
Welcome to the Rules of the Game session for 2016, I’m
Richard and I’ll be your host.

Isn't this the question every writer dreads?

As if there's some magical process to it.

Anyone who's been working in a creative field, like writing, like
games, knows that ideas are actually a dime a dozen. Ideas
are cheap, implementation is hard.

But don't get me wrong, good ideas do help.

2

So writers have come up with pithy answers…

3

4

5

6

Protip for those of you maybe trying to get into games – avoid
the word fun. Game designers don’t like it, because it’s too
broad, too amorphous,

Of course we want people to have fun, but it’s not a useful
descriptor.

7

I think a far more interesting question to ask designers is
this…

Because it’s going from the idea to the working game that’s
the hard part.

8

9

10

11

12

Welcome to the Rules of the Game session for 2016,

I’m Richard and I’ll be your host.

I am the director/designer/writer at Paranoid Productions

where we are working on the action-infiltration game with the
shifting narrative called The Church in the Darkness

Our format is simple – five designers get 10 minutes each to
talk about a game design rule that is personal to them.

So last year we held the first edition of this session

We invited 5 accomplished designers to share one of the
“rules” they work with and go into detail about it for 10
minutes.

Last year’s talk is up free on the GDC Vault, I encourage you
to go see it!

That session went well, and I thought, hey, we should do this
again, and here we are. So I recruited five new designers
who I thought did great work and could talk about one of the
rules behind that good work.

And as I said last year, game design rules are personal, not
universal.

Just because you hear a rule here today doesn’t mean it is the
final word on a subject.

I find the rules we get out of this session fascinating because
of what they tell us about their creators.

15

I want to know what rules the developers behind some of
these fantastic games had going in their mind when they
made them

Not so that I can copy them, but so that I can think of what
my own versions of these rules may be.

16

I like to think of game design rules as a deck of cards that we
as designers can choose to play when the time is right.

I’ve been working as a game designer for quite a while, so
naturally I have my own deck of these rules

And sometimes I have rules specific to a project…

17

For example, the rules I used on The Suffering project looked
something like this.

18

Now for the Church in the Darkness, a top-down action
infiltration game set inside a religious cult…

Some of these rules changed, because of the game.

Some rules I realized were wrong and I changed them.

I used to think that all games were too hard, because of a
team’s necessary tendency to do that, but I realized you can
overdo that – the Suffering turned out a bit too easy.

And of course, a new project probably brings new rules with it,
that I may or may not continue to use in the future.

19

People tend to object to defining rules because there is a
possibility for these things to be mis-interpreted.

So I should say, of course, that in the craft of game design
nothing is absolute

And working with a team you need to be thinking of constant
compromise.

20

BUT WHEN YOU ARE floating out to sea, into shark-infested
waters…

I find that a strong personal goal or rule for yourself or your
project can be that tool that pulls you out of shark territory
and brings you back to the calm waters.

21

So coming up…

A little later on, Emily Short is going to tell us how she tests
her game before it's ready for testing

George Fan is going to tell us about how your enemies are not
as different as you think they are

Liz England is going to tell us who you should make your
design documents for.

Michael de Plater is going to tell us how systems can bring
human stories

22

But first! Lee Perry - Lee Perry is an experienced game
designer, having worked on….

And he's going to tell us how everything you know is wrong
about when to polish (and when to add pizazz to) your game.

24

25

Starting out, like many, used to think games were about:
High concepts
Settings
Themes
THE CLASSIC BIG IDEAS!!!

MAPS!
BIOS!

At some point I like to think most designers “level up” and
realize that game design isn’t *JUST* about the big concept…

26

Great games have some secret sauce!

27

NOT JUST ABOUT THIS…

28

IT’S ALSO ABOUT THIS

29

AND THIS

Interacting with the game, and having a really satisfying
response!

MOST devs understand the importance of great player
feedback

It’s one NOT SO SECRET SAUCE that gives a game a sense
of “character” and “soul”.

30

It’s about the joy of Mario jumps! Fireballs! Bashing a block!

31

But PopCap is kind of among the Gods of Mt Olympus when it
comes to making something *FEEL* awesome with amazing
feedback.

1) They made the ball sound as it hits the pegs pitch shift up
in this “ding diiing diiiiing” fashion.

2) Explosive Baskets!

3) End of level there’s that glorious slow motion effect and
then the utter insanity of blaring “ode to joy” while
fireworks start blasting.

Peggle is a master class in itself.

32

Martin Jonasson and Petri Purho have an amazing video on
YouTube where they take this very sterile Breakout clone and
slowly add more and more feedback elements to it until it’s
this insane experience. Their enthusiasm is pretty infectious,
I definitely recommend watching it.

33

One other excellent speech was Vlambeer’s “The art of
screenshake”, where again he starts with a rather sterile
platformer and using primarily different types of screenshakes
makes the game feel like this fantastic experience. Again,
definitely time well spent checking this out.

34

IS FEEDBACK PART OF THE “POLISH STAGE?”

35

To me though, I still thou

Problem is, we all know things get cut at the end of a game.

It’s hard to tell publishers or partners that the game needs to
wait while you “add the fun” at then end.
ght polish simply needed to come online at SOME point before
you shipped.

36

Or sometimes a key demo or press push would mean we
bumped it up earlier.

The BIGGER issue is that it’s still not taking real advantage of
what great player feedback has to offer.

37

During Gears of War 1, I made a TON of our prototypes for
creatures, weapons, etc.

and the project looked more like this!

Why?

A constant pattern of pitching and debating…

But once we had a fun prototype everyone would get on
board.

38

Saw it with the cover system early on.

Super debated, some HATED the idea

Then we added all kinds of awesome to it… SOLD!

NOW FLIP THROUGH OTHER EXAMPLES!

With the chainsaw on the lancer, having a shotgun at all,
creatures, boss fights… you name it. We would have debates,
until someone too a moment to make them “feel” great, and it
suddenly became “real”.

39

Internal salesmanship.

Adding polish was KEY, not to the player, but to the TEAM
working on the game!

(publishers too!)

This is a dev tool!

40

Two years ago, started making games on my own.

AHHH! I didn’t need to sell and pitch to anyone!

Soooo…

41

…what does it all mean now? When do I get all juicy?!

Just SOME time before I shipped? Revert to old snakey here?

One problem for tiny indie projects…

CRIPPLING SELF DOUBT!

Turns out:
Feedback isn’t JUST for players!
Feedback isn’t JUST for your team!
Feedback is for YOU yourself!

It’s an amazing motivational tool!

42

IN AN IDEAL MAGICAL WORLD, WE WOULD HAVE THIS!

How awesome would it be to have all this polish UP FRONT?!

How cool to know your game’s soul like that, so early on?!

INSANE!
THAT’S INSANE!!! You can’t just start off polishing step 1!

You’re right.

We have to detach our concept of “feedback” from
“polish”…

43

It’s NOT not feedback!

It’s definitely not POLISH!

It’s ***PIZZAZZ*** instead! Weeeee!

WHAT?! You can’t just rename something and make it
work?!

LEE!!! How is “Pizazz” different than “polish” or “feedback” or
“JUICE”?!

Simple… It can be throw away, you’re not super attached to it.
It’s punchy punchy placeholders.

Early on, is when you MOST need joy to manifest in your
game!
You MOST need to see the promise!

44

You MOST need that feeling like you’re really “on to something”!

Later on, replace this stuff.

But, early on they’re the scaffolding of “fun” for your game.

44

What is Pizazz!?

Pizzazz is our child level imaginations!

“WOOOOOOOOOOOOOOOOOOOOOOSH!
AKAKAKKAKAKAKAKAKKA!”
“BASH ABASHABASHHHH!” WEEE OOOOOOWEEEEOOOOO!”
“PBUBUBUBUBBUBUBUBUBU! RWARRRRRRRRRRR!
KKUKUKUKUKUKUKU! PEOOOO! FOOOOOM!
BOOOSHH!HH!!!!”

The sooner your project can tap into at least SOME of that
childlike joy from playing with a toy, the better you’re going to
feel about your project as you progress.

CONCEPT ARTISTS CONSTANTLY DO THIS!

45

There are a handful of generally accepted player feedback
techniques that work great also as Pizzazz because they’re
generally very simple to incorporate

Sounds - completely over the top is fine!

Particles – huge cheap libraries to drop in everywhere

Screen Shake – Everything!

Dynamic Lights - you might not be able to ship with some of
these, but tying a crazy overbright light source to something
can immediately make something feel intense and powerful.

Music – No sound guy? Go slap in anything you can get. Try
soundrangers or stock music sites.

Post Processing – bloom, blur, whatever!

Physics – People love physics reactions, they’re like free cool
behaviors!

46

EVEN FOR SOLO GAMES…

BENEFITS FOR EARLY START ON THIS STUFF!

Lets you get a better establish your “30 seconds of fun” that
you’re often trying to build the rest of the game around.

Unexpected aspects of your game can become really key
features!

A game that has a lot of PIZZAZZ is one that you’re more
likely to pass around and show people on short notice… you’ll
get more feedback on it, and be more willing to take it out for
a walk once in a while

The biggest benefit is one of confidence in your project. If you
believe that when you hand the controls to another player,
they’re going to truly enjoy it and see the potential, it colors
EVERYTHING about that project. You get more excited about
working on it, you get lost in your own game as you try out
random builds, etc… it provides those moments that make

47

many of us so excited to breath life into games in the first place.

47

Working with VR lately, it has really became apparent how
beneficial these techniques are.

Tutorials aren’t needed so much, good feedback can do the
trick. “YES! Do more of that!”

SO many unknowns… But many old feedback techniques
still work

(not screen shakes )

The bar is relatively low right now. Adding feedback can
make your project “a thing”

48

Prepare yourself!!!

BEHOLD! VIRTUAL… VIRTUAL REALITY!

49

1

50

2

51

3

52

4

53

54

BY DOING JUST A FEW THINGS LIKE THE HOOP…

In addition to the usual benefits
- Feeling more legit
- Personal interest in playing the game
- MORE FUN DEVELOPMENT
- Etc…

Attention from Valve
- Early dev support

Official demo for Oculus Touch
- Oculus signed the project for a Touch Controller launch

Attracted a partner
- Programming /business partner sought me out

Several great articles
- Game informer, several VR publications

55

You’re going to add feedback anyway
-UNLESS YOU’RE CRAZY!!!

Just frontload some!
- FOCUS ON YOUR CORE ACTIONS
- MAKE IT BIG
- ADD MORE THAN YOU THINK

It’ll help your whole process!

56

Adios!

57

If anything, Lee’s talk reminds us of how political the act of
being a game designer on a big team can be.

You have to be constantly selling your ideas, not only to your
bosses/publishers, but also to the team itself.

Next up, we have Emily Short!

Richard Intro for Emily

She’s going to tell us how she tests her game before she even
has testers.

59

I’m a freelance consultant in interactive narrative, which
means that I spend a lot of time with different toolsets for
writing and managing content and dialogue. Sometimes I
build my own tools, sometimes I work with other people’s
freeware tools, sometimes I work with proprietary tools that
my client came up with. I’ve worked on a number of projects,
including recently writing several of the island stories in
Sunless Sea.

I’m here to argue for a pretty simple principle:

60

When you’re designing a new system, think about how you’re
going to visualize its behavior.

61

If you’re working on something with dialogue or narrative
structure, that might mean visualizing how parts of the story
or conversation feed into one another

62

If you’re working on dynamic system, that might mean heat
maps. It might mean taking traces of many consecutive runs
and laying them on top of one another. It might a dynamic
visualization tool that projects movement in response to
variables that you’re changing.

63

If you’re building a procedural system that uses lots of content
data, it might mean coming up with ways to picture how much
data you have, what categories it breaks into, and how you’ll
know when you have enough – here’s an example that
analyzed the words in English translations of major religious
texts and represents how often particular terms appear in
each text.

So I’d like to take us through how I’ve used early visualization
in several of my own projects, and then expand to talk about
how the same approach might apply to other kinds of work
besides narrative-focused projects.

64

Here’s an in-progress visualization of a chapter in Platinum
Package, a story I’m writing for Choice of Games’ line of
branching novels. It may look like it’s a design document of
some kind, but this is actually the result of running a Python
script against the code for this story and automatically
generating a dot format file that can be read into GraphViz.
The visualization shows us the structure of part of one
chapter.

65

The visualization distinguishes player choices, which are
represented by solid lines, from automatic transitions, which
are dotted lines. I can immediately see that I have a mix of
player choice and consequence, with the consequences
clustered at the end of the chapter, which is what I want.

66

Meanwhile the colors of the lines show what kinds of stat
changes are happening when the player makes these
decisions – each color corresponds to a different stat that
could be going up or down.

Transitions in red are ones that have no stat effects. When
those are missing, that’s a failure state that I need to be
aware of.

67

This chart keeps up with changes that I’ve made to the story,
so unlike a hand-generated design document, it doesn’t go out
of date. That’s important, because I’m responding to feedback
from my editor as the story progresses, and over these
iterations the game is diverging from that original document. I
could do meticulous upkeep on that document, or I could just
have a way of seeing directly into the code.

68

Now here’s a case where the visualization I’m doing is further
from a spec document and closer to a playtest report.

Versu is a project I worked on for several years that involved
characters with an AI-driven approach to social interaction.
That meant that there was an authored structure of a number
of different scenes, but within each scene what happened was
highly dynamic, depending on the moods and relationships of
the characters. From a QA perspective, this meant we needed
to go well beyond just having playtesters play the game a
number of times. Instead, we would run thousands of trial
playthroughs with an additional AI agent making the player’s
choices randomly.

This chart shows the way we then visualized the resulting
information. This is just the beginning of the chart – it actually
continues for a bunch more scenes. But even so it may be
tough to read on this slide, so let’s zoom in…

69

So here we’re seeing just a few scenes of the game.

The first scene can end in one of two ways. Percentages
indicate how many times the random player reaches each of
the optional scenes. Scenes the AI reaches frequently are light
grey; those it reaches more seldom are darker grey. Here
we’re seeing that the AI reaches the “alternate” scene 88% of
the time and the “instruction” scene 11% of the time.

If there’s a scene that the AI never reaches, that gets colored
in red, to indicate that there is probably an implementation
problem preventing access. Again, the visualization is
designed to call out problem states.

In fact in this case because I had some help from the tool
designer, we were able to build a visualization tool that was
itself dynamic. So if I looked at one of those story nodes and
wanted more information about what was happening during
that node, I could click and open it up....

70

And now I can see all the possible ways to transition into that
scene and what the percentages are -- what percentage of
the time this scene is reached from each of the nodes that
could lead into it, and where the simulation usually goes next.

71

Finally, I think it’s important to make the point here that your
visualization doesn’t have to be attractive. I started the slide
show with a bunch of pictures by people who are much better
at visualization than I am, but it doesn’t have to be like that
to be functional.

(If this picture is unsexy…)

72

If this picture is unsexy, that’s on purpose – it still represents
something very useful.

This is a simplified version of how I looked into an
experimental procedural narrative system that used a lot of
event data. We had written a bunch of events that could be
selected to occur next depending on whether the protagonist
had certain status features. And, of course, an event could
also change the protagonist’s status.

Running a simple script to count checking and setting
instances for each quality and then charting the result in Excel
helped get a visual sense of what was happening. For
instance, in this representation, the wealth = rich attribute is
being checked frequently but set infrequently, which is a
warning that the system contains a lot of data that might
rarely have a chance to fire.

73

Another question I had about this data set was how
specialized the events were. An event could be checking
multiple prerequisite qualities at a time. To get a sense of
whether I was getting good coverage for all the values of
qualities, I threw some count data into a conditionally-
formatted Excel sheet.

For instance, this would tell me quickly that I’d created a lot of
events specific to being poor and sick, say, or rich and healthy,
but no events tied to being well and medium-wealthy.

Obviously with the real data there are many more entries to
the sheet, but dead zones are instantly visible.

74

Now it might seem like this is a really really open-ended piece
of advice that would work out wildly differently for different
kinds of projects. And it might also seem like I’m asking you
to gain some new expertise that isn’t necessarily in your
wheelhouse as a designer.

I find that even asking myself the question, “what would a
picture of this look like?” gives me a new angle on thinking
about the quality of that design. A good visualization puts
emphasis – like color or size – on things that are wrong or
important. So what kind of information about your system is
important? And what can go wrong?

If you have a system with a large amount of data, thinking
about visualizing that data means you’re going to have to
think about things like data types, what might characterize
bad or good data, how much data you need, and whether you
have adequate coverage of different aspects of your game
world. And if you’re not a programmer but you have one
handy, you might want to talk to them at this stage about how
they’d approach this.

75

Two: the sooner you have these ideas, the sooner you can
build them into your tools. Or specify them so that your tool
programmers can start building them into your tools.

No, you’re not going to anticipate everything that could
possibly happen as the system evolves. But one of the useful
things about a visualization is that it helps you instantly
recognize issues in whatever you’ve just built. Anything you
can do that highlights content problems *while they’re being
generated* will save you huge amounts of time later catching
and debugging them.

Conversely, anything that makes content creators feel
confident about what they’ve built while they’re building it
leads to faster, better content.

Here is how to make Future You really really hate Current You:

76

Your content team may be geniuses and they may be really
detail oriented people, (but you want as many ways as you
can to find their mistakes anyway.)

77

(but you want as many ways as you can to find their mistakes
anyway.) We all know why spellcheckers are useful. Putting in
more visualization options gives you more corrective tools.

78

I’m not by any means the first person to stand up here and
talk about how to visualize particular aspects of what you
might be building as a designer. Here’s Noah Falstein talking at
the narrative summit a couple of years ago about puzzle
dependency graphs to manage a puzzle based game >>

79

Here’s a great talk from Alex Champandard at the 2012 AI
summit which includes some discussion of how to visualize the
behavior of squad AI

80

…and here’s a whole panel from the AI Summit in 2011 – Rez
Graham, Michael Dawe, and Brian Schwab talking about
visualizing expected AI behavior.

81

Outside of GDC talks, you might also want to get some
visualization ideas from Edward Tufte’s books.

82

Or from Bret Victor’s website…

83

Whatever you’re trying to do, thinking about the visualization
from the beginning does some useful things for your design
process.

Visualization forces you to think about categories. What are
the components of your system and how do they relate?

84

Visualization forces you to consider failure conditions so that
you can draw visual attention to them.

85

Visualization also forces you to think about what success will
look like. What is a finished system? How do you know when
you have enough content and in the right places?

(And if you visualize early, you can either build)

86

And if you visualize early, you can either build – or better yet,
make your tools programmer build – a better tool that will find
your bugs faster and streamline your workflow.

87

Thank you Emily!

Of course, as you may know, we as designers love to say “But
it’s not ready for testing!”

I think Emily has provided us with one more reason that we
can’t use that excuse any more.

88

Next up we have George fan, who has been developing games
for many years, one of his earlier titles being Insaniquarium,
nominated for game design in the early days of the IGF

But you probably know him for a little game he made called
Plants vs. Zombies.

George will be telling us how your enemies aren’t as different
as you think they are.

Fun fact about George, when you want to find a picture of him
on the internet, you end up getting a bunch of pictures like
this…

90

That’s OK George, you’re the only George *I’m* a fan of.

George Fan!

All right! Time to talk about *my* rule, which is: Make Your
Enemies *Actually* Different.

92

First, let’s zoom in to this word “Actually”. What do I mean by
that?

93

In this case I mean making it so each new enemy is tackled in
a different way.

Think of some of the games you’ve played where the enemy
design was exceptional. I bet in each case, there was a high
density of.. enemies that you had to use different methods to
defeat.

The reason I have Super Mario in this slide here is cause it did
such a great job of meeting this criteria. Take note of the
feeling you have right now looking at this set of bad guys,
remembering all the different ways you defeated them. If
you’re ever unsure about enemy design, I recommend
analyzing how the first Super Mario did things as a clean
example of enemy design done right.

94

Sometimes we set out to make a game with a lot of enemy
variety. On the surface, they look different enough and seem
to do different things.

95

But to the player, fighting enemies gets monotonous, and each
new encounter doesn’t bring enough uniqueness to the table.

96

We’re left with a game that feels like you just fought a bunch
of the same thing. Today I wanna teach you how to avoid
that.

97

To help us along, I’m gonna introduce a tool called Player
Brain-O-Vision. It’s a way for us remember to get into the
player’s brain, as this *is* the most important perspective.

98

So let’s meet our player.

99

Naturally, our player has a brain.

100

Let’s try using Player Brain-O-Vision and imagine what this
guy is thinking. Let’s try to “see” what his brain sees.

Based on this guy’s expression? I think.. He’s playing..

101

Bill & Ted’s Excellent Video Game Adventure.

102

So let’s get into this. We’ll start with some DON’T DO’s. Things
you don’t wanna do when your goal is to make your enemies
actually different.

103

The first pitfall happens when we have two enemies that are
identical, and think

104

“Oh, we’ll just change the look of one of em, that’ll be
enough” <buzzer sound> Do this over and over again and
you’ll have the most boring game of all time.

105

The problem here is the two enemies are still doing the same
thing. The player doesn’t handle the skeleton any different
than the mummy..

106

so they’ll store both of these in their brain, occupying the
same space. Our brains tend to clump things together in order
to keep up with all the information we need to process.

The player’s goal is to beat the game. To that extent, the
player doesn’t care that the mummy *looks* different from
the skeleton. In its efficiency, the brain will squeeze these two
together into just one enemy. This is what we want to avoid,
as we’re not adding to true enemy variety here.

107

Even lazier than just changing the look is just changing one
color to another.

I certainly didn’t think of this grey fish from Super Mario as a
brand new enemy type. I’ll cut them some slack though cause
they were up against some extreme memory limitations at the
time. But nowadays, color shifts just don’t pass for “brand
new enemies” anymore.

108

An abundance of em can often make your game feel cheap,
and most of the time you’re better off with just 1 solid enemy
instead of 2 palette swapped enemies.

109

One more thing is.. to not think of small changes in hp,
damage, and speed as brand new enemies.

A little bit of this is ok, but if every bad guy in your game can
be defined as just some degree of these three variables, then
you’ve done something wrong.

110

The difference between 500 and 510 is small enough that
once again, the player’s brain will meld the these two together
into just one bad guy with about 500 hp.

111

All right, now that we’ve covered some Don’t Do’s…

112

It’s time to take a look at some DO DO’s. I’ve got a big DO DO
for you to take a look at..

113

And I’m gonna call it “Attributes of Differentiation”. Basically,
these are qualities enemies might have.. that would make em
play differently than others. You can think of em as sort of
avenues to explore while you’re trying to make your enemies
actually different. In this section of the talk, I’ll provide you
with some examples of attributes I find myself using again
and again.

114

The first one of these is movement. We can often make the
player handle the enemy differently by simply introducing a
new movement pattern. In Super Mario, these enemies all
have distinct styles of movement, and the player needs to
account for each one differently.

115

But be careful you don’t spend time making things have
special movement.. when in the end.. it gets handled by the
player just like something else. In this hypothetical game,
we’ve designed two enemies, a bird that moves in a zig-zag
and a bat that moves in a sine wave.

116

There might cases where this difference *is* significant, but
for the most part I see players handling these two movement
patterns in the same way. Again, not good if our goal is to
make enemies *actually* different. Stuff like this can be found
through playtesting, but using Player Brain-O-Vision we can
often catch it earlier.

117

Another attribute I like to consider is priority, meaning, when
seeing lots of enemies on screen, which order to defeat them
in? How urgently do I need to defeat this enemy relative to
others? An example of a high-priority enemy is the generator
from Gauntlet. It doesn’t matter how many ghosts you kill, if
you don’t kill the bone piles first, they’ll keep spawning more
ghosts.

118

The UFO from Space Invaders is an interesting case. You
prioritize it not because it’s threatening, but because it’s worth
a bunch of points and only on screen for a short time.

119

Let’s think about priority some more. Suppose we have a
group of basic grunts.

120

Now, let’s add a healer to that group. If we try killing the
grunts first, it’ll take a long time cause the healer will keep em
healed.

121

So the correct play is to focus on killing the healer first, and
then take care of the grunts after the healer’s been dealt with.

122

But what about this?

123

Let’s *instead* add a high damage archer to the group..

124

In this case, the *archer* becomes our number one priority
because it’s the more threatening unit. Again, it makes more
sense to prioritize killing the archer over the grunts. Now, as
long as our weird hypothetical game only presented you units
in these two formations of..

125

Healers and grunts..

126

and Archers and grunts..

127

The healer and archer would be seen as exactly the same unit
in terms of priority, even though they perform vastly different
roles. Just something to keep in mind.

128

Fact is, a lot of enemies we design tend to fall into this high
priority, “Deal with me first” category

129

That’s why it’s good to explore the other end of the spectrum
and design enemies that are best dealt with last. Both of these
guys get mad and become more deadly after you damage em,
so it’s best to ignore em if you have other enemies to deal
with.

130

Enemies that have lots of hp but do low amounts of damage
also fit into this “Deal with me last” category.

131

Another attribute we can consider is timing. It often involves
having an enemy that’s more dangerous during certain times,
or likewise more vulnerable during certain times.

A prime example of this is the Piranha Plant from Super Mario.
It’s safe to pass while it’s retracted into the pipe, but
dangerous otherwise.

132

The lava bubble is another bad guy from Super Mario that
hops in and out of the lava and requires timing to avoid.

133

If we’re observant and we use Player Brain-O-Vision, we might
discover some similarities between these two units. I initially
didn’t think of these as being very similar, but in researching
this talk I realized they’re both timing-based enemies with up-
and-down movement. The only differences are the lava bubble
is immune to Mario’s fireball, and only found in lava. If this
were our own game, it would then be up to us to decide if
these small differences were enough.

134

On to the next attribute. When most of the enemies in your
game do close-ranged attacks, you can shake things up by
offering some enemies that are long-ranged.

The catapult zombie and hammer brothers are examples of
long-ranged enemies in games where most of the enemies are
close-ranged.

135

Likewise, if most enemies in your game are long-ranged,
consider throwing in a close ranged enemy just to liven things
up. A lot of these attributes come down to.. being observant
of what happens often in your game.. and designing things to
disrupt that.

136

Which brings us to our next attribute. A good way of coming
up with new enemies.. is to think about what actions the
player does most often in your game, then come up with an
enemy that counters that action to shake things up.

137

In Super Mario, the most common action used to defeat
enemies is to stomp on em. So halfway through the game, the
Spiny enemy is introduced, which you obviously can’t stomp
on. Along the same lines, the buzzy beetle is immune to
fireballs, another common action of Mario’s. Both enemies do
their job of keeping Mario on his toes and not letting him
perform just the same actions over and over.

138

In Plants vs Zombies, I had the early issue of Wall-nuts being
really good, and noticed players falling into a rut of using wall-
nuts to solve everything. So I designed these Pole-Vaulting
zombies that would leap over the first plant they ran into, thus
making wall-nuts a little less universally good and mixing
things up for the player.

139

A good exercise is to think about what your players do often,
then come up with ways for your enemies to disrupt that.

140

For example if you notice in your game your players are just
constantly spamming AOE attacks, you could design a unit
that counters AOE. These eggs, when damaged,

141

release extremely powerful demons, punishing the player who
just goes around AOE attacking everything willy-nilly.
Unleashing all the demons at once is a bad move as the
demons become too overwhelming for the player to deal with.

142

Instead, the correct play is to break the eggs one at a time,
dealing with each demon individually before breaking the next
egg. With this one enemy type, we’ve added a nice beat to
our game where players play more carefully for a bit, and then
they go back to constantly spamming AOE.

143

In PvZ, I knew players had gotten used to zombies coming in
from the right side of the screen,

144

So I threw em a curveball and introduced the Digger Zombie,
which surprise-attacks your plants from the left!

145

On the flip side, we can also design enemies by giving em a
weakness, then offering a power to the player that exploits
that weakness

146

It often feels satisfying to face down an enemy that’s tough to
deal with initially, but then you’re given a power that helps
you defeat it with ease.

147

Finally, we have the attribute of player attention, which mostly
comes in the form of telegraphed attacks. This involves
designing enemies whose attacks deal a ton of damage if not
avoided, but give you ample warning.. so you have the
opportunity to avoid them. How they function in groups of
enemies is to demand your attention for some amount of
time.

An example of this is from Super Mario 3, where this sledge
brother will jump up into the air, forecasting a ground slam. If
you’re still on the ground when they slam into it, you’ll be
stunned for some time. This forces you to pay attention and
react by jumping.

148

Ok, to sum things up, here’s an effective way to make your
enemies *actually* different.

149

First, try to design each new enemy with an Attribute of
Differentiation in mind.

150

I’ve given you some examples of attributes you can explore.

151

Once you’ve done that, pass the enemy through Player Brain-
O-Vision.. to see if it *actually* makes the player DO
something different.

152

Do this, and your enemies will be awesome. I’m looking
forward to playing your upcoming games with truly diverse
sets enemies.

153

If you wanna talk some more about this, my info’s right here.
I’ll be coming out with a game later this year that has its own
share of enemies that’re *actually* different. Follow me on
twitter for more updates on that.

All right, thanks!

154

Thank you George!

I feel like right now people in the audience have cracked open
their lap tops are ripping out their palette swapping code

Next up, we have Liz England!

She’s a game design veteran having worked on everything to
Scribblenauts to Resistance to…

Sunset Overdrive – a game we both worked on but as is the
case in modern development, we didn’t meet until this week

Now, for another modern reality, if you’ve been doing game
design in a big team for a while, you’ll know that no one reads
your precious game design documents.

Well, good news, Liz has the solution!

Today I'll share a trick - more like a philosophy - with you that
I call "Make actionable documentation".

This talk is kind of specific and more advanced. It assumes
you already know many of the trials and tribulations of making
good design documentation.

(Will replace this pic with one of GDDs around the office)

157

For some further reading I recommend this prior GDC talks on
design docs because I'll be spending my 10 minutes on a
specific subtopic.

158

For some further reading I recommend this prior GDC talks on
design docs because I'll be spending my 10 minutes on a
specific subtopic.

159

For some further reading I recommend this prior GDC talks on
design docs because I'll be spending my 10 minutes on a
specific subtopic.

160

For some further reading I recommend this prior GDC talks on
design docs because I'll be spending my 10 minutes on a
specific subtopic.

161

For some further reading I recommend this prior GDC talks on
design docs because I'll be spending my 10 minutes on a
specific subtopic.

162

For some further reading I recommend this prior GDC talks on
design docs because I'll be spending my 10 minutes on a
specific subtopic.

163

For some further reading I recommend this prior GDC talks on
design docs because I'll be spending my 10 minutes on a
specific subtopic.

164

Instead of asking "what feature am I documenting?" ask
yourself this: "Who is this document for?" A game can't read
your documentation, it doesn't care if you document it or not.
People can read it. People care. So write docs for people, not
for games. If you can design a game for players, you can
design documentation for readers.

165

When I talk about people I'm obviously talking about
members of your team. When you spec out a system, don't
make a doc for the entire team. Make a document for an
artist, or for designers, or for programmers.

166

When I talk about people I'm obviously talking about
members of your team. When you spec out a system, don't
make a doc for the entire team. Make a document for an
artist, or for designers, or for programmers.

167

I encourage you to get more specific, though. I try to write my
documentation for an INDIVIDUAL as often as possible. So
that means you make documentation for Adam the AI
Programmer and ideally you sit down and talk to him about
what he wants to see in that doc. Different people work
differently, so some people want extensive use cases, others
want flowcharts, and others might work best if you kind of
narrate what the player is doing.

The important thing here is: the needs of the reader are most
important. It doesn't matter whether you detail everything
out, but rather you detail what your reader needs to know.

SUBJECTIVELY describe the system instead of
OBJECTIVELY describing it

168

The next question I ask myself is, "What do I expect them to
do with this?" Well what do you expect them to do? You
expect them to read it, right? Wrong! Documentation needs to
be USED somehow, not just read. It needs to serve a purpose.

169

So my second rule is "Make documentation with a purpose".

170

So my second rule is "Make documentation with a purpose".

171

Game designers like to talk about verbs (I know I do) like run,
jump, shoot, interact, etc. I like to try applying those verbs
to my documentation. This is just identifying what action
you want people to take when they read it.

172

Maybe you are writing a doc for someone to implement a
system for you, which requires a large amount of detail. Or
this doc is a blueprint that tells fellow designers how to
implement something according to a set of guidelines. Maybe
it's just a high level spec for a system that you need to shop
around to the leads and creative director for approval. Maybe
it's a big poster meant to inform the rest of the team and get
everyone on the same page.

The important lesson here is that form will follow function.

173

174

175

As a summary, some of the practical implications of writing
documents for people with a purpose is:

I write docs when they are needed, and not before. I try not
to anticipate what documents we’ll need.

Each doc tends to be smaller and more concise, with its own
specified level of detail. That also means a single feature may
have multiple documents for it with some, but not tons, of
overlap.

Actionable docs require different styles of documents for
different needs. I find word docs are still the most common,
but least effect, way of sharing information. Don’t be afraid to
use infographics or flowcharts or excel files, and keep in mind
the level fo detail you actually need and don’t try to be
everything for everyone.

It’s also okay to not keep docs up to date if they’ve served

176

their purpose. Sometimes the purpose in ongoing throughout
development, and other times we should be comfortable with
abandoning documentation.

Lastly, ‘actionable’ documentation (and I’ll get into examples in a
moment) doesn’t have to replace every document you make. It
replaces about half of my documentation, and the other half still
tend to follow more traditional standards.

176

As a summary, some of the practical implications of writing
documents for people with a purpose is:

I write docs when they are needed, and not before. I try not
to anticipate what documents we’ll need.

Each doc tends to be smaller and more concise, with its own
specified level of detail. That also means a single feature may
have multiple documents for it with some, but not tons, of
overlap.

Actionable docs require different styles of documents for
different needs. I find word docs are still the most common,
but least effect, way of sharing information. Don’t be afraid to
use infographics or flowcharts or excel files, and keep in mind
the level fo detail you actually need and don’t try to be
everything for everyone.

It’s also okay to not keep docs up to date if they’ve served

177

their purpose. Sometimes the purpose in ongoing throughout
development, and other times we should be comfortable with
abandoning documentation.

Lastly, ‘actionable’ documentation (and I’ll get into examples in a
moment) doesn’t have to replace every document you make. It
replaces about half of my documentation, and the other half still
tend to follow more traditional standards.

177

As a summary, some of the practical implications of writing
documents for people with a purpose is:

I write docs when they are needed, and not before. I try not
to anticipate what documents we’ll need.

Each doc tends to be smaller and more concise, with its own
specified level of detail. That also means a single feature may
have multiple documents for it with some, but not tons, of
overlap.

Actionable docs require different styles of documents for
different needs. I find word docs are still the most common,
but least effect, way of sharing information. Don’t be afraid to
use infographics or flowcharts or excel files, and keep in mind
the level fo detail you actually need and don’t try to be
everything for everyone.

It’s also okay to not keep docs up to date if they’ve served

178

their purpose. Sometimes the purpose in ongoing throughout
development, and other times we should be comfortable with
abandoning documentation.

Lastly, ‘actionable’ documentation (and I’ll get into examples in a
moment) doesn’t have to replace every document you make. It
replaces about half of my documentation, and the other half still
tend to follow more traditional standards.

178

Let’s compare that to another visual document that has very
few words.

This is a map of Sunset Overdrive we used throughout
production. It’s visual, but relatively easy to keep up to date,
and almost everyone on the team used it to keep track of the
state of the city. Being used a lot, that meant there was high
demand to keep it up to date – which led to the doc’s form
(photoshop file, not as pretty, rough around the edges).

The downside is that it requires some memorization of in-
house terminology, so when new people rolled onto the team
they needed to be brought up to speed on color coding or
what “C2” or “Q3” meant. But that was not the intended
reader for this document.

179

Let’s compare that to another visual document that has very
few words.

This is a map of Sunset Overdrive we used throughout
production. It’s visual, but relatively easy to keep up to date,
and almost everyone on the team used it to keep track of the
state of the city. Being used a lot, that meant there was high
demand to keep it up to date – which led to the doc’s form
(photoshop file, not as pretty, rough around the edges).

The downside is that it requires some memorization of in-
house terminology, so when new people rolled onto the team
they needed to be brought up to speed on color coding or
what “C2” or “Q3” meant. But that was not the intended
reader for this document.

180

I want to compare that to another map, though. One of the
side effects of actionable documentation is that you often need
multiple docs for one feature.

This map is a literal poster printout of the prior map with post-
it notes. It was used by the challenge and quest team to help
identify where to populate the game with content. This came
about because sitting in a meeting trying to edit a photoshop
file on a computer was really awkward compared to piling
around a real life map and just moving post-it notes around.

(I promise to take a higher quality photo for final draft)

181

I want to compare that to another map, though. One of the
side effects of actionable documentation is that you often need
multiple docs for one feature.

This map is a literal poster printout of the prior map with post-
it notes. It was used by the challenge and quest team to help
identify where to populate the game with content. This came
about because sitting in a meeting trying to edit a photoshop
file on a computer was really awkward compared to piling
around a real life map and just moving post-it notes around.

(I promise to take a higher quality photo for final draft)

182

How content unlocks over time. Tons of information, not many
words. Giant flowchart image was much more successful than
excel tracker. This doc was written in a way that meant
everyone on the team could use it to find in-game content and
grok our rollout plan.

183

How content unlocks over time. Tons of information, not many
words. Giant flowchart image was much more successful than
excel tracker. This doc was written in a way that meant
everyone on the team could use it to find in-game content and
grok our rollout plan.

184

Here’s another compare and contrast.

This is the mission flow when a player accepts a mission, and
what happens when they fail, or die and respawn, or quit the
game, or change to a quest, and so on. This annotated
flowchart worked great for the programmer working on that
system.

However, when I handed it to the mission designers to
implement, their eyes just glazed over. As a result…

185

Here’s another compare and contrast.

This is the mission flow when a player accepts a mission, and
what happens when they fail, or die and respawn, or quit the
game, or change to a quest, and so on. This annotated
flowchart worked great for the programmer working on that
system.

However, when I handed it to the mission designers to
implement, their eyes just glazed over. As a result…

186

I made this document. It still tells the reader about how a
mission flows, but it has much less level of detail and uses
explicit examples from within the game. In this case,
designers can look at examples and make intuitive leaps about
how that affects their mission structure, without being bogged
down with details they don’t really need.

187

I made this document. It still tells the reader about how a
mission flows, but it has much less level of detail and uses
explicit examples from within the game. In this case,
designers can look at examples and make intuitive leaps about
how that affects their mission structure, without being bogged
down with details they don’t really need.

188

As a summary, some of the practical implications of writing
documents for people with a purpose is:

I write docs when they are needed, and not before. I try not
to anticipate what documents we’ll need.

Each doc tends to be smaller and more concise, with its own
specified level of detail. That also means a single feature may
have multiple documents for it with some, but not tons, of
overlap.

Actionable docs require different styles of documents for
different needs. I find word docs are still the most common,
but least effect, way of sharing information. Don’t be afraid to
use infographics or flowcharts or excel files, and keep in mind
the level fo detail you actually need and don’t try to be
everything for everyone.

It’s also okay to not keep docs up to date if they’ve served

189

their purpose. Sometimes the purpose in ongoing throughout
development, and other times we should be comfortable with
abandoning documentation.

Lastly, ‘actionable’ documentation (and I’ll get into examples in a
moment) doesn’t have to replace every document you make. It
replaces about half of my documentation, and the other half still
tend to follow more traditional standards.

