
1

Practical Shadows

Out of the demo, into the engine

Tom Forsyth
RAD Game Tools

Outline

• Shadow volumes (stencil shadows)
• Fairly brief – covered well elsewhere

• Shadow buffers

• Scene management of shadow buffers

• Efficient culling

• Buffer vs volumes shootout

• Other shadowing methods

• Game demo

2

Shadow Volume Principles

• Extrude object shape away from light

• Cap ends to make a closed volume

• Count volume crossings to receiver

• Front faces increment

• Back faces decrement

• Count=0 means surface is lit

• Doesn’t matter where you start counting!

How to Extrude: Software

• Brute force

• Test every face, then every edge

• Follow silhouette edges around mesh

• Have to work to spot extra loops

• External BSPs

• Find which node light is in

• All require relatively low poly counts

3

How to Extrude: Hardware

• Send vertex to infinity based on N.L>0

• Degenerate quads at every edge
• ~6x vertex count, three unique per triangle

• No degenerates, use average normal

• Needs high tessellation to avoid glitches

• Hybr id

• Tessellate where mesh is smooth
• Add degenerates at sharp edges

Robustness Problems

• Volume clipped by near/far planes

• Causes incorrect counting through holes

• Send far plane to infinity

• Tiny loss in precision

• Switch to ZFAIL instead of ZPASS

• Start counting from the back, not the front

• Lots of details in Everitt and Kilgard

4

Problems with Volumes

• Gouraud shading chopped off

• Test N.L>-epsilon instead

• Epsilon can be computed per -vertex for static
meshes, or just hand-tweaked

• Surface Acne

• Z-fighting between volume and mesh
• Move N.L<-epsilon vertices away instead

• Moves Z-fighting to unlit side of mesh

Problems with Volumes

• Large and unpredictable fillrate

• Long volumes even from very small objects

• Lots of overdraw from complex outlines

• Requires closed meshes

• Some automated fixing possible
• But always need some sort of artist help

• Needs hardware with stencil buffers

• Dest. alpha can do it sometimes (PS2)

5

Problems with Volumes

• Animated meshes have artefacts

• Where bones meet and/or blend

• Skinned normals not normal to skinned faces,
even with degenerates

• Tessellate higher
• Or do all/more work on CPU

• Cannot do shadows for alpha cutouts

• No foliage, grills or chain-link fences

Shadow Buffers

• Render view from light to shadow buffer

• Store depth (or something like it)

• Value is depth of frontmost (i.e. lit) object

• Render main view

• Project shadow buffer over scene

• Test pixel depth vs shadow buffer depth

• If equal, object is frontmost, and lit

6

Depth Resolution

• Original method is store 24-bit Z
• Sampling errors lead to “surface acne”

• So use a bias to push Z value back a bit

• But then causes “Peter Pan” problem – shadows
become detached from casters

• Limited hardware support

• Render back faces not front faces
• “Second Depth” Maps - Wang & Molnar

• Thin objects & silhouette edges still need bias

• Makes Peter Panning much worse!

ID Buffers

• Each object has an ID (unique integer)

• Write and compare IDs, not depths

• If IDs match – surface is lit

• No maths, so no bias problems

• 8 bit integers (255 IDs) often enough

• Good hardware support (alpha test)

7

ID Buffers

• Need multiple IDs per object to self-shadow
• Convex sub-objects need unique IDs
• Pre-processing work
• Some objects (e.g. torus) can’t be split perfectly
• Or different ID per triangle – needs >8bits

• Neighbouring surfaces self-shadow
• Sampling effect - “edge acne”
• Sample surrounding texels as well
• If any are equal, pixel is lit
• Shrinks shadows by a texel

Priority Buffers

• Same as IDs, but sorted by depth
• Sorting is not large CPU effort

• PS1 did it (no Z buffer!)
• Can be tricky in places e.g. hand holding mug
• Circular sorts annoying, but very rare

• Can be filtered & mipmapped
• Result of filtering is in sensible range
• Reduces sparkling effect at minification

• Postprocess filter to solve edge acne
• No fancy shader hardware needed

8

Hybrid Priority & Depth

• Complex objects hard to assign IDs to

• Especially animated ones

• Assign a range of IDs to the object

• Distribute IDs within object by depth

• Still needs bias

• But per -object not per-scene, so easier

• Still no Peter Panning between objects

Spatial Resolution

• Limited by memory and fil l rate

• Ideally, texel size is proportional to distance
from camera

• But shadow buffer projected from l ight

• Simple projection:
• Objects further from light have larger texels

• Distance from camera has no influence

• “Duelling frustums” – camera faces light!

9

Perspective Shadow Maps

• Apply camera projection matrix to world

• Squash view into (1,1,1)-(-1,-1,-1) clip cube

• Things near camera grow in size
• Straight lines still straight

• Render shadow buffer of distorted world
• Things near to camera have more texels

• All uses existing 4x4 matrix pipeline

• No hardware compatibility problems

Perspective Shadow Maps

• BUT!!! - special cases drive you nuts
• Directional lights become point lights
• Some lights become sinks not sources
• Objects outside frustum cast shadows

• But they can be behind or intersect camera.z=0!

