2A);
return sh;

28

SKY OCCLUSION

In deferred lighting, sample SH occlusion
texture.

Fade to visible depending on height above
terrain.

Construct bent normal from primary
visibility direction.

Sample second-order SH visibility and
third-order SH sky lighting in bent normal
direction.

We fade the sky occlusion to fully visible based upon the height above the terrain — at
the terrain height, we use the full sky occlusion value, but at the height stored in our
blurred height map we count the pixel as fully visible.

29

LIGHTING: SKY OCCLUSION

» Bending the normal based on SH sky visibility:

float3 BentNormalFromSHVisibility(float3 normal, float4 shVis)

{
float3idir = SH2GetPrimaryDirection(shVis);

float factor = saturate(l - shVis.x / g _shSphericalCapConstant®);
return normalize(normal + dir * factor);

30

WITHOUT SKY OCCLUSION

31

WITH, SKY-OCCLUSION

You might note the harsh falloff here — this was art directed, as we gave some
controls to tweak the final result.

32

WITH BENT NORMAL S

If you look at where the building meets the ground, you’ll see the lighting now is a lot
more consistent between the two surfaces.

33

@

How can a single cubemap have the
right intensity at every time of day?

34

’ Y
v - Rl e Wl AN t

"l

@ Why don’t we relight the cubemap
* each frame?

35

ENVIRONMENT MAP RELIGHTING

* G-Buffer cubemap:

l‘q A v "

Albedo

Normal

36

ENVIRONMENT MAP RELIGHTING

O
FETN

1
\\\\\N Sun light

Albedo et

bz — S — . —

o/

Sky light

-
A

37

ENVIRONMENT MAP RELIGHTING

e Lighting:
— Sun lighting.
« Without shadowing (needs depth buffer).
— Sky lighting.
« Without occlusion (needs depth buffer).
— Indirect lighting from nearest probe.
— Normalise with luminance of ambient term.
 Better results than by normalising with colour. s

Shadowing and occlusion would require us to use the depth buffer to reconstruct
position.

We use the luminance of the ambient term, rather than the colour, as we found that
better preserved the correct result of the cube map at all times of day.

38

ENVIRONMENT MAP RELIGHTING

» -
i ~
R o -~ e o r .l e whaen RN, .

e

See the lighting of the mountains shifting.

39

ENVIRONMENT MAP RELIGHTING

* Filtering:

— Importance sample GGX distribution for successive mip
levels. [Hill2012]

— Filtered importance sampling key for performance.
[Colbert2008] [Lagarde2014]

— Batch cube map faces together for better occupancy.

We came up with the same method as Sebastien Lagarde and Charles de Rousiers for
filtering environment maps at run time. Filtered importance sampling is absolutely
key — so first, you generate mips with a simple box filter (which is fast), then you use
filtered importance sampling to generate GGX filtered mips, which dramatically
decreases the number of taps you need and the memory bandwidth.

Batching cube map faces (and if you have the ability, cube map mip levels) together is
key for performance — otherwise you’re running a lot of jobs on very small surfaces
which has low GPU occupancy.

40

ENVIRONMENT MAP RELIGHTING

41

ENVIRONMENT MAP PERFORMANCE

* For a 128x128x6 R16G16B16AT6F environment map:

Lighting 0.066ms

Mip Generation 0.044ms

Filtering 0.275ms

Timings taken from a PlayStation 4

e Bandwidth bound.

We're still bandwidth bound, despite filtered importance sampling. Our HDR texture
format doesn’t help here — David Cook at Microsoft has suggested we try
R10G10B10A2 instead, but we haven’t had time to experiment with that yet.

INDIRECT LIGHTING: OVERVIEW

« EarCry 8:
— Deferred radiance transfer volumes. [Stefanov2012]
— Light probes that store radiance transfer information.
* (Goals:
— Use same light probe set for last- and current-gen.
— Extend range of indirect lighting.
— Faster updates by moving CPU work to GPU.

43

INDIRECT LIGHTING: OVERVIEW

e Offline:
— Bake probes.

— Radiance transfer information in second order SH.
o L CPL

— Stream probe data.

— Upload to GPU and update page table.
o (GRPI:

— Calculate radiance transfer.

— Inject probes into clip map and sample in deferred lighting.

44

INDIRECT LIGHTING: DATA

World is split into 64x64m sectors.
Probes stored in cells:
— Regular grid of 8x8 probes per cell.

