
Controlling Reactive,
Motion Capture-driven
Simulated Characters

Victor B. Zordan

University of California at Riverside

Victor B. Zordan

University of California at Riverside

Motion capture-driven simulations?
Motivation:

Motion capture is already the industry standard
for lifelike, 3D characters

Physical 'ragdolls' and engines are gaining in use

Unreal Havok Havok2Unreal Havok Havok2

Motion capture-driven simulations?
Motivation:

As the cost of simulation computation goes down
and demand goes up, we will see a tighter coupling
of the simulation and motion capture techniques

Examples of blending are already appearing (Havok2)

Unreal Havok Havok2

What are mocap-driven simulations?
Dynamically simulated characters
that follow motion capture, actively

Motion capture data
Dynamic

model Final animation

Human motion capture
+rich with style & detail
- hard to adapt or to be made

to 'respond' to new scenarios

Dynamic simulation
+physically realistic
+handles a changing environment &

can 'react' in believable ways
- requires a controller to actuate

Why use mocap-driven simulations?
To get the best compromise between:

Respond to new scenarios?
A changing environment?

Reacting in believable ways? Huh?

Why do we want realistic reactions?

Beyond 'ragdolls' that 'play dead', want
characters that take a lickin' and keep on tickin'
E.A. Sports

Overview:
System Layout

Overview:
Building a reactive character

Balance ControlTracking

Tracking Control

Converted
Mocap Data

Tracking
Control

Dynamic
Model

desired
joint angles

computed
torques

Tracking Control
Converted

Mocap Data
Tracking
Control

Dynamic
Model

Equations of motion - computed by automatically (SD-Fast)

Boxing sim
no wrists
(39 dof)

τ= k(θθθθd – θθθθ) – b(θ)θ)θ)θ)

Tracking Control

PD-servo controller computes torques

θθθθd from motion data

k and b are uniform
stiffness and damping

Note: No joint limits, instead
influenced by data

Converted
Mocap Data

Tracking
Control

Dynamic
Model

Tracking Control

Inertia scaling for stiffness and damping
k and b are scaled by
moment of inertia:

tune for uniform k and b

Then:
high stiffness + moderate
damping = good tracking

k = k' * MOI effect
b = b' * MOI effect

Converted
Mocap Data

Tracking
Control

Dynamic
Model

Tracking Control

Convert raw motion capture data to joint angles
Optical: map/fit to skeleton

Electromagnetic: preprocess
using marker orientation
data for joint angles as

Then for both, fit spline thru
samples (sim 'prefers' such
smoothed inputs)

ΘΘΘΘdesired = ΘΘΘΘin ΘΘΘΘout

Converted
Mocap Data

Tracking
Control

Dynamic
Model

Tracking control is flexible enough to
follow a large variety of motions...

...from the waist up

How about the rest of the body?
Need lower-body control

Balance ControlTracking

Lower-body Control
Balanced standing

Controller's goal:

Keep the simulation's
center of mass (com)
safely inside the
support polygon made
by the feet

To accomplish the goal:

Pick a desired com
and minimize errors by
making corrections in
the leg actuation

Lower-body Control
External balance force

Balancing force to control
center of mass:

First compute the required pelvis force
that would result in balance, but don't
apply it directly...

Lower-body Control
Virtual actuator method

Inspired by
Pratt (1995)

Convert force to torques for
virtual actuator:

Lower-body Control
Using the motion capture data

Add in info about the
action taking place
by extracting data
from the mocap:

Desired as estimate com:

Also, track the data in hips, knees, ankles

Full-body mocap-driven simulations

Comparison for dancing motion (sim in blue from previous slide)
normalized from one foot to the other on the horizontal

com estimated

simulation com

Full-body mocap-driven simulations

Full-body mocap-driven simulations

Footwork is nice, but lets see some contact!

Overview:
Control for hitting and reacting

Balance ControlTracking

Control for acting and reacting

Continuous play
state machines

Control over actions

Reacting to contact
collision forces
gain scheduler

Control for continuous play
Interpolation finite state machines

Transitions interpolate (slerp) from one mocap clip to the next

Control for (upper body) actions
Editing motion capture, as usual

Interpolation, IK,
and warping, etc.
for parametric
control

Use motion capture
library of examples
(swings, punches, etc.)