• Shadows shimmer and pop as camera moves
• Duelling frustums case still just as bad

“Friends don’t let friends attempt to implement PSM”
- Matthew Rusch, EA

10

Trapezoid Shadow Maps

• Lots of different kinds

• General isation of PSM

• Arbitrary transform of world

• But still must preserve straight lines

• All have singularities and special cases

• There is no single solution!

• But some look better in some cases

Scene Management of Buffers

• Lights cannot share buffers

• Many lights cannot use just one buffer
• Cases where PSM/trapezoid doesn’t work

• Point lights (need cubemaps or better)

• Single buffer too large/not fine enough

• So need multiple buffers and frustums!

• Each buffer can be any type
• Linear, PSM, floating-point, ID, etc

11

Multiple Frustums

• Each frustum has single shadow buffer

• Might not render to all of it every frame

• Each object only uses one frustum/SB

• (except for large/close objects)

• But can be rendered into multiple frustums
• Can cast shadows on objects in other frustums

• Each object knows size on screen
• So knows how many SB texels per meter

Multiple Frustums

• Frustums chosen that:

• Minimise number of frustums (speed!)

• Provide SB as many objects as possible

• No more than certain base angle, e.g. 120°
• Otherwise texels too distorted

• Smallest SB for required texels per meter
• Highest of all the frustum’s objects

12

Dynamic Frustum Choice

• Frustums recalculated every frame

• Each visible object looks for frustum

• Tries to enlarge existing frustums

• Base angle constraint

• SB size constraint

• If no suitable one exists, create new one

• Optimal, but shadows shimmer and pop

Persistent Frustum Choice

• Frustums persist from frame to frame

• Once created, frustums are static

• May still render to subsections of SB

• Checks bounding box of visible objects

• Each object checks if frustum still good

• Camera may have come closer

• Object may have moved

13

Persistent Frustum Choice

• If frustum no good, make a new one

• Frustum tries to fit all unassigned objects, not
just visible ones – prevents lots of frustums
being created as camera pans

• Frustums with no objects deleted

• Each frame redo a few random objects

• Slowly cleans up sub-optimal frustums, e.g.
when the camera moves backwards

Frustum Types

• Moving l ights use ful ly dynamic

• Frustums must move with light anyway

• So make it optimal speed, lowest cost

• Static lights use persistent

• Static camera, light, object = no shimmers
• Animated objects just pop on change

• Rigid objects cross-fade on change
• If possible – old frustum may not be big enough

14

Special Cases

• Large/close-to-light objects are special

• Cover more than 120°

• No single frustum will fit it
• Draw with multiple frustums

• Slower multi-pass rendering

• Rare – usually only one per light or less
• Still work normally as shadow casters

• Can just draw them not shadowed at all

Multiple Frustums: Cool Things

• Duelling frustums works

• Point lights work

• Orthogonal to type of SB

• Fully adaptive

• Use PSM/trapezoidal if it works that frame

• Use 8/16/24/32 bit depth as needed

• Custom frustums/SBs (e.g. hero) easy

15

Cul l ing

• Vital early out for many scenes
• Helps both buffer & volume methods

• Indoor: lots of lights, but also lots of occluders

• Outdoor day: one light – the sun
• Outdoor night:

• Large spotlights – small frustum angle

• Small omnis – limited range

• Culling allows range cap on volumes
• Reduces heaviest fillrate demand

Cul l ing

• Similar problem to visibi l ity cul l ing

• So use same portals, PVS, occluders, etc

• Remove caster objects that:

• are not visible from the light

• don’t occlude any receivers in view

• occluded from all receivers in view

• unless they are also receivers in view!

16

Shadow Shootout

Lose

Lose

Lose

W i n

Draw!

Win (usually)

Lose

Volumes

WinHardware

W i nArtist load

W i nArt flexibil ity

LoseAl iasing

Draw!Complexity

LoseGeometry

Win (usually)Fillrate

Buffers

Other Shadow Methods

• Shadow maps (no depth info)
• One per person
• Cheat and use orthographic projection

• Blob shadows
• Better looking in very ambient scenes

• Static light maps
• Static “property maps”

• Light direction and colour per vertex
• Monochrome shadow/light map

• Does correct specular, normal maps, etc.

17

Self Shadowing

• Difficult for both buffers and volumes
• Do with more local methods instead

• Diffuse occlusion – “grubbiness map”

• Cone/ellipsoid of visibility

• SH self-occlusion
• Generalisation of both cone & grubbiness

• Horizon maps

• All can be per-vertex or per-pixel

Game Demo

• “StarTopia” by Muckyfoot Productions
• Released in 2001

• Not designed for shadows at all

• No artwork changes
• DX7 technology – no shaders

• Dynamic environment
• Player builds most structures

• Lots of AIs running around

• Lots of lights

18

Useful References

• “Practical & Robust Stenciled Shadow Volumes for
Hardware- Accellerated Rendering” - C. Everitt & M.
Ki lgard (GDC 2002)

• Priority buffers: “Algorithms for Antialiased Cast
Shadows” – J. Hourcade & A. Nicolas

• “Second-Depth Shadow Mapping” – Y. Wang & S.
Molnar

• “Practical Priority Buffer Shadows” – S. Dietrich (Games
Programming Gems 2)

• “Perspective Shadow Maps” – M. Stamminger & G.
Drettakis

Questions?

Latest errata, hindsights, etc:

www.eelpi.gotdns.org

tomf@radgametools.com

	Slides
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return:

