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Hi, I'm Andreas!
● Today's topic: the Jaguar CPU architecture
● Microarchitecture matters!

● Code doesn't run in a vacuum
● Low-level knowledge improves high-level designs
● x86 doesn't mean "stop caring"



The Jaguar: What we already know
● Well rounded
● Not many crazy pitfalls 
● Out of order execution
● Sounds easy!





Anonymous programmers on OOO
● "Memory access isn't a problem with OOO"
● "Branches aren't a problem with OOO"
● "SIMD isn't necessary on OOO"
● What's true? False?

● We (optimizers) need OOO intuition, badly



Disclaimers
● This talk contains micro-optimization material
● Don't start here and expect results

● Take a deep breath
● Step back, consider the whole problem
● Re-organize data before resorting to micro-opts

● Micro-optimize only where it makes sense
● Special sauce for special circumstances
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OOO and instruction fetching
● A Jaguar core is always* fetching instructions
● It can decode up to 2 macro-ops / cycle

● Most instructions decode to one macro-op
● AVX instructions most notably take 2
● Macro-ops split into micro-ops

* Assuming space in all relevant buffers
* Assuming no I1 or ITLB misses



Macro vs micro ops
● add eax, ebx => 1 macro-op, 1 micro-op
● add eax, [m] => 1 macro-op, 2 micro-ops
● add [m], eax => 1 macro-op, 2 (!) micro-ops



But where does it fetch from?
● Branch prediction and OOO are intertwined
● If the core doesn't know for sure, it'll guess

● This is called speculative execution
● If it guesses incorrectly, things suck
● Fortunately, it's a pretty good guesser*

* Assuming programmer doesn't ignore microarchitecture



Will it execute speculatively into
● ...branches?

● Yes
● ...direct function calls?

● Yes
● ...indirect (virtual/pointer) function calls?

● Yes, scarily



Getting fetching wrong
● Illusion of correctness is maintained, of course
● But the errant instructions will affect the cache

● Loads and line reservations for writes
● No way to "undo" - visible on other cores too

● Especially bad for "branchy" data structures
● Tree-like data with pointers



Branchy data structure example

struct Node
{
  Node *left;
  Node *right;
  BigData bigData;
};



Branchy data structure example
void DoSomethingExpensiveToNodes(Node* n, int f)
{
  int decide = SomehowDecideChild(n, f); // high latency
  if (decide < 0) {
    DoSomethingExpensiveToNodes(n->left);
  } else if (decide > 0) {
    DoSomethingExpensiveToNodes(n->right);
  } else {
    // Do something expensive to n->bigData
  }
}

Misprediction central 
= Bad guesses galore



Retiring
● All instructions retire (commit) in program order

● That is, their effects are visible from outside the core
● Retirement happens at a max rate of 2/cycle

● They can also be killed instead of retired
● For example due to branch mispredictions as we saw
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L2 misses, still a thing?
● A load from RAM will not retire for 200+ cycles
● So what?

● OOO can reorder around long latencies, right?
● Sure, but: Always Be Fetching

● The frontend issues 2 instructions / cycle..



http://www.realworldtech.com/jaguar/4/



L2 misses & RCU tag team #fail
● L2 miss followed by low-latency instructions

● Cache hits, simple/vector ALU etc etc
● Remember, 2 per cycle!

● RCU fills up in < 32 cycles, and we're wedged
● In practice less, because macro ops != instructions

● Result: ~150+ cycles wasted stalling
● Only the L2 miss retiring will free up RCU space



Micro-optimizing L2 misses
● Re-schedule instructions

● Move independent instructions with long latencies to 
right after a load that is likely to miss

● The longer the latencies, the more it softens the blow
● Square roots, divides and reciprocals
● And other (independent) loads!



Poor load organization
void MyRoutine(A* ap, B* bp)
{
  float a = ap->A;   // L2 miss
  < prep work >      // RCU stall risk

  float b = bp->B;   // L2 miss!
  < prep work >      // Moar RCU stall

  < rest of routine >
}



Better load organization
void MyRoutineAlt(A* ap, B* bp)
{
  float a = ap->A;   // L2 miss
  float b = bp->B;   // L2 miss (probably "free")

  < prep work >
  < prep work >

  < rest of routine >
}



L2 misses on Jaguar in practice
● OOO doesn't fundamentally solve RAM latency

● The window is way too small
● Making it bigger has other problems

● Try to issue loads together to overlap misses
● Hedging our bets in case more than one miss
● Can overlap up to 8 L2 misses on single core
● Key improvement over IOE, with some effort



Warming up: Unrolling
● Classical optimization technique

● Idea: reduce loop management overhead
● Very important on PS3/X360 in-order CPUs

● Heavily employed by compilers on x86 too
● Clang *loves* unrolling, as we'll see

● Let's add some integers from an array
● Does unrolling help?



Simple Unrolling, Scalar Base Version

.loop: add eax, [rdi]
lea rdi, [rdi +  4]
dec esi
jnz .loop



Simple Unrolling, Scalar 2x unroll

.loop: add eax, [rdi +  0]
add eax, [rdi +  4]
lea rdi, [rdi +  8]
dec esi
jnz .loop



Simple Unrolling, Scalar 4x unroll

.loop: add eax, [rdi +  0]
add eax, [rdi +  4]
add eax, [rdi +  8]
add eax, [rdi + 12]
lea rdi, [rdi + 16]
dec esi
jnz .loop



Simple Unrolling, Scalar 8x unroll

.loop: add eax, [rdi +  0]
add eax, [rdi +  4]
add eax, [rdi +  8]
add eax, [rdi + 12]
add eax, [rdi + 16]
add eax, [rdi + 20]
add eax, [rdi + 24]
add eax, [rdi + 28]
lea rdi, [rdi + 32]
dec esi
jnz .loop



Scalar Unroll Performance, 1024 elems
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Scalar Loop Performance Analysis
● You get to talk to cache once per cycle

● (Once for reading, once for writing)
● Each add needs one cache transaction to read

● 1024 x 32-bit read
● Each will have 3 cycles D1$ latency
● Fully overlaps to 1026 cycles of pure cache latency
● 1026 = best possible latency this loop can ever have



Scalar bottleneck
● The base loop bottlenecks on frontend

● 2 instructions/cycle means 50% ALU utilization
● We have 4 instructions in the loop, only one add

● As we unroll we shift the bottleneck to load unit
● Getting closer and closer to the 1026 best case

● At 3x unroll we have an ideal steady state
● Any more is a waste of .text bytes



What about SIMD?

.loop: vpaddd xmm0, xmm0, [rdi]
 ; unroll more vpaddd here..
lea rdi, [rdi + 0x10]
dec rsi
jnz .loop



Results
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SIMD analysis
● Uses full 128 bit/cycle D1$ bandwidth

● 4x improvement over scalar code
● Not primarily because the adds are parallel!

● Unrolling helps the same way as for scalar case
● Shifts emphasis from FE to LS



Unrolling Takeaways
● Unrolling can help very simple loops

● By shifting emphasis from frontend to other ports
● Frontend is relatively weak at 2 insns/cycle

● The cache can deliver 128 bits per cycle
● Scalar code uses only a fraction of that bandwidth
● SIMD code has a natural edge scalar can't touch



What if we do it in C?
uint32_t UnrollTestC(const uint32_t* nums, size_t count)
{
  uint32_t sum = 0;
  while (count--)
  {
    sum += *nums++;
  }
  return sum;
}



Meet clang, unroller extraordinaire
UnrollTestC(unsigned int const*, unsigned long):
  xor          eax,eax
  test         rsi,rsi
  je           00000000000000ABh
  mov          rax,rsi
  and          rax,0FFFFFFFFFFFFFFF0h
  mov          r8,rsi
  vpxor        xmm0,xmm0,xmm0
  mov          rcx,rsi
  and          r8,0FFFFFFFFFFFFFFF0h
  je           000000000000005Fh
  sub          rcx,rax
  lea          rdx,[rdi+r8*4]
  add          rdi,30h
  vpxor        xmm0,xmm0,xmm0
  mov          rax,r8
  vpxor        xmm1,xmm1,xmm1
  vpxor        xmm2,xmm2,xmm2
  vpxor        xmm3,xmm3,xmm3
  vpaddd       xmm0,xmm0,xmmword ptr [rdi-30h]
  vpaddd       xmm1,xmm1,xmmword ptr [rdi-20h]
  vpaddd       xmm2,xmm2,xmmword ptr [rdi-10h]
  vpaddd       xmm3,xmm3,xmmword ptr [rdi]
  add          rdi,40h
  add          rax,0FFFFFFFFFFFFFFF0h

