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Motivation

e Content discovery is becoming a challenge for players

« Questions
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3 PLAYERSTUDIO

Daybreak’s revenue-sharing program for user-created content
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Recommender Goals

e Make relevant content easier to discover

e Recommend content based on gameplay style,
friends, and prior purchases

e Improve conversion and monetization metrics
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Recommender Results

o« Offline Experiments
o« 80% increase in recall rate over a top sellers list

« Marketplace Results
e Recommendations drive over 10% of item sales
e Used by 20% of purchasers

o Lifetime value of users that purchased
recommendations is 10% higher than other purchasers
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Types of Recommendations

« Item Ratings

e The recommender provides a rating for an item the
player has not yet rated

« Item Rankings

e The recommender provides a list of the most relevant
items for a player
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Recommendation Algorithms

« Content-Based Filtering

o Collaborative Filtering
e Item-to-Item
e User-to-User
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Collaborative Filtering

o Rates items for a player based on the player’s
similarity to other players

o« Does not require meta-data to be maintained
o Can use explicit and implicit data collection

o Challenges include scalability and cold starts
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User-Based Collaborative Filtering

Similar

e Users _Ufe_l‘

e Items

Recommendation
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Algorithm Overview
Computing a recommendation for a user, U:

For every other user, V
Compute the similarity, S, between U and V
For every item, I, rated by V

Add V's rating for I, weighted by S to a running average of I
Return the top rated items
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Choosing an Algorithm

e How big is the item catalog? Is it curated?
« What is the target number of users?

« What player context will be used to provide
item recommendations?
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Landmark’s Approach

o« User-to-user collaborative filtering

« Motivation
e Large item catalog with limited annotations
e Rich game telemetry to alleviate cold starts
e Scales to millions of users



GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

Prototyping a Recommender

o Apache Mahout
o Free & scalable Java machine learning library

« Functionality
o User-based and item-based collaborative filtering

e Single machine and cluster implementations
O

e Built-in evaluation methods §



GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

Getting Started with Mahout

1. Choose what to recommend: ratings or rankings
2. Select a recommendation algorithm

3. Select a similarity measure

4. Encode your data into Mahout’s format

5. Evaluate the results

6. Encode additional features and iterate
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Similarity Measures

« Item Rankings

e Jaccard Index (Tanimoto)
e Log Likelihood

« Item Ratings
o Cosine Similarity
e Euclidean Distance
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Mahout's Data Format

e Item Associations « Item Ratings
User ID, Item ID User ID, Item ID, Rating
1, 101 1, 101, 5.0
1, 102 1, 102, 4.0
2, 102 2, 102, 2.5
2, 103 2, 103, 5.0
3, 104 3, 104, 1.0
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Encoding Commerce Data

SQL Query

select u.UserID, s.ItemID
from SampleUsers u
Join Sales s

on u.UserID = s.UserlD
group by u.UserID, s.ItemID

Result Set
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Generating Recommendations

Building the Recommender

model = new DataModel(new File("SalesData.csv"));
similarity = new TanimotoSimilarity(model);
recommender = new UserBasedRecommender(model, similarity);

Generating a List

recommendations = recommender.recommend(1, 6);
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Evaluating Recommendations

Precision computes the ratio of relevant recommendations
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Holdout Experiment

o An experiment that excludes a single item from
a player’s list of purchases

e Goals
e Generate the smallest list that includes the item

o Enable offline evaluation of different algorithms
o« Compare recommendations with rule-based approaches
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Landmark’s Holdout Results

—o—Top Sellers —e—Recommendations

Recommendations significantly
outperform a top sellers list
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Integrating Additional Features

e Landmark uses additional features
to build item recommendations

Features and Weights
e Item purchased 1.0
o Item liked 0.5
o Item viewed 0.25
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Encoding Additional Features

select distinct u.UserID, s.ItemliD, as Value
from SampleUsers u
join Sales s on u.UserID = s.UserID

union select distinct u.UserID, i.ItemlID, as Value
from SampleUsers u
join ItemLikes i on u.UserID = i.UserID

union select distinct u.UserID, i.ItemlID, as Value
from SampleUsers u
join ItemViews i on u.UserID = i.UserID
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Deployment in Landmark

e In-house implementation

e Current Deployment
e Recommendations are generated on the fly and cached

« Planned Expansion
o An offline process builds a user-similarity matrix
e An online process generates item recommendations in
near real-time
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Summary

e Recommendation systems can be applied to
content discovery in games

o Libraries enable rapid prototyping

e Recommendations can significantly outperform
rule-based approaches
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Thank You

« Ben G. Weber (@bgweber)

o Director of Business Intelligence & Analytics
e Daybreak Game Company

e Further Reading

e Amazon.com Recommendations: Item-to-Item
Collaborative Filtering

e Mahout in Action



