
1

Let’s talk about Sunset Overdrive, last year’s title out of
Insomniac Games.

2

Sunset is about fast traversal and varied missions across
seamless regions, (mostly) without load screens.

View this video at: http://youtu.be/6cG3LOerGlc

3

This talk is a narrative of our own experience making this
game. There have been a lot of GDC talks about building
streaming engines and open-world games; we aren’t the first
and we won’t be the last. But everyone seems to have done it
differently, so I’m going to tell you how it went for us.

Lots of the talks that have been done here before discussed
engines that were built for streaming, built from the ground up
to support open worlds. That wasn’t our engine. So this is really
a story about our experience of taking an engine that had been
built for linear games and adapting it, one step at a time, for an
open world environment. We hit a lot of hitches and did a lot of
learning along the way.

4

Our story in three acts: where we started, how things went,
and the things that surprised us.

5

SO’s tech is an evolution from what we had in Ratchet,
Resistance, and primarily Fuse.

7

Sunset overdrive is way bigger in every respect than our
previous games.

The platform it runs on, the Xbox One, has ten times the
memory (and more CPU and more everything) than the
Playstation 3 and the Xbox 360.

8

We had ten times the stuff in our world than either of our
previous biggest games.

9

Five times the active enemies and other AIs.

10

The engine was simulating ten times as many simultaneous
things.

The one thing that wasn’t bigger in Sunset…

11

What we did not have 10x as much of was people. Sunset
Overdrive’s team was only slightly larger in size than Fuse’s.

12

In Ratchet each planet was a “level”. All its assets were loaded
at once.

When you went from one level to another, we evicted all of its
data and loaded the next. We covered the transition with a little
animation of Ratchet flying his spaceship from one planet to the
next.

13

The levels were divided into “zones”.

A zone is a collection of instances of things – actors, terrain,
props, script. These instances in turn have references to
content assets like models, materials, actor templates, etc.

Our engine loads and garbage-collects assets by ref-counting.

14

We split levels into terrain/lighting/set-dressing/script zones to
allow multiple people to work concurrently on the same planet.
If we’d had just the one level file, then only one person could
have worked on it at a time (or else we would have needed
some mergeable data type and a lot of complexity). So we split
the levels up into layers and people worked on the layers
simultaneously.

15

The gameplay designers worked in a gameplay zone, which had
all the volumes and spawners and entities and script in it.

16

Artists could then build the geometry of the level in pieces. One
artist might be working on this,

17

Another on this,

18

And that all gets assembled together into the final level.

But all of the zones for a level are loaded simultaneously, and
they all stay loaded so longer as you’re in that level. It’s just a
production convenience.

19

In these games, the zones contained all the data necessary for
running them, including the actor heaps – we’d map out the
slack space in memory that the dynamic allocator would use.
This was possible (and nice) because we could know,
deterministically, all the stuff that a level needed in order to
work. We could determine that by looking at the assets on disk
and their references to each other. We could also budget ahead
of time how many actors we could have because we knew how
much memory there was for them.

20

You loaded a zone basically by memcopying it. When you
unload a zone, all the stuff in that zone – including the actors –
gets immediately unloaded also. It’s a very straightforward
system, but it relies on that complete build-time determinisim.

21

As we transitioned towards making linear shooters, we wanted
the player to have a continuous experience without needing
load screens. We used airlocks for this. Here’s an example from
Fuse. It’s a traditional technique: you divide the world into
regions, and have adjacent regions share some overlapping
area, like an elevator or a corridor. When the player steps into
the corridor, you lock the door behind her and start unloading
the region she just left, then load the next region into memory.

You either make the corridor long enough so that the next zone
is loaded by the time you’ve left the last one, or you come up
with some interaction to detain the player long enough to cover
the changeover.

View this video at: http://youtu.be/wxIIX-3bg5A?t=48m23s

22

Here’s Fuse’s implementation.

A “region” is a list of zones. In the figure, region X contains
references to zones A and B. Region Y contains references to
zones B and C.

So both of these regions have zone B in them; that is the
shared corridor.

23

When the player walks from zone A to B, he enters a trigger
volume which fires a script that loads region Y. Zone B now has
two references to it, one from each Zone.

24

When the player moves from zone B to zone C, another script
trigger tells region X to unload. Zone A unloads from memory,
but B still has one reference to it (from Y) so stays loaded in
case the player turns around.

This is all very standard.

25

In Fuse, we did this explicitly, by having trigger volumes that
ran scripts which told the engine exactly which zones to unload
and load.

26

And that worked here because these games were pretty linear.
From each region there was usually only one or two other
regions you could move into (forward and sometimes
backward).

27

At the time, we were focused on linear games, so we optimized
our engine to work really well at indoor environments. We knew
that it wouldn’t need to simulate any continuous outdoor
environments, and built it because we weren’t going to make
any continuous open worlds.

28

Until we did.

29

Sunset Overdrive wanted a completely open world, a living city
where you could go in any direction from anywhere.

Trigger volumes obviously wouldn’t cut it.

But we couldn’t build an entirely new engine; our engine team
was focused on simply porting the engine forward to the new
console generation. We also didn’t have time to rewrite major
parts of the engine. So we approached the prototype one step
at a time – figuring out how we could built adapters that let us
test Sunset’s gameplay within the way our engine already
handled loading.

30

There’s a temptation, when striving for something that’s not
been done before (at least, not by you), to engineer everything
the best possible way. You want the smartest tech you can
think of, because you want to do the best job you can. But you
don’t always need to shoot for the moon.

Image credit: NASA

31

The best technology is expensive, in time and money and
effort. Those are scarce. And often it’s overkill. You don’t always
need the most expensive technology; what matters is what you
need to get the job done. Sometimes you just need to get your
weather instruments into the stratosphere.

Image credit: Wikimedia Commons,
http://commons.wikimedia.org/wiki/File:High_Altitude_Hydroge
n_Balloon.JPG

32

We climbed this mountain one step a time. We kept things
simple, and at each stage built just what we needed to
implement the game’s design.