  jne          0000000000000040h
  jmp          0000000000000071h
  mov          rdx,rdi
  xor          r8d,r8d
  vpxor        xmm1,xmm1,xmm1
  vpxor        xmm2,xmm2,xmm2
  vpxor        xmm3,xmm3,xmm3
  vpaddd       xmm0,xmm1,xmm0
  vpaddd       xmm0,xmm2,xmm0
  vpaddd       xmm0,xmm3,xmm0
  vmovhlps     xmm1,xmm0,xmm0
  vpaddd       xmm0,xmm0,xmm1
  vphaddd      xmm0,xmm0,xmm0
  vmovd        eax,xmm0
  cmp          r8,rsi
  je           00000000000000ABh
  nop          word ptr cs:[rax+rax+0]
  add          eax,dword ptr [rdx]
  add          rdx,4
  dec          rcx
  jne          00000000000000A0h
  ret          



Clang output analysis
● Clang unrolls to 4x SIMD

● Achieves theoretical best case in this case
● So compilers are great at this stuff, right?

● Sometimes.. One sample is not enough.



Unrolling in General
● Typically doesn't help more complicated loops

● Any added latency anywhere shifts the balance
● OOO is a hardware loop unroller!

● The hardware will run head into "future" iterations of 
the loop, issuing them speculatively

● Only if everything is in cache and all ops are simple 
will FE dominate the loop performance



Jaguar Unrolling Guidelines
● Turn to SIMD before you unroll scalar code

● Use SSE (with VEX encoding), but not AVX
● Unroll to gather data to run at full SIMD width

● E.g. Unroll 32-bit fetching gather loop 4 times
● Then process in 128-bit SIMD registers



Prefetching
● Required on PPC console era chips

● Sprinkle in loops and reap benefits!
● x86 also offers prefetch instructions

● PREFETCHT0/1/2 - Vanilla prefetches
● PREFETCHNTA - Non-temporal prefetch
● Use _mm_prefetch(addr, _MM_HINT_xxx)

● So, should we use prefetches on Jaguar?



Linked List Example

struct GameObject {
  int         m_Health;
  GameObject *m_Next;
  // other members ...
};

int CountDeadObjects(GameObject* head)
{
  int dead_count = 0;
  while (head) {
    GameObject *next = head->m_Next;
    _mm_prefetch(next, _MM_HINT_T0);
    dead_count += head->m_Health == 0 ? 1 : 0;
    head = next;
  }
  return dead_count;
}



Linked List Asm, clang
CountDeadObjects:
        push        rbp
        mov         rbp, rsp
        xor         eax, eax
        test        rdi, rdi
        .align      4, 0x90
.loop:  mov         rcx, qword ptr [rdi + 8]
        prefetcht0  byte ptr [rcx]
        cmp         dword ptr [rdi], 1
        adc         eax, 0
        test        rcx, rcx
        mov         rdi, rcx
        jne         .loop
.done   pop         rbp
        ret

Neat!

dead_count += head->m_Health == 0 ? 1 : 0;



Linked List Prefetching, Light Loop
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Linked List Prefetching, Light Loop
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"We chased pointers, and I helped!"



Linked List Results
● This type of prefetching is useless

● No time for prefetch to actually help
● Linked lists turn OOO into in-order

● 100% bound by memory latency
● Next pointer to fetch is hidden in memory
● No way for CPU to run ahead and get data early
● Also renders hardware array prefetchers useless



Basic Array Example
● Consuming data linearly from RAM
● No dependent pointers involved
● Does prefetching help?



