

Accurate Prediction and other Organizational Myths
By Starr Long

Bio:
Starr Long has been in the business of making PC games for over ten years. Alongside
Richard Garriott, he was the original Project Director for the commercially successful Ultima
Online. Starr worked his way up through the ranks of Origin Systems, Inc. starting in Quality
Assurance working on Wing Commander, Ultima, and many other titles for Origin. Most
recently Starr was the Producer for Ultima Online 2. Starr is currently working with Richard
Garriott on an online game named Tabula Rasa for the Korean online game giant NCsoft,
creators of the world’s largest online game: Lineage.

Presentation Title:
Accurate Prediction and other Organizational Myths

Presentation Format:
Lecture 60 minutes (or maybe 120 minutes?)

Audience Level:
Intermediate

Talk Type:
Educational

Presentation Abstract:
The speaker will describe strategies for organizing your project so that you can better allocate
schedule, resources, and budgets. The speaker will attempt to debunk standard organizational
myths like accurate schedule prediction and massive pre-production. The speaker will describe
these topics from over 10 years of personal experience as both a QA tester and a producer.
The speaker will emphasize the need for organization and discipline in a maturing industry

Intended Audience and Prerequisites:
Attendees that will most benefit from this lecture will be managers who are directing and/or
producing mid-size to large scale games.

What is the idea takeaway from this presentation?
Attendees should come away from the lecture with an understanding of how to successfully
manage a game from beginning to end. Attendees will learn how to keep things simple and
organized in order to achieve their goals. Attendees will know what mistakes to avoid by
learning which standard organizational practices are inappropriate for the interactive industry.
Finally they should come away with a set of strategies to help them make games, on time and
on budget.

PRESENTATION SYLLABUS:

Minimize Pre-Production!
Contrary to standard organizational methods
“No plan survives contact with the enemy”

- Giant, extremely detailed, Design Documents done during preproduction are a waste of
time

o Example: On UO2 we spent almost 3 months building a massive 150 page
design doc. We ended up completely changing at least 75% of the design,
making almost all of that work useless.

- Only do enough pre-production on the game design to build an overall schedule
- Only do detailed designs in conjunction with the programming team as they are

implementing a given system
Step 1: Create a concise basic feature list

- List of features with a short phrase describing it
o Example: Basic AI: attack, defend, retreat, flock

- Should also include things your game explicitly WILL NOT do
o Example: No arbitrary item placement

Step 2: Create short descriptions of each feature (max one page)
Step 3: Build out engineering schedule

- Based on the feature list and one pagers
- Include “maintenance” time.

o 50% average over allotted time for unforeseen issues, bug fixing, etc.
o Maintenance time is the per feature/task cushion. On UO & UO2 we did not

include this in our schedule and we were almost always about 50% over
schedule.

Step 4: Build Design and Art schedules based on engineering schedule
- Make any changes to Tech schedule based on feedback from Art and Design

o Example: Art requires Lighting Model to happen before almost all other client
tasks so all the art won’t have to be redone. On TR we failed to do this requiring
massive rework from art.

Create milestones and deliverables that have clear overall goals
- Use meaningful milestone names vs. old definitions of Alpha, Beta, etc.

o Example: Milestone 2: Walk & Talk: Characters will be able to walk around a
game map & talk to other players

- What is the game play like at the end of the milestone?
- Example: At the end of milestone 3 the player will be able to create a character and

equip weapons.

Accurate prediction is a myth!
Budget time per feature, don’t allocate time based on design

- EXAMPLE: Budget 6 weeks for Character Inventory, any features that fall outside that
six weeks are cut/postponed

Prioritize sub-features / sub-systems within each feature/system
- Minimum required for ship, wish list for ship, etc.
- Use this prioritization to determine which features get completed within budgeted time

Only do detailed scheduling and milestone descriptions for a given milestone during the
preceding milestone

- Needs & tasks will change as the product progresses so fleshing out details too early
just creates rework.

- Constantly reevaluate your schedule
o Estimates are valuable for guiding the larger motions of the group, regular

analysis of actual costs contribute greatly to more accurate prediction in each
future phase

o On TR the Art Director regularly reviews the actual costs of each art asset after it
is complete

Discipline!
Keep to a reasonable Team size:

- More than 25 on a team is very risky
- Large teams have trouble communicating and staying in synch
- With larger teams Managers (leads, producer, etc.) spend too much time managing

people vs. managing the project
- Start small and bring on team only as needed

o On TR & UO2 we ended up trying to occupy large teams with preproduction
tasks until we had tech to support them. Preproduction tasks that all got thrown
away since they were based on incomplete tech information.