Bake highest level data and generate mips;
— Mip 0: 1x1 sectors per cell
— Mip 1: 2x2 sectors per cell

Mip 4: 16x16 sectors per cell

So a cell could be from any mip level and any size. In the end, we don’t really care —
we have a cell of light probes and we need to get a light probe within it.

45

INDIRECT LIGHTING: DATA

e (ell data:

— Radiance transfer probe list:
* 64 probes in an 8x8 regular grid.

— SH probe list:

» Calculated from radiance transfer probes once per frame
— Dimensions.

» Used for calculating index of probe to sample.

46

INDIRECT LIGHTING: VIRTUAL BUFFERS

e Allocate a fixed-size list of cells on the GPU:

How do we store our cells on the GPU? Well, we just allocate a fixed number of cells
that we can have loaded at one time.

When | talk about virtual buffers here, | should probably mention this is all software —
we're not doing anything in hardware.

47

INDIRECT LIGHTING: VIRTUAL BUFFERS

» Allocate a fixed number of cells for each mip:

—
Mip 0 Mip 1

48

INDIRECT LIGHTING: VIRTUAL BUFFERS

e As a cell is streamed in on CPU:

— If a free cell is available on GPU, allocate.

— If no cell is available, discard a more distant cell.
* As acell is streamed out on CPU:

— Mark cell as free on GPU.

When | say allocate, obviously the memory is already allocated — we’re just marking it
as allocated and copying the data across from the CPU.

49

INDIRECT LIGHTING: RADIANCE TRANSFER

e Perform radiance transfer on entire cell list:

N

=)~ BN ---
Sun light Radiance transfer probes Sky light

SH probes

50

INDIRECT LIGHTING: PAGE TABLE

« Each mip level has a page table:

51

INDIRECT LIGHTING: PAGE TABLE

» Spatially indexed in a 2D grid in the XY plane:

52

INDIRECT LIGHTING: PAGE TABLE

» The page tables cover the entire world:

53

INDIRECT LIGHTING: PAGE TABLE

* Combine page tables on CPU into one:

Honestly, my code for this is pretty slow. | might put it on GPU in the end.

54

INDIRECT LIGHTING: PAGE TABLE

* Combine page tables on CPU into one:

55

INDIRECT LIGHTING: PAGE TABLE

 Final page table is 180x160 sectors (highest mip resolution):

56

INDIRECT LIGHTING: SAMPLING

* 0On GPU, sample page table to find index into cell list:

57

INDIRECT LIGHTING: SAMPLING

* From cell, calculate probe index from world position.
* Fetch the probe.

SH Probe 0
SH Probe 1
SH Probe 2
SH Probe 3
SH Probe 4

But how would we interpolate between probes? We’d have to do four expensive taps,
which is why instead we inject into a clip map...

58

INDIRECT LIGHTING: SAMPLING

* Optimise and gain filtering between probes.

* Inject probes into 32x32x5 “clip map”.
— Centred about the camera.

— Three textures to store 12 SH coefficients. .
e To sample:

— Find cascade C the pixel is in.

— Calculate UVs of cascades C and C + 1.
— Sample cascades C and C + 1 and blend according to distance.

The clip map is a 32x32x5 texture array — each “mip level” needs to be the same size
as the one above as it covers a larger area.

For last-gen, we just used a single level of this clip map to replace our old volume
map which required a LOT of memory.

59

INDIRECT LIGHTING: STATISTICS

Page Table

Cell Data

Cell Count (Per Mip Level)

16

Cell Count (Total)

80

Total Cell Memory

=rlafolgaa-lale:¥@ Radiance Transfer

~640kb

0.020ms

Injection

0.008ms

Full Screen Pass

0.980ms

Timings taken from a PlayStation 4

The sky lighting and indirect lighting full screen pass obviously takes the most time.

It’s currently VGPR bound.

60

INDIRECT LIGHTING: CONCLUSION

» Solved problems from Far Cry 3:
— Faster updates.
— Much larger indirect lighting range.
— Lower memory requirements.
* Quality issues:
— Low frequency lighting, spatially and temporally.
— Local lights not taken into account.

The quality issues are a pretty big deal for us — a light probe every 8m is clearly not
enough, and 2" order radiance transfer just can’t capture high frequency Gl data.
However, with our restrictions of using the same data across console generations, we
did a good job of solving the problems we faced on Far Cry 3.

You might be wondering why we went for lower memory requirements than Far Cry
3, given the increased memory of current-gen hardware... well, we managed to use
the memory optimisations on last-gen too, which saved us a few megabytes.

61

Rendering the World of Fgf;p_[y;ft

R (1

TVEGETATION. v~

62

VEGETATION

* Major rendering focus on Far Cry 4.
* Completely different data set for current-gen.

* (Goals:
— Visual fidelity up close.
— Improved LODding and impostors.
— Simulation.

Credit to Philippe Gagnon and Jean-Sebastien Guay for developing this system.

63

Grass also covers small plants

64

Grass also covers small plants

65

VEGETATION

* New vegetation system focused on trees and bushes.
» C(Create trees using SpeedTree and import into engine:

Il F4RCRY

3 0% we |

66

VEGETATION

« Trees consist of a trunk plus leaf clusters:

Everything is rendered with alpha test; no alpha blending is used.

67

VEGETATION: LEVEL OF DETAIL

e Trunks and leaf clusters have three LODs before a
tree becomes an impostor.

» Leaf cluster LODding generated offline:

— (Calculate percentage of cluster visible:
* 12 distances.
* 9 viewpoints.

LOD 1

68

VEGETATION: LEVEL OF DETAIL

Camera view Side view i

If we fix our culling camera then look around the side, we’ll see that leaf clusters at
the back of the tree have lower LODs.

Obviously, please remember that we generate these leaf cluster LODs not just at
various viewpoints around the camera, but also at different distances too, so far away

the whole tree would turn blue.

69

VEGETATION: SIMULATION

* Physics and movement simulated on GPU.
* Instanced bones transformed into world space bones.

Model Bone

Com.pute S.hader World Space
Simulation Bone List
Instance Data

List

70

Video of the buzzer. You can see how the wind from the buzzer affects the trees,
bushes and also the grass too. Although the grass didn’t have simulation, we used
something very similar to our water ripple simulation. I'll be going over some similar
hacks we did like that to put the finishing touches on the vegetation in a few minutes.

71

VEGETATION: IMPOSTORS

» Take screenshots from nine viewpoints:
— Eight perpendicular to the tree.
— One top down.

72

VEGETATION: IMPOSTORS

» “G-Buffer” screenshots:
» Capture albedo, normals and material properties:

73

VEGETATION: IMPOSTORS

The problem with this impostor system is the high memory requirement caused by
the number of textures. We might look at reducing the number of views in the future.

74

VEGETATION: IMPOSTORS

* Depth billboards:
— Billboard geometry is tessellated into a 16x16 grid.
— Capture depth during “G-Buffer” screenshots.
— Displace vertices according to original tree depth.

75

VEGETATION: DEPTH IMPOSTORS

Front view Side view

Although not demonstrated here, this really helps when a tree is lit from the side, or
if two distant tree impostors intersect.

76

VEGETATION: AMBIENT OCCLUSION

* (Generate AO volumes :

— Range from 16x16x16 to
64x64x64 in size.

— Capture shadow maps from
32 directions around the
volume.

— Sample shadows and average.

77

VEGETATION: STATISTICS

Rosewood
Trunk (LOD 0) 3,115

Leaves (LOD 0) 169,076

Leaves (LOD 1) 45,025

Leaves (LOD 2) 10,170

It’s only possible to render this many vertices because we have the LODding system
that we do. We aggressively cull high resolution LODs. Realistically, during rendering,
the rosewood would have around 80,000 vertices max.

VEGETATION: PERFORMANCE

.

Tree Simulation

Shadow Pass

G-Buffer Pass

Timings taken from a PlayStation 4

79

VEGETATION: VISUALS

« Visually, vegetation is tricky to get right.

* Not simulating many things:
— Light bounces between blades of grass.
— Light scattering through leaves.
= Seh

« Wizardry from technical artists required.

80

VEGETATION: VISUALS

e Per-cluster random colour tint:

First colour .

Second colour

This is simple, but very effective. Obviously, this is an extreme example but it’s not
too different to trees I've seen in Vermont in the autumn | guess.

81

VEGETATION: VISUALS

 Bringing impostors to life:
— Per-vertex sine waves to simulate branch motion.

» Easy with tessellated billboards.

« Simulated by smooth triangle waves for speed.
[Sousa2007]

 Waves in X, Y and Z for macro detail.
* Waves in X and Z for micro detail.

82

VEGETATION: VISUALS

* Bringing impostors to life:
— Per-pixel noise from texture to simulate leaf motion.
AT e "I

-~

No noise on the left, noise on the right.

83

Video of noise on/off.

i

T
www :g(aps‘.com

—~—.

__hoise off
¥ ")

84

L 7
Réng

ANT ALJASlNG :

'

i the WorldiF Far, Cry 4

e —g

85

ANTIALIASING: OVERVIEW

* Hybrid Reconstruction Antialiasing (HRAA)
[Drobot14b]:

— Edge antialiasing
— Temporal supersampling
— Temporal antialiasing

Our antialiasing approach was presented by Michal Drobot at SIGGRAPH 2014, so
please read that presentation for many more details. And of course, full credit (and
also all the difficult questions) should go to Michal for the work he put into this. It
consists of a combination of three techniques...

Edge antialiasing — this should be self-explanatory.

Temporal antialiasing — this refers to aliasing between two successive frames — we’d
like to make this look smooth too.

Temporal supersampling — supersampling is rendering at an increased resolution —
we’d like to do that temporally, by sampling different pixels of the larger image each
frame.

86

Temporarily Stable
Edge Antialiasing

Frame N

Frame N-1 Stable
—> Supersampled

Frame

Accumulation
History Buffer

Here’s an overview of what’s going on... don’t worry... we’ll break it down over the
next few minutes.

87

EDGE ANTIALIASING

* SMAA:

— Temporally stabilised.

— Normal, depth and luma predicated thresholding.
« AEAA (Analytical Edge Antialiasing):

— For alpha tested geometry. [Persson2011]
» CRAA (Coverage Reconstruction Antialiasing):

— See [Drobot2014b].
— Best performance but content issues.

88

TEMPORAL SUPERSAMPLING

 Based on Killzone: Shadow Fall. [Valient2014]
e 2x supersampling:

— Use current frame and previous frame for samples.
* Previous frame sample valid only if:

— Motion flow between frames N and N - 1 is coherent.
— Colour flow between frames N and N - 2 is coherent.

* Frames have same sub-pixel jitter.
* Prevents flickering.

We didn’t ship Far Cry 4 with colour flow coherency, hence we have some flickering
present in the game.

89

TEMPORAL SUPERSAMPLING

* (Geometric metric:

— Interpolate from N - 1 sample to N sample if motion is
incoherent.

e Colour metric:

— Colour bounding box of 3x3 neighbourhood around N sample.

N - 1 sample close to mean: no new information
N - 1 sample close to min/max: new information
N - 1 sample outside window: possible fluctuation

Actually used centre pixel of 3x3 window rather than the mean, because that resulted
in too many false positives due to too much smoothing. It’s also really worth reading

Brian Karis’ excellent talk from SIGGRAPH 2014 where he discusses other various
acceptance metrics.

90

ACCEPTANCE

/

/

MAX

\

)

B RS - ... JE—

)

)

VALUE

So this is a visualisation of our acceptance metric, which | hope makes things a lot
clearer. Again, we use the centre pixel rather than the mean.

91

TEMPORAL SUPERSAMPLING

* Maximise our two samples for best image.

» Various sampling patterns:
— 1x Centroid
2x Rotated Grid
2x Quincunx
4x Rotated Grid
2x FLIPQUAD

92

SAMPLING PATTERNS: 1x CENTROID

93

SAMPLING PATTERNS: 2x ROTATED GRID

2XRG has 2 unique columns and 2 unique rows.

94

QUINCUNX optimizes the pattern by sharing corner samples with adjacent pixels.
It covers 3 unique rows and 3 unique columns, improving over 2xRG.

It adds a 0.5 radius blur (that is partially recoverable by 0.5 pixel unsharp mask
processing).

95

SAMPLING PATTERNS: 4x ROTATED GRID

4xRG has 4 unique columns and 4 unique rows.

96

SAMPLING PATTERNS: 2x FLIPQUAD

l

©)

UBISOFT

FLIPQUAD is a efficient 2 sample / pixel scheme that allows effective 4x Super-
sampling by sharing sampling points on pixel boundary edges.

It combines the benefits of QUINCUNX and Rotated Grid patterns.

Covers 4 unique rows and 4 unique columns, improving over 2xRG and QUINCUNX,
matching 4xRG

It adds a 0.5 radius blur (that is partially recoverable by 0.5 pixel unsharp mask
processing).

97

SAMPLING PATTERNS: COMPARISON

FLIPQUAD

Image courtesy [Akenine 03]
We can see FLIPQUAD performing similar to 4xRotated Grid.
It can provide arguably higher quality results.

98

[MEMPORAL SUPERSAMPLING

* FLIPQUAD gives significantly higher quality than
QUINCUNX at same cost [Laine2006]:

| ixCentroid [RENESNY
0.698
0.439
| Quincunx EVESES
0.364

Lower error estimate E -> closer to 1024 super-sampled reference.
Image courtesy [Laine 06]

99

&
=
2]
o
=
I
%
Y
LU
o
o=
@
5
@
o
=
L]
_ll

* Split the pattern in

* Pixel #0

100

TEMPORAL SUPERSAMPLING

* UVs need to be interpolated at sample
positions:

— Use HLSL interpolator modifiers: ' C"

0
sample float2 UV; i

* |ncorrect derivative calculations.

1
1
— Spatial distances between rasterisation ~37 3
samples differ. . ‘
: S}
P = =

B S -

Of course, this all sounds like a good idea but there are problems in practice... you
have to interpolate UVs at sample positions to achieve actual supersampling, then
you find that the derivative calculations are incorrect. This causes nasty problems like
the following...

101

g
Frame A Bl

=,
-
= -

Correct Mip

©)

UBISOFT

102

Frame B

Oversharpened
Mip

©)

UBISOFT

103

TEMPORAL SUPERSAMPLING

* Fixing mip selection:
Mip LOD bias?

Use tex2Dgrad with analytic 07 0"17

et 3

9

quad?

Reorder samples.

gradients?
Manually pick samples for UVs within

o

B S -

If we just reorder the samples so that samples 2 and 3 in the red frame are in fact
samples 0 and 1, then the gradients are similar.

104

Frame A

)
b B
MeS
o A)
S D ==
@>ES Q.
(T Py
rom
Q5 '4d) - S
QO X oum

UBISOFT

105

i

Frame B = -
: - P 'ﬂf_.r*

Correct Mip ‘g X

Reordered '__.f -
Samples o

[5
"

©)

UBISOFT

106

TEMPORAL ANTIALIASING

* Temporally stabilise many of our buffers:
— Final frame buffer
SMAA
SSBC
Motion vectors
Bloom

107

TEMPORAL ANTIALIASING

* History exponential buffer:
— Amortize sudden visual changes.
— Accumulate new “important” data.
e Same acceptance metrics as temporal supersampling.
— Geometric metric.
— Colour metric.

— Now applied to full history buffer as well as N - 1 frame.
Might need to tweak values separately.

108

HIGH FREQUENCY RECOVERY

* Naive supersampling loses detail:

— Wider, more complex kernel needed to preserve detail.
[Burley2007]

— FLIPQUAD gives 0.5 pixel blur.
* Recover high frequency detail.

109

HIGH FREQUENCY RECOVERY

» Approximate 4-tap sinc kernel by:
— 0.5 pixel radius box blur (FLIPQUAD resolve)
— 0.5 pixel radius unsharp masking

e Mip bias of -0.5 on all textures.
— To match supersampled resolution.

110

ANTIALIASING: PERFORMANCE

_ singlePass | Timing(ms)
Temporal FLIPQUAD (TFQ) 0.20

1.00

0.60

TFQ + TAA 0.65
SMAA + TFQ + TAA 1.65
| UnsharpMask | 0.28

Timings taken from a PlayStation 4

©)

111

STam ﬁatiLng Caa |

— A‘x(e

-

-

——

112

PERFORMANCE

» Performance of a typical Far Cry 4 scene on GPU:
Shadow Maps
G-Buffer
Lighting
Blended

Post-Processing

Antialiasing

Miscellaneous

Timings taken from a PlayStation 4

Yes, this scene is well in budget! It helps to be cross-generation sometimes.

113

CONCLUSION

 Significant rendering improvements whilst maintaining
a last-gen build:

— Anisotropic and metallic materials.

— Higher fidelity sky occlusion and indirect lighting.
— New vegetation system.

— Hybrid Reconstruction Antialiasing.

114

THANKS

e Far Cry 4 team: « Special thanks:
Jeremy Moore — Stephen Hill
Philippe Gagnon — Julien Merceron
Michal Drobot
Jean-Seébastien Guay
Gabriel Lassonde
Sébastien Viard
Everyone else

115

REFERENCES

[Burley2012] Physically Based Shading at Disney, Brent Burley, SIGGRAPH 2012,

[Chen2015] Adaptive Virtual Texture Rendering in Far Cry 4, GDC 2015
[Colbert2008] GPU-Based Importance Sampling, Mark Colbert and Jaroslav Krivanek, GPU Gems 3,

[Drobot2014a] Low Level Optimizations for GCN, Digital Dragons 2014,
[Drobot2014b] Hybrid Reconstruction Anti-Aliasing, SIGGRAPH 2014,

[Frey2011] Spherical Skinning with Dual-Quaternions and Qtangents, Ivo Zoltan Frey, SIGGRAPH 2011,

[Frykholm2009] The BitSquid Low-Level Animation System, Niklas Frykholm,
[Hill2012] Rock-Solid Shading, Stephen Hill & Dan Baker, SIGGRAPH 2012,

[Lagarde2014] Moving Frostbite to PBR, Sébastien Lagarde and Charles de Rousiers, SIGGRAPH 2014

116

REFERENCES

[Laine2006] A Weighted Error Metric and Optimization Method for Antialiasing Patterns, Laine and Aila,
Computer Graphics Forum 25(1),

[Lazarov2011] Physically Based Lighting in Call of Duty: Black Ops, Dimitar Lazarov, SIGGRAPH 2011,

[McAuley2012] Calibrating Lighting and Materials in Far Cry 3, Stephen McAuley, SIGGRAPH 2012,

[Persson2011] Geometry Buffer Antialiasing, Emil Persson, SIGGRAPH 2011,

[Revie2011] Implementing Fur in Deferred Shading, Donald Revie, GPU Pro 2
[Sousa2007] Vegetation Procedural Animation and Shading in Crysis, Tiago Sousa, GPU Gems 3,

[Stefanov2012] Deferred Radiance Transfer Volumes, Nikolay Stefanov & Mickael Gilabert, GDC 2012,

[Valient2014] Taking Killzone: Shadow Fall Image Quality into the Next Generation, Michal Valient, GDC
2014,

117

118

" Render mg the ORI =ar: Cryss '
APPENDIXCA. s S

—

-

-

119

QUATERNION: FROM TANGENT SPACE

float4 TangentSpaceToQuaternion(float3 tangent, float3 binormal, float3 normal)
{

float4 quaternion;

quaternion.x = normal.y - binormal.z;

quaternion.y tangent.z - normal.x;

quaternion.z = binormal.x - tangent.y;

quaternion.w = 1.0f + tangent.x + binormal.y + normal.z;

return normalize(quaternion);

120

QUATERNION: TO TANGENT SPACE

void QuaternionToTangentSpace(in float4 quaternion,
out float3 tangent,
out float3 binormal,
out float3 normal)
tangent float3(1.0f, o.ef, .0f)
float3(-2.0f, 2.0f, .0f) * quaternion.y
float3(-2.0f, -2.0f, .0f) quaternion.z
binormal = float3(@.0f, 1.of, .0f)
float3(2.ef, -2.0f, -2.0f) * quaternion.x
float3(@.0f, ©.0f, 1.0f)
float3(2.ef, 2.0f, -2.0f) * quaternion.x

normal

+ <+ I + + I + <+ 1

float3(2.0f, -2.0f, 2.0f) quaternion.z *

float3(-2.0f, 2.0f, -2.0f) * quaternion.y *

quaternion.yxw
quaternion.zwx;

quaternion.wzy
quaternion.yxw;

quaternion.zwx
quaternion.wzy;

121

QUATERNION: UNPACKING FROM 10:10:10:2

float4 UnpackQuaternion(float4 packedQuaternion)
{

uint index = (uint)(packedQuaternion.w * 3.0f);

float4 quaternion;
quaternion.xyz = packedQuaternion.xyz * sqrt(2.ef) - (1.ef / sqrt(2.ef));
quaternion.w = sqrt(1.0f - saturate(dot(quaternion.xyz, quaternion.xyz)));

if(index == @) quaternion = quaternion.wxyz;
if(index == 1) quaternion = quaternion.xwyz;
if(index == 2) quaternion = quaternion.xywz;

return quaternion;

122

QUATERNION: PACKING TO 10:10:10:2

float4 PackQuaternion(float4 quaternion)
{

uint index = FindGreatestComponent(quaternion);

if(index == @) quaternion = quaternion.yzwx;
if(index == 1) quaternion = quaternion.xzwy;
if(index == 2) quaternion = quaternion.xywz;

float4 packedQuaternion;
packedQuaternion.xyz = quaternion.xyz * sign(quaternion.w) * sqrt(0.5f) + 0.5f;
packedQuaternion.w = index / 3.0f;

return packedQuaternion;

©)

123