Basic Array Example

struct Node {
  // data (24 bytes)
};

Node* base = ...;
for (size_t i = 0; i < count; ++i) {
  // Compute based on base[i];
}



Basic Array, Light Workload
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Basic Array, Light Workload
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Basic Array, Light Workload, Warm
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Light Array Workload Analysis
● Prefetching in the cold case doesn't help

● OOO does it better, more cheaply than we can
● Short loops will be running 4+ unrolls ahead

● Prefetching in the warm case actually hurts
● Adds useless ops for the FE to decode
● Adds load unit traffic that limit OOO "unrolling"

● Hardware figures this out itself without "help"



Heavy Array Workload
● Let's do some more number crunching
● Enough that we're compute bound in theory
● Does prefetching help in this case?



Basic Array, Heavy Workload
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Basic Array, Heavy Workload
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Basic Array Prefetching
● Don't waste time on this
● Jaguar loves arrays

● The CPU has dedicated prefetchers (Both D1$ + L2!)
● OOO will execute ahead and issue loads too

● It's very hard to improve on basic array 
performance using prefetches
● But you can definitely hurt it!



Mixed Workload Example
● Walking array elements with two pointers

● struct Node { Secondary *p1, *p2; }

● Compute based on data fetched from both
● Does prefetching help?

● Light workload - a couple of ALU instructions
● Heavy workload - 100s of cycles of ALU latency



Light workload, Pointer Chasing
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Heavy workload, Pointer Chasing
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Mixed Workload Results
● Prefetch can win when there is a lot of ALU

● Preventing OOO scheduler from fetching ahead
● Prefetching helps as in the "good old days"

● In practice this isn't a super common setup
● More bang for the buck to minimize pointers



Jaguar Prefetching Guidelines
● Never prefetch basic arrays

● Actually hurts warm cache case with short loops
● Prefetch only heavy array/pointer workloads

● Need work to overlap the latency of the prefetch
● Non-intuitive to reason about

● Best to add close to gold when things are stable
● Always measure, never assume!



Practical: Linear Searching
● How to best search an unsorted array?
● Jaguar micro-optimization exercise

● Assume everything is in D1 cache
● Assume searching unsorted 32-bit numbers
● Assume we just need found/not found result
● Assume we expect to find something 99% of the time

●Need to scan about half the array if early outing



The Naive Approach

bool ArraySearchNaiveC(uint32_t needle, const uint32_t haystack[], int count)
{
  for (int i = 0; i < count; ++i)
  {
    if (needle == haystack[i])
    {
      return true;
    }
}
  return false;
}



clang output
ArraySearchNaiveC:
          xor          ecx,ecx
          mov          eax,0
          test         edx,edx
          jle          .fail
          nop          dword ptr [rax+rax+0]
.loop:    mov          al,1
          cmp          dword ptr [rsi+rcx*4],edi
          je           .success
          inc          rcx
          cmp          ecx,edx
          jl           .loop
.fail:    xor          eax,eax
.success: ret          

Wat
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The naive approach, 1980s style

repne scasd

Isn't x86 something else?



Naive performance vs REPNE SCASD
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Wat loses
● That redundant mov cost clang the win

● In the "naive" category
● Loops this tight are extremely heavy on FE

● Remember: max 2 decodes / cycle
● Additional instructions cause significant perf drops

● String instructions can easily be beat though



PPC-optimized approach
● We were using a remnant from our PS3 engine

● Unroll cluster of 4 compares
● Merge and branch once per cluster
● Way better on PPU

● How does it perform on Jaguar?



FV32_Loop:
  v0    = list[0];
  v1    = list[1];
  v2    = list[2];
  v3    = list[3];
  list += 4;
  v0    = v0 ^ value;
  v1    = v1 ^ value;
  v2    = v2 ^ value;
  v3    = v3 ^ value;
  v0    = v0 | (-v0);
  v1    = v1 | (-v1);
  v2    = v2 | (-v2);
  v3    = v3 | (-v3);
  v0    = v0 & v1;
  v2    = v2 & v3;
  if ((v0 & v2) == 0) goto FV32_Found;
  if (list !=loop_term) goto FV32_Loop;



PPC-optimized performance
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PPC-optimized aftermath
● Old in-order optimizations not always clear wins
● Watch out for trading ALU for less branching

● Can remove OOO "unrolling" in tight loops
● Latency chains become longer in general

● The 4 cluster branching wins after ~32 elements
● Should be able to do better..



Let's search the whole array!
● Idea: Make it more predictable

● Always the same work for a certain array size
● Should be simpler to reason about?



Whole Array Search

bool ArraySearchWholeArray(uint32_t needle, const uint32_t haystack[], int count)
{
  bool found = false;
  for (int i = 0; i < count; ++i)
  {
    found |= needle == haystack[i];
  }
  return found;
}



Whole Array Search Performance
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Whole Array Search Performance
C

yc
le

s

0

100
200
300
400

500

Array Size

92 93 94 95 96 97 98 99 10
0

Naive
Whole



clang: "Let me unroll that for you..."
ArraySearchWholeArray(unsigned int, unsigned int 
const*, int):
  test         edx,edx
  jle          0000000000000171h
  lea          eax,[rdx-1]
  lea          r8,[rax+1]
  xor          ecx,ecx
  mov          r9,1FFFFFFE0h
  vpxor        xmm0,xmm0,xmm0
  vxorps       xmm1,xmm1,xmm1
  vxorps       xmm2,xmm2,xmm2
  vxorps       xmm3,xmm3,xmm3
  and          r9,r8
  je           000000000000011Dh
  vmovd        xmm0,edi
  vpshufd      xmm0,xmm0,0
  vinsertf128  ymm8,ymm0,xmm0,1
  lea          rcx,[rsi+60h]
  inc          rax
  and          rax,0FFFFFFFFFFFFFFE0h
  vpxor        xmm0,xmm0,xmm0
  vextractf128 xmm10,ymm8,1
  vmovdqa      xmm11,xmmword ptr [...]
  vxorps       xmm1,xmm1,xmm1
  vxorps       xmm2,xmm2,xmm2
  vxorps       xmm3,xmm3,xmm3
  nop          dword ptr [rax+0]
  vpcmpeqd     xmm7,xmm10,xmmword ptr [rcx-50h]
  vpshufb      xmm7,xmm7,xmm11
  vpcmpeqd     xmm4,xmm8,xmmword ptr [rcx-60h]
  vpshufb      xmm4,xmm4,xmm11
  vmovlhps     xmm9,xmm4,xmm7
  vpcmpeqd     xmm7,xmm10,xmmword ptr [rcx-30h]
  vpshufb      xmm7,xmm7,xmm11

  vpcmpeqd     xmm4,xmm8,xmmword ptr [rcx-40h]
  vpshufb      xmm4,xmm4,xmm11
  vmovlhps     xmm4,xmm4,xmm7
  vpcmpeqd     xmm7,xmm10,xmmword ptr [rcx-10h]
  vpshufb      xmm7,xmm7,xmm11
  vpcmpeqd     xmm5,xmm8,xmmword ptr [rcx-20h]
  vpshufb      xmm5,xmm5,xmm11
  vmovlhps     xmm5,xmm5,xmm7
  vpcmpeqd     xmm7,xmm10,xmmword ptr [rcx+10h]
  vpshufb      xmm7,xmm7,xmm11
  vpcmpeqd     xmm6,xmm8,xmmword ptr [rcx]
  vpshufb      xmm6,xmm6,xmm11
  vmovlhps     xmm6,xmm6,xmm7
  vpor         xmm0,xmm0,xmm9
  vorps        xmm1,xmm1,xmm4
  vorps        xmm2,xmm2,xmm5
  vorps        xmm3,xmm3,xmm6
  sub          rcx,0FFFFFFFFFFFFFF80h
  add          rax,0FFFFFFFFFFFFFFE0h
  jne          00000000000000A0h
  mov          rcx,r9
  vorps        xmm0,xmm1,xmm0
  vorps        xmm0,xmm2,xmm0
  vorps        xmm0,xmm3,xmm0
  vmovhlps     xmm1,xmm0,xmm0
  vorps        xmm0,xmm0,xmm1
  vpshufd      xmm1,xmm0,1
  vpor         xmm0,xmm0,xmm1
  vpalignr     xmm1,xmm0,xmm0,2
  vpor         xmm0,xmm0,xmm1
  vpextrb      rax,xmm0,0
  cmp          r8,rcx
  je           0000000000000173h
  lea          rsi,[rsi+rcx*4]

  sub          edx,ecx
  nop          word ptr cs:[rax+rax+0]
  cmp          dword ptr [rsi],edi
  sete         cl
  or           al,cl
  add          rsi,4
  dec          edx
  jne          0000000000000160h
  jmp          0000000000000173h
  xor          eax,eax
  and          al,1
  ret          



So, compilers are great at this?
● Not always...
● Highly variable performance in this version

● Long scalar fixup loop at the end
● We can easily do better ourselves



Let's try that again
bool ArraySearchSimd(uint32_t needle, const uint32_t haystack[], int count)
{
  __m128i n = _mm_set1_epi32(needle);
  __m128i mask = _mm_setzero_si128();
  int aligned_count = count & ~3;
  int straggler_count = count & 3;
  int i;

  for (i = 0; i < aligned_count; i += 4) {
    __m128i val = _mm_loadu_si128((const __m128i*)(haystack + i));
    __m128i cmpmask = _mm_cmpeq_epi32(val, n);
    mask = _mm_or_si128(mask, cmpmask);
  }

  // Stragglers
  uint32_t straggler_mask_int = straggler_count ? ~0u << (4 - straggler_count) : 0;
  __m128i sm0 = _mm_cvtsi32_si128(straggler_mask_int);
  __m128i sm1 = _mm_unpacklo_epi8(sm0, sm0);
  __m128i sm2 = _mm_unpacklo_epi16(sm1, sm1);
  __m128i val = _mm_loadu_si128((const __m128i*)(haystack + count - 4));
  __m128i cmpmask = _mm_and_si128(_mm_cmpeq_epi32(val, n), sm2);
  mask = _mm_or_si128(mask, cmpmask);
  return _mm_movemask_ps(_mm_castsi128_ps(mask));
}



Let's try that again
ArraySearchSimd(unsigned int, unsigned int const*, int):
00000000000001C0 C5 F9 6E C7          vmovd        xmm0,edi
00000000000001C4 C5 F9 70 C0 00       vpshufd      xmm0,xmm0,0
00000000000001C9 89 D1                mov          ecx,edx
00000000000001CB 83 E1 FC             and          ecx,0FFFFFFFCh
00000000000001CE C5 F1 EF C9          vpxor        xmm1,xmm1,xmm1
00000000000001D2 31 C0                xor          eax,eax
00000000000001D4 85 C9                test         ecx,ecx
00000000000001D6 7E 19                jle          00000000000001F1h
00000000000001D8 31 FF                xor          edi,edi
00000000000001DA 66 0F 1F 44 00 00    nop          word ptr [rax+rax+0]
00000000000001E0 C5 F9 76 14 BE       vpcmpeqd     xmm2,xmm0,xmmword ptr [rsi+rdi*4]
00000000000001E5 C5 F1 EB CA          vpor         xmm1,xmm1,xmm2
00000000000001E9 48 83 C7 04          add          rdi,4
00000000000001ED 39 CF                cmp          edi,ecx
00000000000001EF 7C EF                jl           00000000000001E0h
00000000000001F1 89 D7                mov          edi,edx
00000000000001F3 83 E7 03             and          edi,3
00000000000001F6 74 0E                je           0000000000000206h
00000000000001F8 B9 04 00 00 00       mov          ecx,4
00000000000001FD 29 F9                sub          ecx,edi
00000000000001FF B8 FF FF FF FF       mov          eax,0FFFFFFFFh
0000000000000204 D3 E0                shl          eax,cl
0000000000000206 C5 F9 6E D0          vmovd        xmm2,eax
000000000000020A C5 E9 60 D2          vpunpcklbw   xmm2,xmm2,xmm2
000000000000020E C5 E9 61 D2          vpunpcklwd   xmm2,xmm2,xmm2
0000000000000212 48 63 C2             movsxd       rax,edx
0000000000000215 C5 F9 76 44 86 F0    vpcmpeqd     xmm0,xmm0,xmmword ptr [rsi+rax*4-10h]
000000000000021B C5 F9 DB C2          vpand        xmm0,xmm0,xmm2
000000000000021F C5 F1 EB C0          vpor         xmm0,xmm1,xmm0
0000000000000223 C5 F8 50 C0          vmovmskps    rax,xmm0
0000000000000227 85 C0                test         eax,eax
0000000000000229 0F 95 C0             setne        al
000000000000022C C3                   ret          
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What about binary search?
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Small Search Guidelines
● Naive code is reasonable for small counts

● Because OOO runs Excel faster!
● Prefer SIMD for predictable <100 elem searches

● Binary search competitive >100 32-bit elements
● Scrutinize older micro-optimization closely
● Make sure the compiler is playing for your team

● Auto-vectorization generates terrible code sometimes



Measuring latency in cycles
● Need a way to synchronize OOO machinery

● Retire all pending instructions, prevent scheduling
● CPUID fits the bill - has fixed cost

● Use RDTSC to read time stamp counter
● RDTSCP doesn't actually retire all pending 

instructions, can't use it. (See AMD errata.)
● Assumes platform has cycle TSCs (check yours)



Measuring, code
● Use CPUID/RDTSC/CPUID sandwich
● Subtract fixed cost later during reporting
xor   eax, eax
cpuid                     ; retire + prevent issues
rdtsc                     ; read TSC into edx:eax
shl   rdx, 32
lea   r15, [rax + rdx]    ; combine to 64-bit quantity, save in r15

xor   eax, eax
cpuid                     ; retire + prevent issues



Measuring latency
● Warm up I1 by calling the code first
● Run multiple tests to avoid interference

● Even consoles have interrupts, OS shenanigans
● Clear cache by using _mm_clflush() in a loop



OOO Intuition
● Jaguar OOO is a loop unroller

● Up to 64-or-so instructions
● Jaguar OOO is a prefetcher

● And even fetches loads speculatively down branches 
you haven't taken yet!

● Jaguar OOO doesn't solve memory latency
● But overlapping L2 misses is a big deal
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Anonymous programmers corrected
● "Memory access isn't a problem with OOO"

● It still is. Overlap your loads!
● "Branches aren't a problem with OOO"

● They still are. Avoid trees & speculative cache 
pollution.

● "SIMD isn't necessary on OOO"
● It's the only way to get the full cache bandwidth!



Takeaways for Jaguar Perf
● Unrolling, prefetching are of limited use

● Measure carefully, consider maintenance aspects
● Use arrays

● Really, really, really consider using an array
● Linked lists turns OOO into in-order disaster

● Use SIMD
● See my talk from last year for more meat



Resources
● Software Optimization Guide for AMD Family 

16h Processors (AMD, pdf)
● http://www.agner.org/optimize/#manuals
● "JAGUAR" AMD’s Next Generation Low Power 

x86 Core, Jeff Rupley, AMD Fellow

http://www.agner.org/optimize/#manuals


Thank you! - Q & A
email: afredriksson@insomniacgames.com
twitter: @deplinenoise

Special thanks to: 
  Mark Cerny 
  Fabian Giesen  
  Jonathan Adamczewski  
  Mike Acton & the rest of the Insomniac Core team

mailto:afredriksson@insomniacgames.com


Bonus: Hot D1, Cold L2
● Jaguar has an inclusive cache hierarchy

● All D1/I1 lines must also be in L2
● L2 hears about all D1 misses
● L2 hears nothing about D1 hits
● ...
● So what if you have a routine that does nothing 

but HIT D1?



Bonus: Hot D1, Cold L2
● Net effect: White hot D1 data can be evicted

● L2 assoc = 16 lines, they WILL be reused
● Our data looks old in the LRU order and the L2 hasn't 

heard about it for a while..
● End game: Inner loop has to L2 miss all the way to main 

memory randomly to get back its really hot data
● In practice not a big deal, but can definitely show up