189

As a summary, some of the practical implications of writing
documents for people with a purpose is:

I write docs when they are needed, and not before. I try not
to anticipate what documents we’ll need.

Each doc tends to be smaller and more concise, with its own
specified level of detail. That also means a single feature may
have multiple documents for it with some, but not tons, of
overlap.

Actionable docs require different styles of documents for
different needs. I find word docs are still the most common,
but least effect, way of sharing information. Don’t be afraid to
use infographics or flowcharts or excel files, and keep in mind
the level fo detail you actually need and don’t try to be
everything for everyone.

It’s also okay to not keep docs up to date if they’ve served

190

their purpose. Sometimes the purpose in ongoing throughout
development, and other times we should be comfortable with
abandoning documentation.

Lastly, ‘actionable’ documentation (and I’ll get into examples in a
moment) doesn’t have to replace every document you make. It
replaces about half of my documentation, and the other half still
tend to follow more traditional standards.

190

This is a visual design document early on Sunset Overdrive. It
worked exceptionally well to inform the whole team about the
traversal system we had planned for the game. It has a lot
level of detail and a lot of visuals, and shows the promise of
traversal. There’s very little text.

There’s no way you can implement off of this document. Visual
docs also look great but are practically impossible to keep up
to date. But that’s okay! If you’re making actionable docs – for
people and with a purpose – then when it fulfills that purpose,
don’t be afraid to retire the doc and archive it. You do not
need to try to keep every doc up to date.

191

This is a visual design document early on Sunset Overdrive. It
worked exceptionally well to inform the whole team about the
traversal system we had planned for the game. It has a lot
level of detail and a lot of visuals, and shows the promise of
traversal. There’s very little text.

There’s no way you can implement off of this document. Visual
docs also look great but are practically impossible to keep up
to date. But that’s okay! If you’re making actionable docs – for
people and with a purpose – then when it fulfills that purpose,
don’t be afraid to retire the doc and archive it. You do not
need to try to keep every doc up to date.

192

…but sometimes it does! In the case of our vanity system, by
the end of the project we did not have a holistic doc that
explained vanity to the whole team. People who worked
directly on it had their own documentation.

With a system like player vanity, which had little affect on
your work if you weren’t on the system directly, we found that
just pointing to other games, or to the initial preproduction
proposal, or just letting people use the vanity closet that
existed in game was enough to communicate the system to
the team.

The game itself was better documentation than anything we
would’ve written. A doc here would have been wasted time.

193

As a summary, some of the practical implications of writing
documents for people with a purpose is:

I write docs when they are needed, and not before. I try not
to anticipate what documents we’ll need.

Each doc tends to be smaller and more concise, with its own
specified level of detail. That also means a single feature may
have multiple documents for it with some, but not tons, of
overlap.

Actionable docs require different styles of documents for
different needs. I find word docs are still the most common,
but least effect, way of sharing information. Don’t be afraid to
use infographics or flowcharts or excel files, and keep in mind
the level fo detail you actually need and don’t try to be
everything for everyone.

It’s also okay to not keep docs up to date if they’ve served

194

their purpose. Sometimes the purpose in ongoing throughout
development, and other times we should be comfortable with
abandoning documentation.

Lastly, ‘actionable’ documentation (and I’ll get into examples in a
moment) doesn’t have to replace every document you make. It
replaces about half of my documentation, and the other half still
tend to follow more traditional standards.

194

As a summary, some of the practical implications of writing
documents for people with a purpose is:

I write docs when they are needed, and not before. I try not
to anticipate what documents we’ll need.

Each doc tends to be smaller and more concise, with its own
specified level of detail. That also means a single feature may
have multiple documents for it with some, but not tons, of
overlap.

Actionable docs require different styles of documents for
different needs. I find word docs are still the most common,
but least effect, way of sharing information. Don’t be afraid to
use infographics or flowcharts or excel files, and keep in mind
the level fo detail you actually need and don’t try to be
everything for everyone.

It’s also okay to not keep docs up to date if they’ve served

195

their purpose. Sometimes the purpose in ongoing throughout
development, and other times we should be comfortable with
abandoning documentation.

Lastly, ‘actionable’ documentation (and I’ll get into examples in a
moment) doesn’t have to replace every document you make. It
replaces about half of my documentation, and the other half still
tend to follow more traditional standards.

195

As a summary, some of the practical implications of writing
documents for people with a purpose is:

I write docs when they are needed, and not before. I try not
to anticipate what documents we’ll need.

Each doc tends to be smaller and more concise, with its own
specified level of detail. That also means a single feature may
have multiple documents for it with some, but not tons, of
overlap.

Actionable docs require different styles of documents for
different needs. I find word docs are still the most common,
but least effect, way of sharing information. Don’t be afraid to
use infographics or flowcharts or excel files, and keep in mind
the level fo detail you actually need and don’t try to be
everything for everyone.

It’s also okay to not keep docs up to date if they’ve served

196

their purpose. Sometimes the purpose in ongoing throughout
development, and other times we should be comfortable with
abandoning documentation.

Lastly, ‘actionable’ documentation (and I’ll get into examples in a
moment) doesn’t have to replace every document you make. It
replaces about half of my documentation, and the other half still
tend to follow more traditional standards.

196

However there’s some caveats…

It really depends on the size and structure of the team. A
team of two people probably already do something like this,
and

It can be hard to get new people up to speed if you don’t have
comprehensive documentation. However, comprehensive but
totally out of date documentation is bad too, and that’s what
we normally deal with.

Some people work best with planning every detail out first
before you start implementing, but actionable documentation .
On the flip side, don’t be afraid to write documentation for
YOURSELF as the reader, so if planning on paper works great
for you then keep doing it.

Suddenly, documentation! – if you want until someone asks
for documentation, that might mean you have to drop

197

everything and write it immediately.

Like I said, this means more docs and not less.

And it’s not an excuse to avoid documentation. This is simply an
attempt to make less wasteful documentation.

So now I am going to dive into some practical examples of docs I
think were exceptionally “actionable”. I’ve made most of these, but
did

197

However there’s some caveats…

It really depends on the size and structure of the team. A
team of two people probably already do something like this,
and

It can be hard to get new people up to speed if you don’t have
comprehensive documentation. However, comprehensive but
totally out of date documentation is bad too, and that’s what
we normally deal with.

Some people work best with planning every detail out first
before you start implementing, but actionable documentation .
On the flip side, don’t be afraid to write documentation for
YOURSELF as the reader, so if planning on paper works great
for you then keep doing it.

Suddenly, documentation! – if you want until someone asks
for documentation, that might mean you have to drop

198

everything and write it immediately.

Like I said, this means more docs and not less.

And it’s not an excuse to avoid documentation. This is simply an
attempt to make less wasteful documentation.

So now I am going to dive into some practical examples of docs I
think were exceptionally “actionable”. I’ve made most of these, but
did

198

Now, sometimes you still need to spec out a large system on
paper and that leads you to the infamous 20+ page design
doc.

A trick I use to get those more usable is to try to keep one
subject per page. This is what the design doc for the object
editor in the third Scribblenauts looked like. Part of my
approach is the idea that if someone needs to know about a
specific part of the system, I could just send them THAT PAGE
and nothing else in the doc to help inform them. In a way,
each page in this doc is it’s own document.

199

However there’s some caveats…

It really depends on the size and structure of the team. A
team of two people probably already do something like this,
and

It can be hard to get new people up to speed if you don’t have
comprehensive documentation. However, comprehensive but
totally out of date documentation is bad too, and that’s what
we normally deal with.

Some people work best with planning every detail out first
before you start implementing, but actionable documentation .
On the flip side, don’t be afraid to write documentation for
YOURSELF as the reader, so if planning on paper works great
for you then keep doing it.

Suddenly, documentation! – if you want until someone asks
for documentation, that might mean you have to drop

200

everything and write it immediately.

Like I said, this means more docs and not less.

And it’s not an excuse to avoid documentation. This is simply an
attempt to make less wasteful documentation.

So now I am going to dive into some practical examples of docs I
think were exceptionally “actionable”. I’ve made most of these, but
did

200

However there’s some caveats…

It really depends on the size and structure of the team. A
team of two people probably already do something like this,
and

It can be hard to get new people up to speed if you don’t have
comprehensive documentation. However, comprehensive but
totally out of date documentation is bad too, and that’s what
we normally deal with.

Some people work best with planning every detail out first
before you start implementing, but actionable documentation .
On the flip side, don’t be afraid to write documentation for
YOURSELF as the reader, so if planning on paper works great
for you then keep doing it.

Suddenly, documentation! – if you want until someone asks
for documentation, that might mean you have to drop

201

everything and write it immediately.

Like I said, this means more docs and not less.

And it’s not an excuse to avoid documentation. This is simply an
attempt to make less wasteful documentation.

So now I am going to dive into some practical examples of docs I
think were exceptionally “actionable”. I’ve made most of these, but
did

201

So that brings me to the end of my talk on “Make Actionable
Documentation”.

202

Thank you Liz!

The one type of document Liz didn’t go into is the one you
write to impress the publisher.

Ah, to live in a world where those weren’t necessary.

And finally, our last speaker is here to end us on a subject
dear to my heart.

Often we think about game systems as intuitive or sticky or
challenging or good for flow.

But what about systems that produce humanity?

Our next speaker has worked on everything from sports
games to Total War to 2014’s game of the year Shadow or
Mordor…

Michael de Plater!

Todays talk is going to be about what connects all of these
games I’ve worked on over the last 20 years. They are all
systems which produce stories.

205

These three may seem very different genres, but the
underlying designs have a lot in common in terms of how they
handle conflict, drama, time and the nesting of the personal
within the epic.

There’s a reason they all have Movie Genres and TV Tropes
pages

206

Sports Seasons ARE Game Design – and you can see
examples of different Designs across different Sports and
Cultures.

Including of course E-Sports

Confession and Caveat – I don’t really like Sports. I’ve always
just looking at them from the perspective of a Game Designer.

207

As well as high level narrative structures Sports System
Design also generates personal / individual stories implicitly
through the structure of its design - Daily.

[Will update this to the most recent Sports News]

Heroes and Villains emerge implicitly out of the Design of
Winners, Losers, Statistics, Injuries, Grudges

208

Statistics can create Stories within the System as well as
Meta-Narratives outside of the Game – via commentators and
players.

People may follow these stories without even particularly
caring for the sports or even watching them.

209

War scenarios are similar to sports in many structural ways.

Time always moves forward to create dramatic situations – no
“restarting” the moment something goes wrong.

Just as you may lose the play but win the game, you may lose
the battles but winning the war, escalating towards an
inevitable climax

210

Specific example of embracing Failure but moving forward – in
Rome: Total War characters would die (similar to injuries in
Sports) but leave heirs who would inherit Traits.

Creates strong attachment to characters and emergent drama.

And incidentally, looking forward, the Nemesis System deals
with this in a different way through Cheating Death and Scars
– literally writing stories on the flesh of the characters.

211

Often in Strategy Games the late game is dull because beyond
a tipping point you know who’s going to win and the rest is
mopping up

We dealt with this in Rome: Total War with the Civil War
Mechanic – once the Roman Faction is close to winning it splits
up and becomes multiple factions – generating drama and a
climatic end game.

And this system was derived from the real world reference.

212

Though it may be not obvious at first, I hope see now how this
built to Shadow or Mordor’s Nemesis System.

Same ingredients as Sports and War – but focused on the
Personal, which is appropriate for an Action Game. The ideas
are similar but the scale is different.

Once again there is an emergent procedural narrative that’s
neither linear nor branching. Player has tremendous choice
and personal investment in a story that is “theirs” yet we’re
not building bespoke “branches”.

213

Humans are hard-wired to understand shifting social
structures and hierarchies – a great deal of human storytelling
and drama is based on this model. Makes it a great mechanic
for generating stories.

The Nemesis System enabled Players to intervene in a Social
Hierarchy through Death (their own death moved up their
enemies), Revenge and ultimately Domination and Power –
players loved being able to mess with social structures.

214

Balancing two superficially conflicting ideas is key

Note this is very similar to Play by Play Commentary in Sports
Games – but again the difference / emphasis is on making it
Personal and embedding it into the dynamic narrative.

215

I spoke about my experience across 3 genres – Sports,
Wargames and Action-Adventure.

But these ideas can be applied across many genres yet
explored.

For instance, think about how all of these ideas are implicit to
Multiplayer Experiences and there are huge opportunities to
narrativise those systems – like the fertile grounds of
Minecraft & Day-Z – where the stories could be made strong
while still keeping the game systems-driven and open-ended.

216

217

Thanks

218

Thank you Mike!

That’s our final session – now that we’ve seen all these, think
about how you may want to add these rules to your own deck
of design rules

Like building your own personal Magic deck, the cards you
choose to use will effect how you develop games.

Different decks will work better or worse in different
situations.

But most important is that your deck of game design rules
feels good to you and is one that you enjoy developing with.

220

That’s a wrap!

Slides are up right now on my web site if you want to go
check them out – in the writings section!

We’re not going to do Q&A but we’ll be hanging around up
here for as long as they’ll let us if you want to come ask us
some questions.

Please remember to fill out your surveys. The comments are
really useful for helping us know how we did and what you’d
like to see in the future.

Thanks to all the speakers and thanks to everyone for coming!