Don’t expect Managers to contribute content
- This is a slowly dying myth in our industry
- Don’t try to base your schedule on content from managers
- Tech director will rarely write code, Art Director won’t be painting textures
- Managers will be scheduling, developing technology, directing the team
- Leaders lead, production resources produce

o On UO my original lead programmer spent his time coding which put managing
the programming team on the shoulders of the project director (me) who was not
a programmer so therefore had a hard time accurately scheduling the
programmers.

Throwing more bodies at a problem rarely solves it.
- On UO & UO2 whenever we fell significantly fell behind schedule we were given

additional resources.
o By the time UO2 was cancelled our team was near 75. Our development director

could not get through schedule meetings with the entire team in a single week.
- Balance regular full time resources with contract/temp resources to better match

production spikes
o On UO2 rather than do all our level of detail art ourselves we contracted out with

an independent art house (Ballistic Pixel Lab) therefore preventing even more
team bloat.

Core hours
- I know everyone will be available for discussions and meetings at a certain time each

day
- I suggest 9 AM with 8 hours of working time (not including lunch, breaks, etc.)

o This gives two blocks of time for real work to be done.

- Time for the industry to grow up
- Contrary to popular belief getting to work on time AND in the morning does NOT

prevent creativity
o See the movie industry for example

- Now that we are getting older more and more of us have families and would like to see
them in the evenings.

- What I have seen on teams with no core hours (UO) or core hours that don’t start until
10 (UO2) is the following behavior:

o Stroll in around 10 or 10:30 on average
o Browse email until 11
o Lunch at 11:30
o Work actually starts about 1, might as well have just come in at 1

- The actual times are irrelevant, consistency is the key. i.e. I know everyone will be
available for a meeting at 10 AM every day.

NO CRUNCH
- Extended mandatory overtime NEVER makes a better game
- I think it actually slowed us down on UO & UO2 by causing people to make more

mistakes
- Instead on TR we are doing limited overtime (2-3 weeks max) towards specific goals

like demos, milestones, etc.
Documentation, Code Comments, etc.

- The time of the hacker is over.
- Any programmer could take over any other programmer’s work just by looking at

documentation and comments
- On UO we had no such standards and new programmers to the team spent months

trying to figure uncommented/undocumented code out and then usually just rewriting it
completely because that was easier. Of course the rewrites were usually as unstable as
the original code leading to a general stagnation in forward progress.

- Currently there are no members of the original UO team on the product
- 2.5 years into live production on UO the first technical document was created! Bad!

Tools (Editors, exporters, etc.)
- Allocate at least 1-2 full time experienced resources just to tools
- On most products I have worked on this was always lower priority than getting game

code working. This is a HUGE mistake
Art Pipeline Structuring extremely important very early

- Definition: Getting art into the game
- Find the right tools (try very hard not to write them yourself)
- Make sure those tools work well as a long-term, extendable solution
- Then DO NOT CHANGE IT
- Resource Management Tools are critical part of the pipeline:

o Alien Brain is a great example of a 3rd party tool that does this
o Stupidly on TR we wrote our own: PAGman

Features will be cut
- You will need to do it, get ready
- On UO and UO2 we refused to cut features and so we did not have time to polish the

product (both balancing and stability)

- Blizzard is one of the best examples of keeping scope of project small and polishing
core game experience

Maintain a constant high level of communication:
- The entire team should always be aware of the current status of the project
- Regular reports (daily, weekly, monthly, etc.)

o Helps to know who is doing what when, better synching of dependencies
o On TR the entire team does a daily report that goes to entire team
o On TR the Producer (me) does a weekly summary of major accomplishments &

issues for the entire company
- Regular meetings

o Meetings should be as short as possible
 On UO2 we had the dept. leads give updates about the status of every

single team member which dragged the meeting out too long and forced
team to hear data not necessarily relevant to them

o Meetings should always have stated goal, an agenda, and notes/action items
should be taken
 For TR manager’s meetings the Producer (me) always has an agenda and

list of action items sent to the managers 1 day prior to meeting
 On TR the team and individual departments meet on a weekly or bi-

weekly basis
 On TR All managers have bi-weekly 1 on 1s with their reports
 On TR Producer (me) has 1 on 1s with entire team including QA after

each milestone
- Internal website with links to current documentation

o On TR we use WIKI for the site and it is tied to our asset management tool
- Get out from behind the desk

o On UO, UO2, and even the beginning of TR the managers spent too much time
on email, schedules, and budgets