Control for actions
Edit clips for position and orientation

Use IK to hit target

Apply IK offsets:

Offsets smoothed
further by dynamics

∆∆∆∆offset = θθθθik – θθθθa(tik)

Interpolate with any
constant value γγγγ
to get an in-between
action

Time-warp to align
important features
in time: like start,
target pt (hit point
furthest extent, etc),
and end

Control for actions
Build new examples 'on the fly'

Speed of end-effector
relies on angular velocity:

Preprocess to find
unmodified speed

Thenm time-scale
by αααα-1 at hit time

Control for actions
Speed-up or slow-down only

Control for table tennis simulation

Control for boxing simulation

Control for reacting to contact

Control for reacting to contact

Dynamic impact
adds external forces
to the simulation

Collision handler
detects and computes
penalty force reaction

Apply reaction forces

Control for reacting to contact?

React to forces
Recover smoothly

Lower gain to avoid
stiff contact, allows for
bigger timestep (overall
speed-up)

Control for reacting to contact

Creates a nice
smooth space
(as shown) to
give good
handle for
desired affect

Stiff or loose-looking character can both result, based on tuning

Evaluation: real vs. simulation

the end, right?

Okay, so sims are great, but...
How do we make them easier to contol?

Give up some (small amount) of the realism!

How do we make them fast(er)?
Give up some (more) of the realism!

Do we really need to simulate a full body? Always?
Only have to simulate what is to move based on
dynamic effects, the rest can just come along for
the ride (kinematically.) Likewise, only need to
simulate when these affects are actually needed

No wait, there's more:
TRICKS and CHEATING

Simulation speed relies on several factors-
But they boil down to two:

Timestep & Compute-time/per cycle

Factors that can affect these:
Integration method -> implicit solvers can take

bigger steps in general (but may look
over-damped... the tradeoff!)

Methods for solving constraints, especially for
resolving contact -> avoid rigid constraints
to avoid the need for tiny timesteps

Number of body parts -> the fewer, the faster

Speed-ups:

Ultimate speed-up: Only simulate what
you need, when you need it!

Turn off the sim (change to kinematics) and back as needed,
can result in amazing speed-ups, but need to make good
switches between representations

Shapiro and Faloutsos ('03) offer some answers

Use level-of-detail to simulate only needed motion and
complexity (and cull when off camera)

Carlson and Hodgins ('97) discuss this topic

Simulate only the arm or leg (or whatever) in contact and
use the kinematics and mocap for the rest (hybrid model)

(Already seeing this in some games!)

How do we make control easier?
CHEAT (on the physics that is)

Once the academics wash up and go home,
developers are left to fill in the details

Physics in games only needs to be used when it
adds to the look or gameplay. And nobody requires
developers to 'play by the rules' so...

How about for starters, lets avoid torques (So
unintuitive!) & apply forces, any force will do (legal or not)

And, why do real balance control (Hard!) when there
are perfectly good fake balancers that are easier to
control and can result in 'pretty real'-looking motion?

Shameless plug: We've worked on using
a sim to map data to new characters while
adding in ground forces (Zordan & Horst 03)

Optical data + Simulation Posture

Use this same technique for:
Force-based control

The technique controls the sim to move
'like' the actor based on the mocap, by
attaching the mocap markers to the
landmarks on the sim using springs and
dampers

This method makes controlling
easy but doesn't guarantee good
reactions... must manage separately

Force-based control

Matching virtual 'landmarks' guide the simulated bodies
to follow the markers using intuitive forces

Springs pull the simulation to
the marker data

Body forces damp motion

ττττ

Fmarker = -kf Xerror

Fdamping = -bf Vbody

Fmarker

Fdamping

CHEATING in lower-body control:
Use an external balancing force

("Hand of God" van de Panne 95)

External force
controls center
of mass:

If the force only gets applied horizontally
the sim will be standing on its own but just
won't be "balancing" on its own

Cut the force when it gets too large and the
sim will fall, ramp it down, cap it, plenty of
options here to get 'the right look'

CHEATING in lower-body control
Or glue one foot (or both) to the ground

External force
controls center
of mass:

If one foot is fixed to the ground, the whole
body will move but it won't fall. Gravity
can still act & look right as long as the
other foot can contact the ground

Let the 'glued' foot pivot on the ground
for further freedom, or add a spring to
mimic ankle activation

Again turn the glue off when things are
'out of balance' and let the sim fall over

Incidentally, this kind of CHEATING
doesn't mean it won't be realistic...

Biomechanists study balance/falls this exact way:

(Hsai, 99)

with a spring between the ankle and the ground!

Can use simple active control to 'catch' or prevent falling
Also could use the upper body for balance, too
waving arms, etc.

Conclusions

Motion capture and dynamics are a powerful
combination but does not solve the whole
control problem

Hybrid dynamics/kinematics approaches
will likely beat out pure dynamics alone
because they provide robust control and
'unreal' results

	Slides
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return:

