<< RETURN

Real-time global illumination

Eskil Steenberg

6th February 2004

Abstract

In this article we discuss the problem of global
illumination. We discuss various observations
of the problem to explore new approaches of
solving it. Then we take thees observations
and derive a number of practical examples how
global illumination can be emulated in real-
time rendering engines that can run on cur-
rent level of hardware. The article discusses
everything from simple minor changes to more
drastic designs, but all are designed to fit in to
existing technology.

Observations

In order to reach our goal we should first make
a few observations about our problem. This
will form the basis for a "tool box" of tech-
niques that can be used to improve graphic en-
gines.

It can’t be done

If we consider the vast amount of photons that
leaves even the most tiny of light sources, and
how each photon can in theory bounce an in-
finite number of times against surfaces, and
then the likelihood of hitting the tiny surface
that is your retina, we quickly realize that no
computer is even remotely close being able to
simulate reality. So we can stop looking for
that next generation CPU, graphics processor
or feature. There is no silver bullet.

This however gives us the right to cheat.
Even people who write off-line rendering en-
gines cheat, so why shoulden’t the real-time
community cheat? This also states that any-
thing is fair game as long as the result looks
good. Actually global illumination is all about
getting away with cheating. This is where the
fun begins.

Please define real-time

If you ask people to define real-time you get
many different answers. A film person may say
24fps, while an arcade person may say 60fps,
and a professional player may not be satisfied
until the frame rate is way above 100fps. In
reality this is because different parts of the
brain have different priority. Motion detection
is very fast and that is why the professional
player needs above 100fps to be able to dodge
that incoming rocket (the need for fast motion
feedback is obviously also influenced by the 1.5
frame latency that all engines have). Detect-
ing colors are also fast, but recognizing shapes
and images are considerably slower. Although
modern people are trained in picking up fast
cuts, around 10fps is probably the limit.
Global illumination has a very low priority,
and may not need updating very often. My
experience is that many things in a game en-
gine do not have to be updated every frame.
For instance Al doesnt have to be computed
every frame. (Often this can result in better
behaving Al. If a grenade is thrown in to a



group of enemies it looks unrealistic when all
enemies simultaneously turn since they all real-
ized the treat at the same time). My suggestion
is that one build a "kernel" that can let differ-
ent tasks have different priority and by doing
this only update the most crucial parts of the
simulation. Therefore whenever even precom-
putation is mentioned it may mean "computa-
tion stretched out over a longer time then one
frame".

The error allowed is huge

If we consider that ambient light only con-
tribute a small portion of light to each surface,
and that each surface point is influenced by a
full hemisphere, we come to the conclusion that
the influence of an object in the environment is
very limited. Let us consider this: If we assume
that an objects surface has about 30

The ideal size of a primitive is one
pixel

In the Siggraph paper "The Reyes image ren-
dering architecture" form 1987, researchers at
Pixar claimed that each primitive (in their case
a quadrillion) should be proportional in size to
the pixels that render them. (In their case a
half a pixel due to anti aliasing). The point was
that anything larger would look bad, and any-
thing smaller would be redundant. This makes
things very interesting for global illumination
since the pixels are so very large. A 1920 * 1080
image rendered by a camera viewing 90 degree
horizontally, gives a pixel angle of 0,046875 de-
grees. This means that in a distance of one
meter the ideal size of a primitive is 0.8 mil-
limeter. When rendering an environment hemi-
sphere for the purpose of global illumination it
may be equal to a 8*8 image spanning 180 de-
grees, is gives each pixel 22.5 degree span and
a primitive at one meters distance should be as
large as 39 centimeters!

This means that a 180 centimeter long (and
preferably 180 centimeters wide) person at the
distance of 4.6 meters can be replaced by a sin-
gle primitive. This tells us something of the
extrema coursness that we can use and how
simple our data sets really can be.

In what direction does light travel?

Obviously from the light source via surfaces
and then in to your eye, but that is in reality.
Ray tracing usually goes the opposite direction.
This has some obvious benefits as you can dis-
regard all rays of light that doesn’t hit your eye.
However if that ray bounces around a room it
is very unlikely to hit the tiny light bulb hang-
ing from the ceiling, so you are back to the
same problem again. This is why it is com-
mon for ray tracing renderers always direct the
rays directly toward the light sources once thy
have bounded around the geometry. The en-
gine knows that some objects are light sources
and that they are important light contribu-
tors. This makes stocastic raytracers with in
the realm of production speed rendering algo-
rithms, but it does however create some prob-
lems when dealing with effects like coustics, or
an environment where many surfaces are light
sources, or are not light sources but are so
bright that they could be considerd as such.

So what we can see here is that there is an
enormous benefit to letting the engine know
more about the environment, and go in differ-
ent directions in different instances. By just
dividing you the environment in two categories
of lightsources and surfaces, we get significant
performance improvements. What we should
do is not just divide our environment up in two
groups, but let all geometry and light sources
be sorted and stored in such a way that we
easely can find the light sources and /or surfaces
that influence any point in the environment the
most.



The world is a hierarchical BRDF

A Bidirectional Reflectance Distribution Func-
tion is basicly a function that computes how
incoming light reflects of a particular surface.
You could argue that it is an idea of a uni-
versal way of describing materials.
one of the reasons why different surfaces be-
have so drastically different is because of mi-
cro geometry. Micro geometry is usually de-
fined as geometry that is smaller then one pixel.
This is geometry that is so small that mod-
elling the world including this property would
give us gigantic data sets, but they still mat-
ter a great deal to how the surfaces appear.
Torrence cook where early in defining shaders
that where influenced by micro geometry, and
in 2000 the Siggraph paper "Illuminating Mi-
cro Geometry Based on Precomputed Visibil-
ity" took the next step of actually computing
a BRDF from geometry.

However

So going back to the question of what micro
geometry is, we can say that anything is mi-
cro geometry if viewed from a proper distance.
A 180 centimeter long person rendered at 4.6
meters distance can be micro geometry, and
therefor be defined as a BRDF. So we can use
a BRDF as a primitivel A primitive that con-
tains geometry and materials. We add size and
position in the world and we have all we need.
However we want the size of our primitive to be
one pixel and therefore we make it hierarchical
so that once we get closer to an object we can
render it as multiple BRDFs. For games we can
simply define the BRDFs computation as a dot
product, modulated by color.

Rembrandt could do it

So we have concluded that this is a problem
that no hardware can simulate properly. How
is it that people like Rembrandt, Leonardo da
Vinci, and Raphael could do it so well? They
knew substantially less about how light works

than we can teach computers, yet they are so
good. Perhaps we should not try to copy na-
ture and physics but rather try to copy the
great masters. The truth is that we are not
looking for realism, we are trying to make our
brains fire the right synapses. Our visual sys-
tem is constantly looking for clues to what the
data our retinas collect really means and there
are some special things that we look for and
recognize.

To prove this, render a sphere with a plain
gray ambient color and place it in front of a
plain white color. This looks totally unrealistic
while it in fact is very realistic. In a completely
evenly lit environment the ambient light of the
sphere should be plain. But our brain refuses
to believe that there are any evenly lit environ-
ments, because it have never encountered one
before so it seems kind of unlikely. If we now
add a slight low frequency perlin noise it looks
a lot better. Obviously the noise isn’t an accu-
rate simulation of light but our brain recognizes
the unevenness caused by environment lighting
and thinks this image is more realistic. The
brain can’t exactly determine what causes this
and the exact influence of the environment, but
it does recognize some effects such as contact
shadows, shadows in cavities, and how environ-
ments tend to get uniformed colorings. Thees
effects can be copied to fool the brain that the
light is behaving realistically.

Pleasing the mind

Finally and perhaps slightly off topic. We have
to decide what our images are created for. As
I am a strong believer in that computer games
are an art form, artistic freedom must be given.
So called Non photo realistic renderers or toon
shaders have been used in some games, but
them aside, I think its time for the "realistic"
games to look into the possibilities. In todays
film, commercial, and music video market a lot
of tweaking is done in the post production. I



would advise any graphics programmer to visit
a local post production facility and see what
they do in terms of retouch, color correction
and finishing. They highlight areas of interest,
remove unwanted distractions and composite
multiple shots. The importance of this step
should not be underestimated, some even claim
that the key to becoming a successful photog-
rapher is to bribe his/her copier with love and
alcohol. While the photographer decides the
subject the post decides what you think of it.

Practicalities

So that is some theory. Let us kick of some sim-
ple applications of these ideas, without making
any major changes to the way an engine oper-
ates. One obvious way one can do global illumi-
nation is to precompute the global illumination
per vertex or in a light map, this however has
been done before and it requires all the geom-
etry and lights to be static, so we are going to
skip that and go straight to the next step of
actually considering solutions where both the
light sources and geometry are dynamic. How-
ever I would like to point out that it may be
a path worth exploring depending on the en-
gine you are developing. Perhaps a hybrid en-
gine where some parts of the light is precom-
puted and others are computed by real time
algorithms may be a good middle ground for
your engine.

Cayvity shading

The first we can do is to precompute the vis-
ibility of each point on a surface (either per
vertex or texel) to see how large part of the
surfaces hemisphere is obstructed. This sim-
ple technique is great for shading down cavities
and are often done by texture artists by hand.
To make this a little more sophisticated you
can let the color of the obstructing geometry

colorize the surface and weight the influence of
the obstruction geometry by distance.

Bended normals

To light a surface we use normals. In a
mathematical sense a 3d normal is a vector
that is perpendicular to surface, but in com-
puter graphics the normal usually represents
the ideal direction of incoming light and that
may not necessarily be the one and same. So
what we can do is to bend the normals away
from any obstructing geometry. This makes it
possible to light the surface from a point below
the plane of the surface. This is obviously im-
possible if we consider only directional lighting,
but if we consider indirect lighting it becomes
possible because the incoming light bounces off
the surrounding surfaces. If you have a flat sur-
face and you tweak the normals just slightly
away from the environment the surface will get
a slightly uneven lighting and it will look a lot
better.

The great thing about these two approaches
is that they fit very well with the way engines
are traditionally written. All we need to do is
change our input data.

Pre-determined surface samples

For static geometry like indoor environments
with dynamic lights, there is an other good way
of simulating global illumination. An offline
global illumination renderer, based on stochas-
tic raytracing sends out a number of rays to
sample the environment, but in a static envi-
ronment we can precompute and store surfaces
in the environment to be used to light the sur-
face in real time.

If we want to compute how one surface in-
fluence an other we need to know a few things
about it. We need to know the position, the
normal, and BRDF of the reflecting surface and



the distance and angle to the reserving surface.
For games the BRDF can be computed as a
dot product and a diffuse color. The distance
and angle determines the brightness and can
therefore be removed by modulating the color.
So we can therefore optimize one surface influ-
ence of an other as nine floating point values of
data (position, normal and color). For a par-
ticular point on a surface we can precalculate
this influence of a set number of surfaces that
are static in relation to the receiving surface. A
light source that is introduced in this environ-
ment can now be lit directly, and by a number
of surrounding surfaces that influences it. A
benefit to this approach is that the added light
computations can be done in hardware. How
many environment sample that can be taken
in to consideration can dynamically be deter-
mined by the capabilities of the hardware and,
how much computing time is taken up by other
things one might want to do in hardware such
as advanced shaders and animation. Once this
framework has been implemented it can also be
used to simulate coustics and sub-surface scat-
tering where also lighting from other directions
then the surface normal influence the surface
lighting.

This algorithm requires some precomputa-
tion to determine the most influential surfaces
in the environment but it is still fairly straight
forward. However it has one major problem. If
your dynamic light source gets very close to the
point of influence strange things may happen,
because the actual influence doesn’t come from
a point but from a larger surface. This can be
fixed by adding a tenth value that determine
a culling plane that is in front of the surface.
By moving the position of the sample in the
opposite direction of the normal in to the ob-
ject, it will look good even if the light source
comes very close to the surface. However, then
the sample may even be lit if the light is on the
other side of the surface. Therefore you need to
store the distance the sample got moved back

in order to cull out any light sources that are
within the surface. The larger the surface is the
further in you move the position of the sample
back. This does require some extra computa-
tion but it will remove some strange effects that
you may otherwise experience.

Neighbor lists

In a complex world it can be good to be able to
determine the most important neighbors. One
algorithm that i frequently use is to store a list
of neighbors in each object. To avoid using
much CPU we use a inexact sorter. for each
frame compare the furthest neighbor to a ran-
domly selected object. If the object is closer,
the furthest neighbor is replaced by the selected
object. To make it even more efficient we can
also compare it to a randomly selected neigh-
bor of a neighbor. The list can have different
weighting, that takes in to account, object size,
brightness and other properties. Perhaps it it
can be useful to have more then one list per
object to store different types of neighboring
objects. Having access to such list can be use-
ful not just for graphics but for things like Al
too.

Once we have this data we can convert all
surrounding objects to light sources. To com-
pute how a neighbor lights an object, we start
by lighting the neighbor by the light sources.
in order to do this we need a normal and there
are a few different ways one can be computed.
The easiest one is to take the vector form the
position of the neighbor and the position of
the object. If each object has a precomputed
BRDF that contains information on how it re-
flects light in all directions this is fine, but if
we use a simple dot product and a color it may
look bad. In this case it is better to use a nor-
mal that is the half angle between the vector
from the neighbor position to the object posi-
tion and the vector from the neighbor position



to the lightsource position.

Now that we know how much light and what
color each neighbor reflects toward the object.
All we need to do is to place one light source
with the computed color and brightness in each
neighbor.

Environment maps

Most modern graphics hardware supports cu-
bic environment maps and they can be very
usefully for global illumination purposes. What
we can do is to paint in objects into a small
scale environment cube and use it as a direc-
tional lookup table of the incoming light. If
we paint in objects just as pixels, according
to my tests the ideal size of such a environ-
ment cube 6x6x6 pixels large. However most
hardware tends to like the size 4x4x6 or 8x8x6
pixels.

The first thing you need is a temporary cube
buffer where each pixel is represented as red,
green, blue and z-depth. It is advisable to use
floating point values for all these values to ob-
tain high dynamic range (this will be discussed
further later). First we fill this buffer with a
background image. It can be a plain color, an
image or a range that simulates a sky dome.
This sky dome will greatly influence the look of
the finished rendering so take your time tweak-
ing it. It is actually so influential that you may
dispense with the painting in of objects, but
that would be a bit to boring for this article
so we are going to go ahead and make it a bit
more complicated.

To paint in an object we just compute the
incoming light of an object and draw a pixel of
the color in the cube map pixel that represents
the direction where the object can be found.
With z-buffering we can create occlusion, by
comparing the z-value to the previous z-value.

The environment map we get here is not yet
ready to be sent to the graphics card, because

a surface in one direction doesn’t just get lit by
the object that is in that direction but also by
all other objects in that hemisphere. Therefore
wee need to "smooth" this environment map,
and to smooth a pixel we add the sum of all
pixels in the hemisphere modulated by a dot
product. This makes the colors furthest away
less influential. Finally we must divide the sum
color with the sum of all dot products in the
hemisphere.

As you understand this final step is by far
the slowest and that is why the choice of cube
map size is such a crucial one. But once you
have computed the finished environment map
you can use it as many times as you want.
You can split up the computation over a num-
ber of frames, and update one object at the
time to get the real time performance. Since
all this computation is done in software, us-
ing floating point values is fine. But once you
get to the hardware you might not want to use
HDRI since not all hardware supports it and it
takes up more memory. But since you add the
smoothing step any spikes of very bright spots
are going to be flattened, so you will get away
just fine with normal fixed point texture data.

There is a rumor that says that radians
doesn’t decay with distance and it is in part
true. If you photograph a white sphere in a
black room the sphere wont become darker the
further away you are. However the sphere will
become smaller, so average brightness of the
image will diminish the further away you move.
If you scatter random rays in an environment
the radiance will be constant since we will as-
sume that more rays will hit the object if it is
closer. However if there are very few rays, or if
we draw just one or very few pixels in an en-
vironment, this wont be good enough. In this
case we actually do modulate for distance and
divide the brightness with the number of times
the object is sampled. With this in mind it can
be a good idea to draw an object as more than
one pixel in an environment map to get better



occlusion.

Final thoughts

In conclusion i would like to encourage devel-
opers and researchers to be less afraid to ex-
plore new possibilities, even if they appear to
be "hacks". By lowering the demand for qual-
ity, we can explore alternative techniques that
may in the end benefit even high quality ren-
derings.

In my opinion the key to solving the problem
of global illumination (both in real-time and
for off-line renderers) is to create alternative
geometry representations for the light reflect-
ing geometry. We need a new field of research
to explore how to generate and store reflective
properties of geometry. Hierarchical BRDFs is
one such representation but there are probably
many more. There have been much research in
geometry complexity reduction while preserv-
ing visual features such as edges and silhou-
ettes. The same type of algorithms should be
developed where the reflective properties are
preserved.

References

e S. Chandrasekar. Radiative Transfer. Ox-
ford Univ. Press, 1950.

e Michael F. Cohen, Shenchang Eric Chen,
John R. Wallace, and Donald P. Green-
berg. A progressive refinement approach
to fast radiosity image generation. Pro-
ceedings SIGGRAPH ’88, pages 75-84.

e H. Hoppe. Progressive meshes. Proceed-
ings SIGGRAPH 96, pages 99-108, 1996.

e Heidrich, W., Daubert, K., Kautz, J., and
Seidel, H.-P. Illuminating micro geometry

based on precomputed visibility. Proceed-
ings SIGGRAPH 2000.

LINDHOLM, E., KILGARD, M., AND
MORETON, H. A user-programmable
vertex engine. Proceedings SIGGRAPH
2001.

R. L. Cook and K. E. Torrance. A
reAFEectance model for computer graphics.
ACM Transaction on Graphics,

S. J. Gortler, R. Grzeszczuk, R. Szeliski,
and M. F. Cohen, "The lumigraph," in
Proc. SIGGRAPH’96, pp. 43-54, 1996.

Marc Levoy and Pat Hanrahan. Light field
rendering. In Proceedings of SIGGRAPH
96 (, 1996.

C. Loop, Smooth subdivision surfaces
based on triangles, Master’s thesis, Uni-
versity of Utah, 1987.

P. Debevec et al., editors. Image-Based
Modeling, Rendering, and Lighting, SIG-
GRAPH’99 Course 39, August 1999..

DEBEVEC, P. Rendering synthetic ob-
jects into real scenes: Bridging traditional
and image-based graphics with global illu-
mination and high dynamic range photog-
raphy. In SIGGRAPH 98 (July 1998).

Cook, R. L., L. Carpenter and E. Cat-
mull, "The Reyes Image Rendering Archi-
tecture", SIGGRAPH 87, pp. 95102.

E. Catmull, J. Clark, Recursively gener-
ated B-spline surfaces on arbitrary topo-
logical meshes, CAD 10, No 6 (1978): 350
355.

B. T. Phong. Ilumination for computer
generated pictures. Communications of
the ACM, 18(6):311-317, 1975.

Blin, J.F. and Newell, M.E. 1976. Texture
and reflection in computer generated im-
ages. Communication of the ACM. 19(10):
542-547. October 1976.



J. Fourier, Th’eorie analytique de la
chaleur, Didot, Paris, 1822.

Kajiya, J. T. The rendering equation.
Comp. Graph. 20 (1986).

Reuven Y. Rubinstein. Simulation and the
Monte Carlo Method. John Wiley and
Sons, 1981.

P. Shirley. "A Ray Tracing Method
for Ilumination Calculation in Diffuse-
Specular Scenes," in Proceedings of
Graphics Interface ’90, May 1990, pages
205-212.

R. Cook, T. Porter, and L. Carpenter.
Distributed ray tracing. In Computer
Graphics (SIGGRAPH ’84 Proceedings),
pages 137-145, 1984. ¢ fl Institute of
Computer Graphics 28 Szirmay-Kalos /
Stochastic Methods in Global Illumination

Cook, R. L., "Stochastic Sampling in
Computer Graphics", ACM Transaction
on Graphics, 5, 1, 51-72, (January 1986).

R.L. Cook. Stochastic sampling and dis-
tributed ray tracing. In A.S. Glassner,
editor, An Introduction to Ray Tracing,
pages 161-199. Academic Press, 1989.

Blinn, J. F., "Simulation of Wrinkled Sur-
faces", SIGGRAPH 78, pp. 286-292.

Hugues Hoppe. View-dependent refine-
ment of progressive meshes. In Turner
Whitted, editor, SIGGRAPH 97 Confer-
ence Proceedings, Annual Conference Se-
ries, pages 189-198



	Paper
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return: 