33

So the first question was, how would we cut up our city into
small mouthfuls that we can hold in memory? How many pieces
would we have in memory at once?

Picture from Wikimedia Commons:
http://commons.wikimedia.org/wiki/File:Mapping_L.A._City_nei
ghborhood_boundaries.svg

34

Mathematicians call cutting up a map into pieces “tessellation,”
and there’s lots of different ways you can tessellate a map.

35

The pieces can be irregularly shaped.

36

Or semi-regularly shaped.

Often we’d prefer to cut up our map into pieces that all have
the same shape. But even if you restrict yourself to shapes that
can be repeated to fill an entire surface…

37

…there’s still an infinite number to choose from. You’re not
really limited to using the regular polygons.

38

Still, for convenience’s sake we wanted to have all our regions
be of uniform size, and uniform shape. In 2d, that means
triangles, squares, or hexagons.

39

There’s a number of things that make hexagons convenient for
tiling maps, most of them familiar to tabletop gamers. But there
was one additional advantage they had over rectangles for us.

40

Regular square- or rectangular-shaped city blocks can line up
such that you have long, uninterrupted sightlines down linear
streets. That means long draw distances and a lot of work for
the renderer.

Manhattanhenge photo credit: C’Est La Vie, Annie:
https://cestlavieannie.wordpress.com/2013/05/30/manhattanh
enge/

Manhattan map via Wikimedia Commons:
https://commons.wikimedia.org/wiki/File:1899_Home_Life_Map
_of_New_York_City_(_Manhattan_and_the_Bronx_)_-
Geographicus-_NYC-HomeLife-1899.jpg

41

That’s Manhattanhenge, the day on which the setting sun aligns
with New York’s grid streets and shines from one end of the city
to the other. Effectively you’ve got an object 93 million miles
away in your line of sight, or a 150 million kilometer draw
distance. Wouldn’t fit in a 32 bit float.

42

If people build structures to a hexagonal map, the natural
boundaries will tend to be roughly aligned to hexagonal angles
as well, and you’ll naturally limit sightlines as people put 60
degree angles in everywhere. It’ll still look nice and fit together
organically.

43

Here’s a quick overview of the game runtime tech.

44

Our engine treats “levels” in such a way that only one can be
loaded at a time. So for Sunset, we only had one level ever –
sunset_city.level – and then we divided that into hexes, or
“regions” (we use the term interchangeably).

Like in Ratchet, our world was built from overlapping zones,
which would be built up to represent a locale in space like a
stack of pie plates or animation cels.

45

Let’s take a quick look at how a hex gets built up

46

Here’s the ground zone.

47

Art goes into its own zone.

48

We can have several art zones in a hex, each of them adding
another layer.

49

And here’s the gameplay zone. You can see it has enemies in it.
The blue boxes represent the origins of abstract things, like
spawners and volumes and script objects.

50

Gameplay zones contain a lot of what makes the world seem
alive. They have the logic for spawning NPCs and pigeons and
interactable objects. When you run into a region, the gameplay
zone for that region is what fills the streets with OD.

They also contain markup that global systems can hook into.
For example, we have a global system that is looking around for
places to put dynamic encounters – small mini-setups with
unique content. It iterates over gameplay zones as they’re
loading, and looks for “dynamic encounter goes here” nodes
that it can place the encounters into.

51

A region has many zones; so all the stuff in the zones gets
added together on load.

52

So putting it all together one layer at a time…

53

54

55

You can see here that one of the zones actually sticks a little bit
outside the hex – it’s like a flange to cover the seam between
zones. Zones don’t actually have to be constrained to a region;
any zone can contain an object at any point in the world. That’s
useful for mission-specific behavior and some other purposes –
I’ll get back to that soon. But even for ordinary geographical
streamed zones, having a bit of them stick into neighborhing
hexes like this is a convenient way to cover seams.

56

Our engine’s basic atom of simulation is the “scene object.”

These are: actors, lights, volumes, model instances, visual
effects, stand-ins, script entities, decals, etc. Anything that has
a position, an asset, and needs to engine to tick it.

57

Content producers add things to the world by selecting an
object type and dragging it into the world in the level editor.
This creates a “node” in the zone, which is a generic
representation of an object.

58

A node is just a dictionary of keys and values. Some of the
fields contain simple data, like position. When you place an
object into the world, you set keys and override values to
describe the object. For example, you set its position.

Some fields are references to other assets. This scene object
references an actor.

[CLICK] The actor in turn has some components on it, and we
could override configuration values on the components on this
instance if so desired.

The zone is essentially a list of such nodes – it doesn’t contain
assets directly; it contains nodes, and those nodes may refer to
assets.

59

That .actor asset in turn is itself a blob of key-value data. Some
of those values may reference other assets…

60

..which in turn have their own values, and so on.

61

The important thing is that all our objects are built in a
consistent way: [CLICK] everything is a JSON blob of
dictionaries; keys point to values, to other dictionaries, or to
assets. Eventually some assets will have fields pointing to
binary data, like textures.

62

(show for a second and skip past)

63

So we have a uniform way of asking, for each asset, what other
assets it uses. Thus each zone forms the head of a directed
acyclic graph where some things can be linked to multiple times
via different paths. The zone file itself doesn’t reference base
asset types. It stores a list of instances, the data that makes
each instance unique, and the instances in turn reference their
assets.

64

Okay, given the technology we had for streaming before –
where we had two adjacent regions, and we would load one
while evicting the other – what was the simplest adaptation we
could make to a case where a region is surrounded by six
others and you could move into any of them at any time?

65

The easiest way to ensure that the player can move into any
adjacent hex at any time is to have them loaded. That’s also
the easiest way to make sure you’re surrounded by high
resolution assets. We load the hex in which the player stands,
along with the surrounding 6 hexes, so that there are always at
least 7 hexes loaded at a time.

When the player moves from one hex to the next, we load in all
of the new neighboring hexes, and evict the ones left behind.

This means you can temporarily have 10 hexes loaded at once
(and while moving continually, you usually do).

66

We load the hex in which the player stands, along with the
surrounding 6 hexes, so that there are always at least 7 hexes
loaded at a time.

When the player moves from one hex to the next, we load in all
of the new neighboring hexes, and evict the ones left behind.

This means you can temporarily have 10 hexes loaded at once
(and while moving continually, you usually do).

67

We load the hex in which the player stands, along with the
surrounding 6 hexes, so that there are always at least 7 hexes
loaded at a time.

When the player moves from one hex to the next, we load in all
of the new neighboring hexes, and evict the ones left behind.

This means you can temporarily have 10 hexes loaded at once
(and while moving continually, you usually do).

68

Well, actually… hexes don’t exist in the game runtime. They are
purely an editor construct. The game just works with zones.

69

A region (hex) is simply a point, a radius, and a list of zones.
When the player steps into that radius, we load the zones.
When the player steps outside the radius, we unload the zones.
This was a small step from the way things worked on Fuse. In
Fuse, a “region” was also a list of zones; but regions got loaded
and unloaded via script. So all we did here was to replace that
manual script with a system that checked the player’s location
relative to…

70

… all of the overlapping circles in the world, and load the
relevant zones. The entire world streaming rests on this very
simple amendment to our linear streaming setup.

71

This is useful for missions, where we often have a single global
zone representing all the objects necessary for a mission
regardless of their position in the world. It also helps us hide
seams.

Photo credit: Wikipedia and Leonard G. :
https://en.wikipedia.org/wiki/Cantilever#/media/File:Pierre_Pfli
mlin_Bridge_UC_Adjusted.jpg

72

So what does it mean when part of the city is “not loaded”?
Obviously we need to have something there so that you can see
the skyline in the background; we can’t have blocks just wink
out of existence.

To portray the city outside the currently loaded region, we have
a low-level-of-detail version of every hex.

View this video at: http://youtu.be/6L8FHxSaYJE

73

These “low-res” zones primarily low-LOD models (“stand-ins”)
automatically generated from the baseline level geometry via
Simplygon. If you’re curious about that process, David will give
you the skinny on it tomorrow, in the room next door.

74

All the low-res zones are always loaded. Each model in the
world knows its equivalent stand-in geometry. When the model
is beyond a certain distance, we automatically swap it to render
the stand-in instead. This way we don’t need to stream stand-
ins in and out.

The always-loaded low-res zones was a development time
tradeoff – we didn’t have time to build a more elaborate system
of medium- and low-LOD hexes, and contend with hexes so far
away they can be dumped entirely. So, what about the
memory cost of keeping all that stuff loaded always?

75

Here’s how our memory looks. Textures are the biggest single
category, but we are always streaming some textures in and
out, parallel to the general streaming system. The highest MIP-
levels of textures are huge, too huge to keep even all of them
for the objects in just a single zone. So we proximity-stream
those for specific models just like every other engine does.
Sound does this too.

76

For a world the city of Sunset City, all the low-res zones and
their textures fit into 500mb, and that was good enough for us
to simply keep it always resident. It put a little bit of extra
pressure on the texture streamer since we had to be juggling
high-MIPs more aggressively.

We could have put a lot of work into making four levels of LOD,
and some tiered streaming system, but

77

you don’t have to go putting pineapples and teriyaki sauce on a
pizza just because you can. Simple is better. Simple is fine.
Simple is good enough to be tasty.

… I saw a place in Los Angeles that puts avocado on pizza.
Avocado. It’s a sin.

Photo from Wikipedia – Ewan Munro -
https://en.wikipedia.org/wiki/Pizza#/media/File:Fox,_Dalston,_
London_(3634023284).jpg

78

Ours is a mission-based game; there’s a plot, and a lot of
content that is unique to each point in that plot. We needed a
way to add that unique content to parts of the world only when
the relevant part of the game was active, and then remove
them after. We learned pretty quick that we couldn’t just have
all mission-specific content be part of the ordinary streamed
hexes. We could turn spawning and behavior on and off
depending on which missions were active, but all o the
spawners and scripts and volume take up a lot of memory,
memory that we don’t need to be consuming unless that
mission is actually underway.

79

So the simplest next step we could take was to say, each
mission gets a zone of its own too. Zones can overlay anything
in to the world while they are loaded – actors, effects, script,
even entire buildings. So, we’ll say the mission gets a “global”
zone. It is loaded and stays resident the entire time the mission
is active; and it has all the actors and so forth that makes the
mission go.

80

Here’s an example of a global mission zone for a boss battle.
You can see it has the boss, and curves and spawners and
volumes and script objects.

Having a single additional global zone for the mission like this is
convenient, because it means all of your data in one place. But
it’s also problematic – for one thing, this zone may take up a lot
of memory, especially if has custom assets or level geometry.

There isn’t a convenient way to link stuff in this global zone to
anchor points in the underlying world streaming zones, like we
had with the dynamic encounters. Sometimes you’d want to
spawn a couple dozen enemies into the street when something
happens; and there’s already a lot of enemy spawners in the
world, so you might want to just tell the existing spawners
“dispense ten enmies.” Or sometimes you might need to turn
them off so they don’t contend with all your custom enemies.
But it’s inconvenient to refer to things in specific world hexes
from a zone that’s not part of the world.

81

--

Also, it makes it more difficult to keep mission-specific things lined up
with level geometry. Let’s say your mission adds enemies to a
particular zone, and you want those enemies to spawn perched on
ledges. If the environment artist moves those ledges, it’ll break the
mission. It’s helpful to have some clear linkage between a
geographical zone, and any mission overlay zones that touch it, so
that environment artists know what they have to go touch up when
they change level layout.

81

So we invented shadow zones. They’re so called because they
“shadow” existing world zones. Each one has a reference to an
ordinary world hex.

82

When that base hex is loaded AND the mission is active, the
corresponding shadow zone loads and overlays on top of it. This
mission has seven shadow zones. At this moment, two of those
zones correspond to world hexes that are currently loaded.

83

So those shadow zones, and only those, will be loaded into
memory and run.

It’s simple and effective but requires careful memory
management.

84

Here’s an example of a base zone in the world.

85

Here’s a shadow zone specific to a mission. You can see it’s got
some enemies and spawners in it. These are the enemies for
this mission, but only for this part of the world. The mission has
a zone like this for every part of the world it crosses.

86

Here’s what that hex looks like when the mission is active: the
base zone runs normally, and then the shadow zone gets loaded
in on top of it.

87

Shadow zones can contain basically anything – effect, decals,
scripts…

88

…or even buildings.

89

But we also got ourself into some trouble with these mission
overlays.

90

Missions – only one can be active at a time. These
are the core plot

Quests – which are things like “collect all the
ceramic kitties.” You can have any number of them
simultaneously

Challenges – which are things like traversal ring-
races.

91

Missions are linear; they are the core plot of the game. Only
one can be active at a time, and at any time one is always
active.

92

“Quests” are things like “find the twelve cat statues scattered
around the city”. So, while the “find cat statues” quest is active,
we’ve got to have its zone loaded into memory. That zone has
cat-statue actors placed all over the city, and they stay in
memory so long as the quest is active.

93

But you can have any number of quests active at a time. You
could hypothetically have all of them active by the end of the
game, if you start all the quests but never finish any of them
until you’ve dealt with all the missions.

94

Some players might finish the quests as they come up.

95

Others may leave all the side quests open until the end of the
game.

Different players will have different memory footprints
depending on which quests they have active and whether they
ever complete them or hang onto them.

96

This made memory budgeting unpredictable. We can know
ahead of time how much memory a world hex will take up;
that’s fairly deterministic. And we know how much any given
mission will take up, even though different mission have
different footprints. But we can give them a budget too.

97

But those missions may have shadow zones, and the shadow
zones may be of different sizes to each other. Some missions
have more content in the global, and some have more in the
shadow zone. Some shadow zones are bigger than others. Now
you have several sources of variability in memory.

98

Because there’s no limit on the number of possible open quests,
hypothetically you could get to the end of the game while
having all of the quests still open and active. Which, ultimately,
meant that we had to tune the entire game with enough slack
memory to accommodate all the quests being active in every
possible scenario.

We found ourselves having to always budget for the worst case
– the biggest zones loaded with the heaviest mission loaded
and with all of the quests active.

And even so we had some spooky action at a distance. We
might have a combination of mission, world zones, and shadow
zones that are all running right at the limit of the memory
budget. And everything is fine, but then a designer adds one
more cat statue to one of the quests, and then bang we’re over
memory and the game crashes – but only if you’re a player who
hung onto side quests without finishing them and had a very
specific combination of quests open by the time you got to this
mission. It made QA very difficult.

99

Quick review – so far we’ve got the hexes, zones, and asset
hierarchy. Now let’s talk about the filesystem and the code that
loads it.

100

The Sunset engine has two (relevant) filesystems: one that can
hot-reload any asset and is used for rapid development; and
then the packed archives that we put into packaged QA builds
and ultimately the customer’s disk.

101

The development filesystem is closely tied to our editor
toolsuite, the Lunaserver.

The Lunaserver process runs on a developer’s PC
(“developer” here meaning everyone working on the
game) and is responsible for tracking the state of all asset
files, built targets, and all data interchange between
tools.

Tools communicate with the Lunaserver via HTTP.

Our level editor is essentially Google Chrome. Many
of our tools are either Chrome plugins, or else are
written in Javascript and HTML.

The Lunasever is running as an HTTP server on port
2255.

So our tools are basically a suite of web-apps that
you access by connecting to localhost:2255.

Lunaserver tracks all of the source asset files you have on
your PC (which is usually the whole game).

It monitors the filesystem journal. Whenever you touch
(or sync) an asset source file (say, a model), it
immediately builds the corresponding target.

102

Digression:- we cache all the built targets on a centralized
Cached Content Server (CCS).

So if someone else has already built the version of the
asset that you just synched, your Lunaserver will fetch
from the cache rather than rebuild on your PC.

This speeds things up a lot. It was the only way we kept
build times manageable enough for artists to work on a
game with millions of assets.

If someone makes a code change to an asset format that
requires, say, every model in the world to be rebuilt, then
the Lunaserver on their PC automatically rebuilds all those
assets and uploads the results to the cache.

If you wait for this process to finish before checking in
your tools change, then anyone who subsequently gets
the new tool version doesn’t have to rebuild all the
models; they download your built target from the cache.

When you run the game in “development mode”, it also
communicates with the Lunaserver via HTTP. Basically, it uses
your Lunaserver as a network file system.

The console devkit can connect to your PC’s lunaserver.

This means you can make a change to an asset and see it in the
game without having to rebuild any archive files.

In fact, it means you can make a change to an asset and see it
in the game immediately without having to even restart or
reload! The Lunaserver pushes a notification to the game telling
it to reload the asset. The game loose-loads assets from the
development file system ad hoc, whenever something
references them.

102

Our packaged, retail filesystem is based on the one we had in
Fuse. You can get the details from Andreas’ previous talk at
GDC2013. But we made some revisions to make Sunset work.

103

We have a set of large files (segments) that amalgamate all
assets. We cap them at 3 GB arbitrarily – important to stay
under 32 bits for compactness. Everything is compressed on the
drive using LZ4.

The packages are partitioned arbitrarily, so really we can just
think about them as if they were concatenated into a single big
package file (the difference is just that the indexes are two
numbers, package id# and then offset inside the package).

104

There’s two overarching categories of assets: “key assets”,
which in SO’s case are zone files, and then everything else –
decals, models, etc.

105

Let’s just refer to them by letter to make things more legible.

106

Okay, we could say “zones go into packages. For each zone,
every asset it uses goes there too.”

So package files look kind of like this.

107

But hey, things get complicated, because you don’t always need
to load every asset in a hex when you step into that hex. Most
of those assets are going to be shared with neighboring hexes.
Many assets are found in multiple hexes – for example, the big
blue umbrella is in a lot of locations throughout the game. If
four neighboring hexes all use the same umbrella, you only
need to load it once.

That means that typically you’re only going to have to load a
few assets on entering a hex – the ones it didn’t share with
where you came from. Imagine part of the world here where all
the hexes have some subset of assets ABCDE.

110

When you move from the center hex to the top right hex, you
need to load asset C. But this gets complicated because it
depends on where you came from and which direction you’re
travelling.

111

If you were coming from this other direction, you’d need to load
a different asset – you’d be loading B, not C.

You can see that there’s an interesting combinatorial problem
here – each hex is a set of assets, and every one of those sets
is a point in the graph, and every transition between hexes is
an edge on that graph and a symmetric difference of hexes. So,
from each hex, we can work out what the set of assets we need
to get to each neighborhing hex is.

112

But that rapidly becomes really hard when you have hundreds
of hexes!

Figuring out which assets a hex needs to contain in the context
of its neighbors and all the directions in which the player may
approach it is such an interesting combinatorial problem…

113

…that we didn’t even try to solve it. Every hex file contains
every asset that hex references. This is much, much simpler to
deal with; and the Blu-ray format has plenty of space for the
redundancy. And it made loading faster.

114

See, the key to good I/O performance is basically NO SEEKS
EVER. You want each read to consist of a very few contiguous
blocks of data, which you load in their entirety.

115

You ought to think of your read pointer as if it has mass and
momentum. You want to keep it moving at a constant velocity.
Making it skip ahead, or backwards, requires changing that
velocity, which is costly.

And the reason for this is that it is a mechanical object with
mass and momentum. Seeks mean a motor has to push a
metal thing around. So it’s sometimes better to load a little too
much and then throw it out, than to try to seek over it.

We tried to keep all assets that had to be loaded together
contiguous on disk. That is to say, we wanted all of a zone’s
assets to be adjacent to it in the package.

Photo credit: Wikimedia Commons user Eric Gaba -
https://commons.wikimedia.org/wiki/File:Seagate_ST33232A_h
ard_disk_head_and_platters_detail.jpg

116

So, how to sort the assets on disk so that the ones which load
together are next to each other?

The easiest way to index an asset is to start by hashing its
filename, turn it into a 64 bit number.

And then… there is no then. That’s it.

117

A hash is as good an index as any! It makes building the table
of contents really easy, it’s just a hash table.

And, having the asset duplicated a few times on disk can lead
to faster load times, in the particular case of assets that get
loaded outside of the usual zone mechanism. If those assets are
in many places on disk, then the batch loader thread has more
options for building the most efficient load order.

--

Duplication works with the “location selection” at runtime by
just putting additional copies nearby. (This is good, because we
very frequently *don’t* want a bunch of the duplicated assets,
because they’re in memory already – but the # of permutations
means that we only know what is needed at runtime.)

That means that when any key asset – a zone – is loaded, the
loader knows to look for all other assets as close as possible to
them.

This works reasonably even if numerous key assets are loaded
together in a batch.

118

The duplication is also helpful if you find yourself having to load an
asset after the fact - sometimes mission zones are loaded ad hoc,
and they need to bring in a bunch of stuff. We have a background
loader thread that batches up all the load requests that come into it.
Having some assets be duplicated on disk lets the background job sort
the requests and find the asset copy closest to the current read
position. Those additional options can mean less seeks at runtime.

118

We can easily work out all the assets a zone needs by doing a
breadth-first on its DAG of assets.

119

So those just go next to the key asset on disk.

120

There is one additional cute optimization that helps us manage
assets that are only ever referenced by one other asset. If an
asset has only one parent, we copy that parent’s key down to
be the child asset’s key too – that ensures that they will be
adjacent to each other on disk and basically considered the
same asset.

This doesn’t make much difference for things that are inside
streamed zones anyway, but it does help with things that are
mentioned from “global” contexts, like vanity items and mission
content, which aren’t bound to a geographical zone that the
archiver can call a “key asset.”

121

There is one additional cute optimization that helps you manage
assets that are only ever referenced by one other asset. If an
asset has only one parent, we copy that parent’s key down to
be the child asset’s key too – that ensures that they will be
adjacent to each other on disk and basically considered the
same asset.

This doesn’t make much difference for things that are inside
streamed zones anyway, but it does help with things that are
mentioned from “global” contexts, like vanity items and mission
content, which aren’t bound to a geographical zone that the
archiver can call a “key asset.”

122

We also stream highest-res texture MIPs and long-playing
sound files. This doesn’t go through the general zone-loading
system, it’s just on demand loading of assets as they are
referenced.

Vanity items (the customizable clothing and so forth) are loose-
loaded, because there is no way to anticipate at build time what
combinations the player will need.

Even some of our NPCs have randomized outfits.

All of this dispatches through a single “asset manager” thread
that handles the disk I/O and prioritization.

123

A key difference between the way you design an engine for a
linear, airlocked campaign, and one that can handle huge open
worlds, is that loading a region is something that happens
intermittently in a linear game, and continually in an open
world.

Most of our hexes are about 110 meters in diameter, and we
budgeted things for a top player speed of 14 meters per second
(although sometimes it can be a little higher than that). So, if
the player is running forward, that means that you need to load
a hex every eight seconds, right?

124

Well, no, you’re loading two hexes every eight seconds.

125

Really it’s three. So you’ve got to load an instantiate an entire
hex in two and a half seconds… continually.

This gave us a nice figure to target for our hex size. We said,
“well, we’ll need to budget things conservatively, so let’s say
that all of a hex needs to stream in 1.6 seconds. We can
multiply that by the hard drive’s throughput and know how big
each of our hexes is allowed to be.”

But it turns out that disk I/O was not the limiting factor on
streaming.

126

The limiting factor on how fast we could stream the world was
runtime initialization, not file IO.

Our engine was designed for Resistance and Fuse – where each
zone has a few hundred entities that need to initialize once
loaded.

This quickly became a huge performance spike on every hex
transition, which could pull in 30 zones with thousands of
entities between them.

What you’re looking at here is a performance capture from
midway through development. The horizontal axis is time; each
vertical bar is a single frame. The height of the bar is the
frame’s length in milliseconds. Every frame that pokes above
the red line took longer than 33.3ms, meaning that it broke the
budget to hit 30hz. Let’s see what pushed it over.

127

That spike is the CPU side of setting up assets – not the disk
I/O, but all the business of fixing up pointers and handles and
initializing fields.

We had a lot of stuff in Fuse that could have been deterministic
and done by the builder, but we did at runtime because it was
easier and because “well, this only happens once on setup for
this asset.” That’s okay when we load a region, like, once every
few minutes, and we’ve got the player locked down while it
happens. But now we’re doing all that work for all the assets in
a zone, and we’re always doing it all the time – there is always
something being loaded. So suddenly we had something that
worked okay previously but fell down at scale.

128

What about initializing actors? Lets say the typical zone has
2000 actors in it. You’d think, okay, well that means we have
2000 entities in a hex and 80 frames for a hex so that’s 25
entities per frame. But it wasn’t that simple for us. Our engine
was designed with the assumption that all of the actors in a hex
would initialize simultaneously.

The average time to stream a hex is about 2 seconds, so we
were on average initializing 1000 entities per second or 33 per
frame – but our engine was designed to initialize everything in
a zone at once, when the zone loaded. Some things (like script)
broke if actors were initialized before other things they
depended on in the same zone.

Ultimately we found a way to time-slice actor initialization, so
that we amortized that once-per-hex 180ms hitch into a 3ms-
per-frame cost. But this was a painful retrofit, and you Think of
your actors that do deterministic setup work at runtime…

Things that that you haven’t gotten around to making an
offline build step for, because constructing a new asset
builder is complicated and you don’t always have all the
data that’s conveniently available to an in-game entity,

129

and it seemed okay to have a runtime step that searches the
world for all the places a pigeon can spawn because the pigeon
only has to do it once, when it’s instantiated.

Well, now you’ve got always got hundreds of pigeons being
spawned and destroyed, so that “only does it once on load” code
is biting you many times per second.

129

So you might have problems with entities that referred to each
other; or scripts that had to set up actors in their first frame,
and so things would break if the script came in before the actor
did, or the actor came in before the script was ready for it.

Fortunately, not every object broke in this way. Order of
initialization matters a lot for scripts and actors, but less so for
static models and for visual effects. So we were able to time
slice things with some effort, by lumping things into categories
that couldn’t possibly depend on one another and working one
category at a time.

But this was a painful retrofit, and you need to be really careful
with things that refer to each other.

130

But one thing still vexed us….

131

We never did manage to timeslice destruction. All the objects in
a zone get purged in the same frame.

132

Still, it worked well enough. The game ran smoothly and the
designers felt free in what they were able to put into the world.
We could have torn down and rebuilt our entire actor
initialziation design – forced designers to rebuild all of the
actors in a totally different way, and established some kind of
asynchronous messaging between actors. But before we tried
that, we tried some incremental steps to make things work, and
ultimately they proved to be good enough.

133

You’ve noticed that all of our hexes are two dimensional. We
stream the world as you move side to side, but not as you
move up and down. Why? Well, because you can move
sideways at 14m/s, but you move downwards at an acceleration
of 10m/s/s. You can fall a lot faster than we can possibly
stream in the world, so we realized that if the player fell from a
precipice, we had to have already loaded in all the ground that
the player could possibly fall into. It’s just something we
designed for.

Also, we just wanted to reduce complexity. We might
revisit this in the future and just kill the player if he
freefalls too far.

Image credit: Wikimedia Commons - Mariakeernik -
https://commons.wikimedia.org/wiki/File:Mesilask%C3%A4rg.j
pg

134

A continually-streaming game means that that parts of the
world are always coming into and out of existence. How do you
handle things that connect across the seams; or that have
actors in one area referring to actors in another area?

Navmesh is the canonical sticky example. Our navmesh builder
from Fuse was designed to work on entire regions all at once,
and to keep the navmesh loaded all the time. We struggled for
a while with getting it to cut up the world into pieces, but
there’s also a lot of runtime complexity there – how do you
weld together adjacent convexities when they load in? How can
an AI reason about navigation across part of the mesh that
hasn’t been loaded yet?

Because our nav is on a rectangular grid and we load on a hex
grid, it's complex to figure out what nav groups actually need to
be loaded.

Another difficulty we struggled with was dependency tracking,
and how to accurately build subsections when something
changes. Nav is the endpoint of the dep chain for all of the

135

models, and the markup on the models, and composite models. So if
you change one static model that's used 100 times then you have to
rebuild 100 navmesh islands..

Ultimately, the solution we hit on was

135

To just keep all of the navmesh loaded in the world all the time.
This completely sidestepped all the issues of building it in pieces
and welding those pieces together at runtime, and it means
that we could stick with our existing tools to a great extent.

136

On the other hand, the memory cost of having all the navmesh
in the world loaded all the time is

137

Negligible. It eats up less memory than just the animations on
the hero character.

When hexes unload, there is still visible low-res ground
geometry in their place – the stand-ins. But we don’t have solid
collision geometry loaded.

We try to mark the navmesh corresponding to the just-
unloaded regions of world as being temporarily impassible, so
that AIs don’t wander into areas with no collision. But it isn’t
perfect, and often when you stream out part of the level, some
of the characters stand on it will simply plummet through the
floor to the killplane many meters below. Did anyone notice?

138

There were a bunch of things that we knew we needed to build,
and that we planned for. And then there were some surprises.
There’s always surprises.

139

For example. When we’re running missions, sometimes the
actors for that mission are in a global zone. And that global
system doesn’t necessarily know what parts of the regular
world have streamed in. So, if you’ve got a mission where
there’s things standing on the ground, make sure you’ve got
the ground in place before you make the things.

140

For example, we have this mission where you’re chasing a train
along some elevated tracks. Both you and the train go on this
big chase across the city, at pretty much the maximum possible
movement speed.

The design for this mission included enemies in unique setups
along the train route, with some custom geometry and
behavior.

You can see them attacking the player here. They need to be in
their places and initialized in time for them to take potshots at
the player as he zooms past.

But your movement here is really right at the upper limit of our
supported speed. So sometimes you’d be rushing into a part of
the world that had only just loaded, or wasn’t totally finished
loading yet. In that case, the enemies wouldn’t have spawned
in to attack you, or they might still be too far back or setting up
or not have run their AI yet.

View this video at: http://youtu.be/tF8su9RdrZQ

141

Ok, so first we dealt with this by putting all of the mission in a
global zone, and having all of the script in that zone, and then
spawn the enemies from script.

142

As the player and the train moved along the tracks, they’d hit
trigger volumes. The trigger volumes would spawn enemies into
place so they’d be there to attack you.

143

Sometimes – not often but sometimes – you find yourself
grinding into a section of the world that hasn’t completely
loaded yet. And in that case, the enemy might spawn before
the ground zone streams in. With the result that, like Wile E.
Coyote, the enemy would appear, simulate long enough to
realize that there was no ground underneath it, and then
plummet out of the world.

144

So in this case, the global zone contained the entire train track
– while this mission was underway, we disabled the track that
was in the world, and replaced it with the one that was
duplicated into the mission. That way we could be sure that
there was no way you could run off the end of the track while
the mission was active.

Also, the global zone had solid collision platforms under the
enemy spawners.

145

So if the enemies were supposed to spawn on top of this
building here (the spawners are the blue boxes), just in case
the spawns happened before the building fully existed…

146

We put little safety platforms just underneath the visible surface
of the building.

147

Teleporting the player, or even just the camera, is really tricky
in a streaming game.

148

If we teleport the player (or the camera) to a location outside
the currently loaded zones, he’ll find himself surrounded by low-
res stand-ins and no ground to stand on. The engine has to
scramble to immediately load *all seven* of the surrounding
zones at once rather than streaming just two or three as
happens during normal movement. And, since the player arrives
before the ground does… once again, we have someone
plummeting out of the world.

150

In in previous games, often we’d script missions such that when
they ended, they would automatically teleport you to the quest-
giver for the final cutscene, or to the start of the next mission.
That’s because we didn’t want the player to have to make a
long, boring walk back to base. But teleporting gets you into
the problems we mentioned earlier, so we tried to design our
missions such that they looped around and by the end of them
you ended up where the final cutscene was supposed to start,
or to where the next mission begins.

151

Or you can use a bit of stagecraft – like bringing down a
proscenium curtain while the stagehands do a scene change.

Image: Radio City Music Hall. Credit Wikimedia Commons,
https://commons.wikimedia.org/wiki/File:Radio_City_Music_Hal
l_Stage_Curtain_1.jpg

152

Here’s a mission that involves chasing a dragon all over the city.
We don’t know when the player will succeed in killing the
dragon, so we don’t know where they’ll be when the mission
ends; but the final cutscene has to take place at a specific
location. So we warp the player and the dragon upwards a
distance into a pocket dimension, put some animated
backgrounds behind them, do this elaborate scene to cover the
load, and then carry on from the destination area.

View this video at: http://youtu.be/kaVSYpx2t0A

153

Elsewhere in the game, we’ve got this big setpiece object, this
huge radio tower in the middle of the city. You have a big battle
there.

154

But the cutscene that sets up your battle at this place – the one
that tells you what to do – takes place in an entirely different
part of the world. We need to show you the tower so that you
know where to fight, but if we simply teleport the camera there
for a close-up, all you will see is the low resolution stand-in.
So instead, we just solve the problem in-character, without
having to move the camera or force-load things.

View this video at: http://youtu.be/P0fgZaUzIt0

155

The battle that takes place here has you running all around the
tower. It involves a lot of vertical and sideways movement; you
circumnavigate the entire strucuture, and really explore the
space. You’d think this would mean that we’d have the whole
tower loaded all the time, right?

View this video at: http://youtu.be/KtK-KC_NKp8

156

In fact, this tower got built right at the intersection of three
hexes. It was one of the very first missions we built, while we
were still sussing out the strengths and limitations of the
system.

The tower itself isn’t bigger than a hex, but it sits right on the
seam.

157

It was this piece..

158

…and this piece…

159

… and this piece…

160

…that made up the structure.

So you’re continually loading/unloading regions, and paying the
CPU time for that, while just moving back and forth in a single
combat setup.

Was it a huge problem? Not really; it just put pressure on IO
bandwidth and limited the amount of high detail MIPs and other
stuff that we could have in the area. Like I said, this is one of
the very firsdt missions we made, and we could have gone back
and re-done it…

161

…but ultimately, it was fine. When you’re in pitched combat like
that, you tend not to notice that the building across the street
has really low rez textures.

162

There are some diagnostic tools whose critical importance we
learned only after having been bitten by bugs we couldn’t figure
out how to fix.

Memory costs were much more unpredictable in sunset than
they were in Fuse. You can tell up front how much a world zone
will take, except sometimes that varies in the context of its
neighbors and which assets are shared and which are not. And
the overall footprint while a mission is underway depends on
the size of the missoin, and its shadow zones, and whatever
quests may be loaded (which can be between 0 and all of
them). That’s a lot of different people, and a lot of opportunities
for someone to make an innocent change over there that
breaks a thing over here.

Having nice, clear tools that show exactly who is consuming
memory, and which things are shared, and in general the
weight of things, would have reallly really helped us early on.

--

163

The point is that many artists and designers are all inhabiting the
same space for different reasons now. The people building the world
make spaces that support many different overlaid missions, and the
people building missions create encounters that can span many hexes
in a long chase scene.

Sometimes the characters from the base combat setups and the
dynamic encounters and the mission-specific characters are at odds.

They can contend for memory and CPU resources in ways you didn’t
expect.

We have systems where the mission designer can say “cap the
number of proximity spawned ambient world charcters at 20, so that I
can be sure of room to spawn 60 mission-specific characters.”

But even so there were still bugs, and it wasn’t always clear what
needed to be capped, or what had sent us over the cap.

163

It’s also really helpful to be able to see the streaming
boundaries in the world while you’re playing, rather than to try
to guess at which hexes are loaded and which are low res by
looking at the current player coordinates and a paper map you
have on your desk.

Also, being able to point at a specific hex in the world and say
“load just that one hex, and not the thigns around it,” makes it
a lot easier to track down bugs in a specific region that would
be hard with all the noise of the living world around them.

164

As game developers we’re used to writing fast memory
allocators. A bad (which is to say, default) implementation of
malloc(), or overly liberal ad-hoc allocation in general, can
seriously hurt perf in a death-by-a-thousand-cuts kind of way.
But in a continually streaming game, fragmentation matters as
much as speed.

In the old games, the dynamic heap was part of the level,
meaning that when we left the level, we freed the entire
malloc() arena for all the things that had been in it, and started
with a nice clean contiguous page of memory for next time. On
the PS and PS2, sometimes we even just soft-reset the entire
console between levels.

But that cleanup option isn’t available in an open world game;
you can never just declare jubilee on an arena and start over.
Also, in an open world game, you are continually instantiating
and destroying things, which hammers the allocator all the
harder. The insidious thing is it’s death by thousand cuts – no
one allocation shows up on the profiler, but they’re like a tax
that inflates everything else

165

Here’s a picture of our internal heap-allocation-tracking tool. It’s
really handy. It records every single allocation made by the
game, so that for every byte that’s been allocated we can see
the callstack responsible.

The pane at the upper left is used to track fragmentation – each
dot represents an entire memory TLB page. If the dot fills its
whole square, then the page is 100% utilized. Smaller dots
indicate that some space is in the page is unallocated; therefore
a lot of small dots implies a lot of wasted space.

166

So here’s a trace from a build of our game that had a really tiny
37-byte memory leak. One minute in, we’re fine.

167

4 minutes, still fine.

168

Okay, fragmenting a little, but still mostly ok.

169

After only fifteen minutes of soaking, we’re starting to get into
trouble. Not only is there a lot of fragmentation, but you can
see that the allocated address space no longer fits in one
window.

170

22 minutes in and we have a problem. The game started to
crash during allocations! But it had plenty of total free memory
left. If we asked the allocator how much memory we had, it
would have said 100mb free. And we could have allocated 100
one-megabyte objects. But a single ten-megabyte object would
crash, because we didn’t have any contiguous regions of 10mb.

Memory allocation is one thing we really, really had to sweat
over in SO. Things that were tiny problems in linear games
became very magnified in an open world. Also, finding this
issue would have been really hard without this tool – another
example of how critical good memory diagnostics are.

171

Test your scale early

Have a populated region of world early for stress testing.

Ideally, find a way to semiautomatically generate large datasets
for testing.

Or at least, strive hard early on in your project, to make a
region as object-dense as you expect the whole world to be.

You can try to plan ahead for the things that you know will be
problems – 100 enemies take ten times as much memory as
10. But there are a lot of things you don’t know will be
problems until you’ve tried to simulate 10,000 of them at once.
Pigeons, for example.

172

LOD all the things – not just for memory and render, but also
for CPU load.

We have levels of detail on NPC AI – the further an NPC is from
the player, the dumber it gets, and the choppier its animation
becomes. We didn’t need it in a game with 16 simultaneous
enemies but we sure need it in a game with 100 zombies on
screen along with 12 allies.

Try to design systems so that you can anticipate their peak
scales.

Memory costs can be extrapolated. CPU perf is less linear.

The only real way to determine how scalable a thing is to try to
understand how the feature will be used.

173

This is a thing that most games have now, but it’s still a lot
easier if you plan for it early in development. We retrofit it late
in the project, and it was kind of a pain because we needed all
of the low-LOD hexes installed as part of the first “batch” of
content, even when you were just playing the tutorial section.

174

175

As you’ve seen, we made a lot of compromises where we
incurred runtime ineffiencies in order to conserve
developer time.

And it came out fine. The game works.

For example, we could have had middle-LOD zones.

We could have reduced the average hex size, and the
time it takes to stream anything, by carefully managing
combinatorics to reduce redundant loads.

176

For example, every hex in the Chinatown area of the game
redundantly includes a lot of the same models and textures
(Asian lanterns, torii, etc)

If we had created a single, larger “Chinatown-wide” uber-zone
that encompassed the whole region, we could have put all those
common assets into it and left them out of the individual hexes.

It would have taken longer than an ordinary hex to load, but
you would only do it on entering and exiting the uber-region,
and we could have hidden that by eg making you enter via an
underground tunnel or some other occluder.

But this would have required a lot of manual management of
what assets go where, and code in the hex-file-builder that
knows to omit redundancy in these cases. It would have been
a lot more work for art and production, just to achieve
something that feels like a smarter engineering solution. But
would that cleverness have really helped the customer? Or did
giving the artists the flexibility to put any asset in any hex

177

make the game better?

The simplistic redundant data approach means that our zone loads are
on average slower than they would otherwise be, but it also means
that we were able to build 160 hexes!

177

Don’t let the perfect be the enemy of the good. You can’t
possibly make the perfect, totally efficient streaming
engine within a single title’s development. And you don’t
need to.

What’s more important is that you come up with
something that’s tractable for designers to build with, has
clear constraints so that everyone knows how to live
within them, and is reliable enough that you can develop
gameplay features without having to continually clean up
core engine.

178

Don’t rebuild key systems. You’ll have your hands full making
existing systems scale.

Every sequel or new franchise feels like an opportunity to throw
out that gameplay system you felt had become unwieldy and
design something new. Resist that urge if this is going to be
your first open world game. Simply refitting your existing tech
to handle tens of thousands of things will keep you more than
busy.

179

There’ve been lots of great talks by really smart people at GDC
about how to build streaming games. And sometimes it will
seem like you need all that tech, working perfectly, for your
game to work at all. But what matters is what you need to
make a fun game. Build just enough tech to prototype how you
want your game to play; test the prototype, and then fix what
needs to be fixed.

180

181

182