Play Your Game!
Stable, Fast, & Fun: In that order

- On UO we spent so much time putting in features that the game was slow and unstable
forever

Create actual game environment as early as possible
- Fixing bugs always higher priority than new features.

o On UO & UO2 we let bugs linger while new features went in
o On TR everyone must clear out their buglist on a weekly basis

- Always have a working version
o On UO & UO2 we would go weeks and even months without a working version
o On TR if we go more than 1 week without a new version the entire team is put on

making this happen
- Daily Builds

o Again on UO & UO2 the builds were a manual process that more often than not
failed

o On TR we automated the process in the first 6 months
Weekly Play sessions as soon as possible

- Make sure team provides feedback for these play sessions
- On UO & UO2 we never played the game together
- On TR we play every week, the team provides feedback and we track actions against

that feedback

Structure!
Establish a clear hierarchy from the beginning.

- Make sure everyone knows who to go to for decisions
Organize by department with leaders of each (art, programming, design)

- (INSERT ORG CHARTS HERE)
Strike Teams

- Once basic structure of game is complete move to strike teams vs. departmental model:
o Examples: UI, Combat, Game flow, etc.

- Retain departmental managers for resource allocation, employee reviews, etc.
- Strike teams are temporary

o Reorganize from milestone to milestone based on needs
- Goal oriented

o Each strike should have weekly demonstrable goals with one large goal for end
of the milestone

- Cross discipline
o At least one member from each department (artist, programmer, designer)
o Improves communication that is traditionally hard across disciplines
o Strikes avoid slogging through process, they are nimble and dynamic, they

promote accountability which usually equals results.

QA & Support: Test Early, Test Often!
Involve QA & Support from beginning

- On UO we didn’t start testing until right before our first public test
- On UO even then we ignored crippling bugs that QA found
- On TR we have had QA test every single milestone from the beginning of project

Have QA test every milestone deliverable, even if you are developing internally
Require sign off for all deliverables
Make details like code comments and documentation required for deliverable sign-off
Give QA promotion control for builds

Conclusions:
Minimize pre-production
Budget time vs. attempting to accurately predict
Establish and maintain a disciplined environment
Play your game early and often
Establish and maintain a clear yet flexible team structure
Test, test, test

Accurate Prediction and
other Organizational Myths

by
Starr Long

Minimize Pre-Production!

• Contrary to standard organizational methods
• “No plan survives contact with the enemy”

– Giant, extremely detailed, Design Documents
done during preproduction are a waste of time

– Only do enough pre-production on the game
design to build an overall schedule

– Only do detailed designs in conjunction with the
programming team as they are implementing a
given system

Minimize Pre-Production!

• Step 1: Create a concise basic feature list
– List of features with a short phrase describing it

• Example: Basic AI: attack, defend, retreat, flock
– Should also include things your game explicitly

WILL NOT do
• Example: No arbitrary item placement

• Step 2: Create short descriptions of each
feature (max one page)

Minimize Pre-Production!

• Step 3: Build out engineering schedule
– Based on the feature list and one pagers
– Include “maintenance” time.

• 50% average over allotted time for unforeseen
issues, bug fixing, etc.

• Maintenance time is the per feature/task cushion.

• Step 4: Build Design and Art schedules
based on engineering schedule
– Make any changes to Tech schedule based on

feedback from Art and Design

Minimize Pre-Production!

• Create milestones and deliverables that
have clear overall goals
– Use meaningful milestone names vs. old

definitions of Alpha, Beta, etc.
• Example: Milestone 2: Walk & Talk: Characters will

be able to walk around a game map & talk to other
players

– What is the game play like at the end of the
milestone?

• Example: At the end of milestone 3 the player will be
able to create a character and equip weapons.

Accurate prediction is a myth!

• Budget time per feature, don’t allocate time
based on design
– EXAMPLE: Budget 6 weeks for Character

Inventory, any features that fall outside that six
weeks are cut/postponed

• Prioritize sub-features / sub-systems within
each feature / system
– Minimum required for ship, wish list for ship, etc.
– Use this prioritization to determine which

features get completed within budgeted time

Accurate prediction is a myth!

• Only do detailed scheduling and milestone
descriptions for a given milestone during the
preceding milestone
– Needs & tasks will change as the product

progresses so fleshing out details too early just
creates rework.

– Constantly reevaluate your schedule
• Estimates are valuable for guiding the larger motions

of the group, regular analysis of actual costs
contribute greatly to more accurate prediction in each
future phase

• On TR the Art Director regularly reviews the actual
costs of each art asset after it is complete

Discipline!

• Keep to a reasonable Team size:
– More than 25-30 on a team is very risky
– Large teams have trouble communicating and

staying in synch
– With larger teams Managers spend too much time

managing people vs. managing the project
– Start small and bring on team only as needed

• Throwing more bodies at a problem rarely
solves it.
– Balance regular full time with contract/temp

resources to better match production spikes

Discipline!

• Don’t expect Managers to contribute
content
– This is a slowly dying myth in our industry
– Don’t try to base your schedule on content

from managers
– Tech director will rarely write code, Art Director

won’t be painting textures
– Managers will be scheduling, developing

technology, directing the team
– Leaders lead, production resources produce

Discipline!

• Core hours
– I know everyone will be available for discussions &

meetings at a certain time each day
– I suggest 9 AM with 8 hours of working time

• This gives two blocks of time for real work to be done.
– Time for the industry to grow up
– Contrary to popular belief getting to work on time

AND in the morning does NOT prevent creativity
– Now that we are getting older more and more of

us have families and would like to see them in the
evenings.

– The actual times are irrelevant, consistency is the
key.

Discipline!

• NO CRUNCH
– Extended mandatory overtime NEVER makes a

better game
– On TR we are doing limited overtime (2-3 weeks

max) towards specific goals like demos,
milestones, etc.

• Tools (Editors, exporters, etc.)
– Allocate at least 1-2 full time experienced

resources just to tools
– On most products I have worked on this was

always lower priority than getting game code
working. This is a HUGE mistake

Discipline!

• Art Pipeline Structuring extremely important
very early
– Definition: Getting art into the game
– Find the right tools (try very hard not to write them

yourself)
– Make sure those tools work well as a long-term,

extendable solution
– Then DO NOT CHANGE IT
– Resource Management Tools are critical part of

the pipeline

Discipline!

• Maintain constant high level of communication:
– The entire team should always be aware of the

current status of the project
– Regular reports (daily, weekly, monthly, etc.)
– Regular meetings

• Meetings should be as short as possible
• Meetings should always have stated goal, an agenda,

and notes/action items should be taken
– Internal website with links to current documentation
– Get out from behind the desk

Discipline!

• Documentation, Code Comments, etc.
– The time of the hacker is over.
– Any programmer could take over any other

programmer’s work just by looking at
documentation and comments

• Features will be cut
– You will need to do it, get ready

Play Your Game!

• Stable, Fast, & Fun: In that order
• Weekly Play sessions as soon as possible

– Make sure team provides feedback for these
play sessions & you track that feedback

• Create actual game environment as early
as possible
– Fixing bugs always higher priority than new

features.
– Always have a working version
– Automated Daily Builds

Structure!

• Establish a clear hierarchy from the
beginning.
– Make sure everyone knows who to go to for

decisions
• Organize by department with leaders of

each (art, programming, design)

Structure!

• Strike Teams
– Once basic structure of game is complete

move to strike teams
• Retain dept. managers for resource allocation, etc.

– Strike teams are temporary
• Reorganize based on needs

– Goal oriented
• Weekly demonstrable goals, one large goal

– Cross discipline
• At least one member from each department
• Strikes avoid slogging through process, they are

nimble and dynamic, they promote accountability
which usually equals results.

QA & Support: Test Early, Test
Often!

• Involve QA & Support from beginning
• Have QA test every milestone deliverable,

even if you are developing internally
• Require sign off for all deliverables
• Make details like code comments and

documentation required for deliverable sign-
off

• Have QA test each daily build
• Give QA promotion control for builds

Conclusions

• Minimize pre-production
• Budget time vs. attempting to accurately

predict
• Establish and maintain a disciplined

environment
• Play your game early and often
• Establish and maintain a clear yet flexible

team structure
• Test, test, test

	Paper
	Slides
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return:

