
Taming the Jaguar 
 
Andreas Fredriksson 
Lead Engine Programmer 
Insomniac Games

Hi, I'm Andreas!
● Today's topic: the Jaguar CPU architecture
● Microarchitecture matters!

● Code doesn't run in a vacuum
● Low-level knowledge improves high-level designs
● x86 doesn't mean "stop caring"

The Jaguar: What we already know
● Well rounded
● Not many crazy pitfalls
● Out of order execution
● Sounds easy!

Anonymous programmers on OOO
● "Memory access isn't a problem with OOO"
● "Branches aren't a problem with OOO"
● "SIMD isn't necessary on OOO"
● What's true? False?

● We (optimizers) need OOO intuition, badly

Disclaimers
● This talk contains micro-optimization material
● Don't start here and expect results

● Take a deep breath
● Step back, consider the whole problem
● Re-organize data before resorting to micro-opts

● Micro-optimize only where it makes sense
● Special sauce for special circumstances

6 _��³-DJXDU�³�_��+RW&KLSV�2012

"JAGUAR" CORE
Micro-Architecture

FP PRF

To/From
Shared Cache Unit

Int PRF

ALU ALU LAGU SAGU

Div

Mul

Ld/St
Queues

BU

FP Decode
Rename

VALU VALU

FPAdd FPMul

VIMul St Conv.

32KB
DCache

Int Rename

Scheduler Scheduler

FP Scheduler

32KB
ICACHE

Decode
and

Microcode
ROMs

Branch
Prediction

Front end (FE)

Integer Unit
Renaming
Retiring

FP/Vec Unit
Renaming

Load/Store

OOO and instruction fetching
● A Jaguar core is always* fetching instructions
● It can decode up to 2 macro-ops / cycle

● Most instructions decode to one macro-op
● AVX instructions most notably take 2
● Macro-ops split into micro-ops

* Assuming space in all relevant buffers
* Assuming no I1 or ITLB misses

Macro vs micro ops
● add eax, ebx => 1 macro-op, 1 micro-op
● add eax, [m] => 1 macro-op, 2 micro-ops
● add [m], eax => 1 macro-op, 2 (!) micro-ops

But where does it fetch from?
● Branch prediction and OOO are intertwined
● If the core doesn't know for sure, it'll guess

● This is called speculative execution
● If it guesses incorrectly, things suck
● Fortunately, it's a pretty good guesser*

* Assuming programmer doesn't ignore microarchitecture

Will it execute speculatively into
● ...branches?

● Yes
● ...direct function calls?

● Yes
● ...indirect (virtual/pointer) function calls?

● Yes, scarily

Getting fetching wrong
● Illusion of correctness is maintained, of course
● But the errant instructions will affect the cache

● Loads and line reservations for writes
● No way to "undo" - visible on other cores too

● Especially bad for "branchy" data structures
● Tree-like data with pointers

Branchy data structure example

struct Node
{
 Node *left;
 Node *right;
 BigData bigData;
};

Branchy data structure example
void DoSomethingExpensiveToNodes(Node* n, int f)
{
 int decide = SomehowDecideChild(n, f); // high latency
 if (decide < 0) {
 DoSomethingExpensiveToNodes(n->left);
 } else if (decide > 0) {
 DoSomethingExpensiveToNodes(n->right);
 } else {
 // Do something expensive to n->bigData
 }
}

Misprediction central
= Bad guesses galore

Retiring
● All instructions retire (commit) in program order

● That is, their effects are visible from outside the core
● Retirement happens at a max rate of 2/cycle

● They can also be killed instead of retired
● For example due to branch mispredictions as we saw

The Battle of North Bridge

D1 Hit

L2 Hit

Memory

3 c

>= 25 c

at least 200 c

L2 misses, still a thing?
● A load from RAM will not retire for 200+ cycles
● So what?

● OOO can reorder around long latencies, right?
● Sure, but: Always Be Fetching

● The frontend issues 2 instructions / cycle..

http://www.realworldtech.com/jaguar/4/

L2 misses & RCU tag team #fail
● L2 miss followed by low-latency instructions

● Cache hits, simple/vector ALU etc etc
● Remember, 2 per cycle!

● RCU fills up in < 32 cycles, and we're wedged
● In practice less, because macro ops != instructions

● Result: ~150+ cycles wasted stalling
● Only the L2 miss retiring will free up RCU space

Micro-optimizing L2 misses
● Re-schedule instructions

● Move independent instructions with long latencies to
right after a load that is likely to miss

● The longer the latencies, the more it softens the blow
● Square roots, divides and reciprocals
● And other (independent) loads!

Poor load organization
void MyRoutine(A* ap, B* bp)
{
 float a = ap->A; // L2 miss
 < prep work > // RCU stall risk

 float b = bp->B; // L2 miss!
 < prep work > // Moar RCU stall

 < rest of routine >
}

Better load organization
void MyRoutineAlt(A* ap, B* bp)
{
 float a = ap->A; // L2 miss
 float b = bp->B; // L2 miss (probably "free")

 < prep work >
 < prep work >

 < rest of routine >
}

L2 misses on Jaguar in practice
● OOO doesn't fundamentally solve RAM latency

● The window is way too small
● Making it bigger has other problems

● Try to issue loads together to overlap misses
● Hedging our bets in case more than one miss
● Can overlap up to 8 L2 misses on single core
● Key improvement over IOE, with some effort

Warming up: Unrolling
● Classical optimization technique

● Idea: reduce loop management overhead
● Very important on PS3/X360 in-order CPUs

● Heavily employed by compilers on x86 too
● Clang *loves* unrolling, as we'll see

● Let's add some integers from an array
● Does unrolling help?

Simple Unrolling, Scalar Base Version

.loop: add eax, [rdi]
lea rdi, [rdi + 4]
dec esi
jnz .loop

Simple Unrolling, Scalar 2x unroll

.loop: add eax, [rdi + 0]
add eax, [rdi + 4]
lea rdi, [rdi + 8]
dec esi
jnz .loop

Simple Unrolling, Scalar 4x unroll

.loop: add eax, [rdi + 0]
add eax, [rdi + 4]
add eax, [rdi + 8]
add eax, [rdi + 12]
lea rdi, [rdi + 16]
dec esi
jnz .loop

Simple Unrolling, Scalar 8x unroll

.loop: add eax, [rdi + 0]
add eax, [rdi + 4]
add eax, [rdi + 8]
add eax, [rdi + 12]
add eax, [rdi + 16]
add eax, [rdi + 20]
add eax, [rdi + 24]
add eax, [rdi + 28]
lea rdi, [rdi + 32]
dec esi
jnz .loop

Scalar Unroll Performance, 1024 elems
C
yc
le
s

0

550

1100

1650

2200

Base 2x 3x 4x 8x

Scalar Loop Performance Analysis
● You get to talk to cache once per cycle

● (Once for reading, once for writing)
● Each add needs one cache transaction to read

● 1024 x 32-bit read
● Each will have 3 cycles D1$ latency
● Fully overlaps to 1026 cycles of pure cache latency
● 1026 = best possible latency this loop can ever have

Scalar bottleneck
● The base loop bottlenecks on frontend

● 2 instructions/cycle means 50% ALU utilization
● We have 4 instructions in the loop, only one add

● As we unroll we shift the bottleneck to load unit
● Getting closer and closer to the 1026 best case

● At 3x unroll we have an ideal steady state
● Any more is a waste of .text bytes

What about SIMD?

.loop: vpaddd xmm0, xmm0, [rdi]
 ; unroll more vpaddd here..
lea rdi, [rdi + 0x10]
dec rsi
jnz .loop

Results
C
yc
le
s

0

550

1100

1650

2200

Base 2x 3x SIMD x2 x4

SIMD analysis
● Uses full 128 bit/cycle D1$ bandwidth

● 4x improvement over scalar code
● Not primarily because the adds are parallel!

● Unrolling helps the same way as for scalar case
● Shifts emphasis from FE to LS

Unrolling Takeaways
● Unrolling can help very simple loops

● By shifting emphasis from frontend to other ports
● Frontend is relatively weak at 2 insns/cycle

● The cache can deliver 128 bits per cycle
● Scalar code uses only a fraction of that bandwidth
● SIMD code has a natural edge scalar can't touch

What if we do it in C?
uint32_t UnrollTestC(const uint32_t* nums, size_t count)
{
 uint32_t sum = 0;
 while (count--)
 {
 sum += *nums++;
 }
 return sum;
}

Meet clang, unroller extraordinaire
UnrollTestC(unsigned int const*, unsigned long):
 xor eax,eax
 test rsi,rsi
 je 00000000000000ABh
 mov rax,rsi
 and rax,0FFFFFFFFFFFFFFF0h
 mov r8,rsi
 vpxor xmm0,xmm0,xmm0
 mov rcx,rsi
 and r8,0FFFFFFFFFFFFFFF0h
 je 000000000000005Fh
 sub rcx,rax
 lea rdx,[rdi+r8*4]
 add rdi,30h
 vpxor xmm0,xmm0,xmm0
 mov rax,r8
 vpxor xmm1,xmm1,xmm1
 vpxor xmm2,xmm2,xmm2
 vpxor xmm3,xmm3,xmm3
 vpaddd xmm0,xmm0,xmmword ptr [rdi-30h]
 vpaddd xmm1,xmm1,xmmword ptr [rdi-20h]
 vpaddd xmm2,xmm2,xmmword ptr [rdi-10h]
 vpaddd xmm3,xmm3,xmmword ptr [rdi]
 add rdi,40h
 add rax,0FFFFFFFFFFFFFFF0h

 jne 0000000000000040h
 jmp 0000000000000071h
 mov rdx,rdi
 xor r8d,r8d
 vpxor xmm1,xmm1,xmm1
 vpxor xmm2,xmm2,xmm2
 vpxor xmm3,xmm3,xmm3
 vpaddd xmm0,xmm1,xmm0
 vpaddd xmm0,xmm2,xmm0
 vpaddd xmm0,xmm3,xmm0
 vmovhlps xmm1,xmm0,xmm0
 vpaddd xmm0,xmm0,xmm1
 vphaddd xmm0,xmm0,xmm0
 vmovd eax,xmm0
 cmp r8,rsi
 je 00000000000000ABh
 nop word ptr cs:[rax+rax+0]
 add eax,dword ptr [rdx]
 add rdx,4
 dec rcx
 jne 00000000000000A0h
 ret

Clang output analysis
● Clang unrolls to 4x SIMD

● Achieves theoretical best case in this case
● So compilers are great at this stuff, right?

● Sometimes.. One sample is not enough.

Unrolling in General
● Typically doesn't help more complicated loops

● Any added latency anywhere shifts the balance
● OOO is a hardware loop unroller!

● The hardware will run head into "future" iterations of
the loop, issuing them speculatively

● Only if everything is in cache and all ops are simple
will FE dominate the loop performance

Jaguar Unrolling Guidelines
● Turn to SIMD before you unroll scalar code

● Use SSE (with VEX encoding), but not AVX
● Unroll to gather data to run at full SIMD width

● E.g. Unroll 32-bit fetching gather loop 4 times
● Then process in 128-bit SIMD registers

Prefetching
● Required on PPC console era chips

● Sprinkle in loops and reap benefits!
● x86 also offers prefetch instructions

● PREFETCHT0/1/2 - Vanilla prefetches
● PREFETCHNTA - Non-temporal prefetch
● Use _mm_prefetch(addr, _MM_HINT_xxx)

● So, should we use prefetches on Jaguar?

Linked List Example

struct GameObject {
 int m_Health;
 GameObject *m_Next;
 // other members ...
};

int CountDeadObjects(GameObject* head)
{
 int dead_count = 0;
 while (head) {
 GameObject *next = head->m_Next;
 _mm_prefetch(next, _MM_HINT_T0);
 dead_count += head->m_Health == 0 ? 1 : 0;
 head = next;
 }
 return dead_count;
}

Linked List Asm, clang
CountDeadObjects:
 push rbp
 mov rbp, rsp
 xor eax, eax
 test rdi, rdi
 .align 4, 0x90
.loop: mov rcx, qword ptr [rdi + 8]
 prefetcht0 byte ptr [rcx]
 cmp dword ptr [rdi], 1
 adc eax, 0
 test rcx, rcx
 mov rdi, rcx
 jne .loop
.done pop rbp
 ret

Neat!

dead_count += head->m_Health == 0 ? 1 : 0;

Linked List Prefetching, Light Loop

0

20,000

40,000

60,000

80,000

100,000

120,000

2 50 100 150 200 250 300 350 400 450 500

Cold Warm

Linked List Prefetching, Light Loop

0

20,000

40,000

60,000

80,000

100,000

120,000

2 50 100 150 200 250 300 350 400 450 500

Prefetch Cold Cold Prefetch Warm Warm

"We chased pointers, and I helped!"

Linked List Results
● This type of prefetching is useless

● No time for prefetch to actually help
● Linked lists turn OOO into in-order

● 100% bound by memory latency
● Next pointer to fetch is hidden in memory
● No way for CPU to run ahead and get data early
● Also renders hardware array prefetchers useless

Basic Array Example
● Consuming data linearly from RAM
● No dependent pointers involved
● Does prefetching help?

Basic Array Example

struct Node {
 // data (24 bytes)
};

Node* base = ...;
for (size_t i = 0; i < count; ++i) {
 // Compute based on base[i];
}

Basic Array, Light Workload
C

yc
le

s

0

3,000

6,000

9,000

12,000

Array Size

0 200 400 600 800 1000

Cold
Warm

Basic Array, Light Workload
C

yc
le

s

0

3,000

6,000

9,000

12,000

Array Size

0 200 400 600 800 1000

Cold
Warm
Prefetch+1

Basic Array, Light Workload
C

yc
le

s

0

3,000

6,000

9,000

12,000

Array Size

0 200 400 600 800 1000

Cold
Warm
Prefetch+1
Prefetch+2
Prefetch+4
Prefetch+8

Basic Array, Light Workload, Warm
C

yc
le

s

0

1,250

2,500

3,750

5,000

Array Size

0 200 400 600 800 1000

Warm
Warm PF-1

Light Array Workload Analysis
● Prefetching in the cold case doesn't help

● OOO does it better, more cheaply than we can
● Short loops will be running 4+ unrolls ahead

● Prefetching in the warm case actually hurts
● Adds useless ops for the FE to decode
● Adds load unit traffic that limit OOO "unrolling"

● Hardware figures this out itself without "help"

Heavy Array Workload
● Let's do some more number crunching
● Enough that we're compute bound in theory
● Does prefetching help in this case?

Basic Array, Heavy Workload
C

yc
le

s

0

75,000

150,000

225,000

300,000

Array Size

0 200 400 600 800 1000

Cold
Warm

Basic Array, Heavy Workload
C

yc
le

s

0

75,000

150,000

225,000

300,000

Array Size

0 200 400 600 800 1000

Cold
Warm
Cold PF-1
Cold PF-2
Warm PF-1
Warm PF-2

Basic Array Prefetching
● Don't waste time on this
● Jaguar loves arrays

● The CPU has dedicated prefetchers (Both D1$ + L2!)
● OOO will execute ahead and issue loads too

● It's very hard to improve on basic array
performance using prefetches
● But you can definitely hurt it!

Mixed Workload Example
● Walking array elements with two pointers

● struct Node { Secondary *p1, *p2; }

● Compute based on data fetched from both
● Does prefetching help?

● Light workload - a couple of ALU instructions
● Heavy workload - 100s of cycles of ALU latency

Light workload, Pointer Chasing
C

yc
le

s

0
30,000
60,000
90,000

120,000
150,000

Array Size

0 200 400 600 800 1000

Cold
Warm

Light workload, Pointer Chasing
C

yc
le

s

0
30,000
60,000
90,000

120,000
150,000

Array Size

0 200 400 600 800 1000

Cold
Warm
Cold-PF1
Cold-PF2
Cold-PF4
Cold-PF8

Heavy workload, Pointer Chasing
C

yc
le

s

0
100,000
200,000
300,000

400,000
500,000

Array Size

0 200 400 600 800 1000

Cold
Warm

Heavy workload, Pointer Chasing
C

yc
le

s

0
100,000
200,000
300,000

400,000
500,000

Array Size

0 200 400 600 800 1000

Cold
Warm
Cold PF-1
Cold PF-2
Cold PF-4
Cold PF-8

Mixed Workload Results
● Prefetch can win when there is a lot of ALU

● Preventing OOO scheduler from fetching ahead
● Prefetching helps as in the "good old days"

● In practice this isn't a super common setup
● More bang for the buck to minimize pointers

Jaguar Prefetching Guidelines
● Never prefetch basic arrays

● Actually hurts warm cache case with short loops
● Prefetch only heavy array/pointer workloads

● Need work to overlap the latency of the prefetch
● Non-intuitive to reason about

● Best to add close to gold when things are stable
● Always measure, never assume!

Practical: Linear Searching
● How to best search an unsorted array?
● Jaguar micro-optimization exercise

● Assume everything is in D1 cache
● Assume searching unsorted 32-bit numbers
● Assume we just need found/not found result
● Assume we expect to find something 99% of the time

●Need to scan about half the array if early outing

The Naive Approach

bool ArraySearchNaiveC(uint32_t needle, const uint32_t haystack[], int count)
{
 for (int i = 0; i < count; ++i)
 {
 if (needle == haystack[i])
 {
 return true;
 }
}
 return false;
}

clang output
ArraySearchNaiveC:
 xor ecx,ecx
 mov eax,0
 test edx,edx
 jle .fail
 nop dword ptr [rax+rax+0]
.loop: mov al,1
 cmp dword ptr [rsi+rcx*4],edi
 je .success
 inc rcx
 cmp ecx,edx
 jl .loop
.fail: xor eax,eax
.success: ret

Wat

Naive performance
C

yc
le

s

0

100
200
300
400

500

Array Size

0 20 40 60 80 10
0

12
0

Naive

The naive approach, 1980s style

repne scasd

Isn't x86 something else?

Naive performance vs REPNE SCASD
C

yc
le

s

0

100
200
300
400

500

Array Size

0 20 40 60 80 10
0

12
0

Naive
scasd

Wat loses
● That redundant mov cost clang the win

● In the "naive" category
● Loops this tight are extremely heavy on FE

● Remember: max 2 decodes / cycle
● Additional instructions cause significant perf drops

● String instructions can easily be beat though

PPC-optimized approach
● We were using a remnant from our PS3 engine

● Unroll cluster of 4 compares
● Merge and branch once per cluster
● Way better on PPU

● How does it perform on Jaguar?

FV32_Loop:
 v0 = list[0];
 v1 = list[1];
 v2 = list[2];
 v3 = list[3];
 list += 4;
 v0 = v0 ^ value;
 v1 = v1 ^ value;
 v2 = v2 ^ value;
 v3 = v3 ^ value;
 v0 = v0 | (-v0);
 v1 = v1 | (-v1);
 v2 = v2 | (-v2);
 v3 = v3 | (-v3);
 v0 = v0 & v1;
 v2 = v2 & v3;
 if ((v0 & v2) == 0) goto FV32_Found;
 if (list !=loop_term) goto FV32_Loop;

PPC-optimized performance
C

yc
le

s

0

100
200
300
400

500

Array Size

0 20 40 60 80 10
0

12
0

Naive PPC

PPC-optimized aftermath
● Old in-order optimizations not always clear wins
● Watch out for trading ALU for less branching

● Can remove OOO "unrolling" in tight loops
● Latency chains become longer in general

● The 4 cluster branching wins after ~32 elements
● Should be able to do better..

Let's search the whole array!
● Idea: Make it more predictable

● Always the same work for a certain array size
● Should be simpler to reason about?

Whole Array Search

bool ArraySearchWholeArray(uint32_t needle, const uint32_t haystack[], int count)
{
 bool found = false;
 for (int i = 0; i < count; ++i)
 {
 found |= needle == haystack[i];
 }
 return found;
}

Whole Array Search Performance
C

yc
le

s

0

100
200
300
400

500

Array Size

0 20 40 60 80 10
0

12
0

Naive
Whole

WatWatWat

Whole Array Search Performance
C

yc
le

s

0

100
200
300
400

500

Array Size

92 93 94 95 96 97 98 99 10
0

Naive
Whole

clang: "Let me unroll that for you..."
ArraySearchWholeArray(unsigned int, unsigned int
const*, int):
 test edx,edx
 jle 0000000000000171h
 lea eax,[rdx-1]
 lea r8,[rax+1]
 xor ecx,ecx
 mov r9,1FFFFFFE0h
 vpxor xmm0,xmm0,xmm0
 vxorps xmm1,xmm1,xmm1
 vxorps xmm2,xmm2,xmm2
 vxorps xmm3,xmm3,xmm3
 and r9,r8
 je 000000000000011Dh
 vmovd xmm0,edi
 vpshufd xmm0,xmm0,0
 vinsertf128 ymm8,ymm0,xmm0,1
 lea rcx,[rsi+60h]
 inc rax
 and rax,0FFFFFFFFFFFFFFE0h
 vpxor xmm0,xmm0,xmm0
 vextractf128 xmm10,ymm8,1
 vmovdqa xmm11,xmmword ptr [...]
 vxorps xmm1,xmm1,xmm1
 vxorps xmm2,xmm2,xmm2
 vxorps xmm3,xmm3,xmm3
 nop dword ptr [rax+0]
 vpcmpeqd xmm7,xmm10,xmmword ptr [rcx-50h]
 vpshufb xmm7,xmm7,xmm11
 vpcmpeqd xmm4,xmm8,xmmword ptr [rcx-60h]
 vpshufb xmm4,xmm4,xmm11
 vmovlhps xmm9,xmm4,xmm7
 vpcmpeqd xmm7,xmm10,xmmword ptr [rcx-30h]
 vpshufb xmm7,xmm7,xmm11

 vpcmpeqd xmm4,xmm8,xmmword ptr [rcx-40h]
 vpshufb xmm4,xmm4,xmm11
 vmovlhps xmm4,xmm4,xmm7
 vpcmpeqd xmm7,xmm10,xmmword ptr [rcx-10h]
 vpshufb xmm7,xmm7,xmm11
 vpcmpeqd xmm5,xmm8,xmmword ptr [rcx-20h]
 vpshufb xmm5,xmm5,xmm11
 vmovlhps xmm5,xmm5,xmm7
 vpcmpeqd xmm7,xmm10,xmmword ptr [rcx+10h]
 vpshufb xmm7,xmm7,xmm11
 vpcmpeqd xmm6,xmm8,xmmword ptr [rcx]
 vpshufb xmm6,xmm6,xmm11
 vmovlhps xmm6,xmm6,xmm7
 vpor xmm0,xmm0,xmm9
 vorps xmm1,xmm1,xmm4
 vorps xmm2,xmm2,xmm5
 vorps xmm3,xmm3,xmm6
 sub rcx,0FFFFFFFFFFFFFF80h
 add rax,0FFFFFFFFFFFFFFE0h
 jne 00000000000000A0h
 mov rcx,r9
 vorps xmm0,xmm1,xmm0
 vorps xmm0,xmm2,xmm0
 vorps xmm0,xmm3,xmm0
 vmovhlps xmm1,xmm0,xmm0
 vorps xmm0,xmm0,xmm1
 vpshufd xmm1,xmm0,1
 vpor xmm0,xmm0,xmm1
 vpalignr xmm1,xmm0,xmm0,2
 vpor xmm0,xmm0,xmm1
 vpextrb rax,xmm0,0
 cmp r8,rcx
 je 0000000000000173h
 lea rsi,[rsi+rcx*4]

 sub edx,ecx
 nop word ptr cs:[rax+rax+0]
 cmp dword ptr [rsi],edi
 sete cl
 or al,cl
 add rsi,4
 dec edx
 jne 0000000000000160h
 jmp 0000000000000173h
 xor eax,eax
 and al,1
 ret

So, compilers are great at this?
● Not always...
● Highly variable performance in this version

● Long scalar fixup loop at the end
● We can easily do better ourselves

Let's try that again
bool ArraySearchSimd(uint32_t needle, const uint32_t haystack[], int count)
{
 __m128i n = _mm_set1_epi32(needle);
 __m128i mask = _mm_setzero_si128();
 int aligned_count = count & ~3;
 int straggler_count = count & 3;
 int i;

 for (i = 0; i < aligned_count; i += 4) {
 __m128i val = _mm_loadu_si128((const __m128i*)(haystack + i));
 __m128i cmpmask = _mm_cmpeq_epi32(val, n);
 mask = _mm_or_si128(mask, cmpmask);
 }

 // Stragglers
 uint32_t straggler_mask_int = straggler_count ? ~0u << (4 - straggler_count) : 0;
 __m128i sm0 = _mm_cvtsi32_si128(straggler_mask_int);
 __m128i sm1 = _mm_unpacklo_epi8(sm0, sm0);
 __m128i sm2 = _mm_unpacklo_epi16(sm1, sm1);
 __m128i val = _mm_loadu_si128((const __m128i*)(haystack + count - 4));
 __m128i cmpmask = _mm_and_si128(_mm_cmpeq_epi32(val, n), sm2);
 mask = _mm_or_si128(mask, cmpmask);
 return _mm_movemask_ps(_mm_castsi128_ps(mask));
}

Let's try that again
ArraySearchSimd(unsigned int, unsigned int const*, int):
00000000000001C0 C5 F9 6E C7 vmovd xmm0,edi
00000000000001C4 C5 F9 70 C0 00 vpshufd xmm0,xmm0,0
00000000000001C9 89 D1 mov ecx,edx
00000000000001CB 83 E1 FC and ecx,0FFFFFFFCh
00000000000001CE C5 F1 EF C9 vpxor xmm1,xmm1,xmm1
00000000000001D2 31 C0 xor eax,eax
00000000000001D4 85 C9 test ecx,ecx
00000000000001D6 7E 19 jle 00000000000001F1h
00000000000001D8 31 FF xor edi,edi
00000000000001DA 66 0F 1F 44 00 00 nop word ptr [rax+rax+0]
00000000000001E0 C5 F9 76 14 BE vpcmpeqd xmm2,xmm0,xmmword ptr [rsi+rdi*4]
00000000000001E5 C5 F1 EB CA vpor xmm1,xmm1,xmm2
00000000000001E9 48 83 C7 04 add rdi,4
00000000000001ED 39 CF cmp edi,ecx
00000000000001EF 7C EF jl 00000000000001E0h
00000000000001F1 89 D7 mov edi,edx
00000000000001F3 83 E7 03 and edi,3
00000000000001F6 74 0E je 0000000000000206h
00000000000001F8 B9 04 00 00 00 mov ecx,4
00000000000001FD 29 F9 sub ecx,edi
00000000000001FF B8 FF FF FF FF mov eax,0FFFFFFFFh
0000000000000204 D3 E0 shl eax,cl
0000000000000206 C5 F9 6E D0 vmovd xmm2,eax
000000000000020A C5 E9 60 D2 vpunpcklbw xmm2,xmm2,xmm2
000000000000020E C5 E9 61 D2 vpunpcklwd xmm2,xmm2,xmm2
0000000000000212 48 63 C2 movsxd rax,edx
0000000000000215 C5 F9 76 44 86 F0 vpcmpeqd xmm0,xmm0,xmmword ptr [rsi+rax*4-10h]
000000000000021B C5 F9 DB C2 vpand xmm0,xmm0,xmm2
000000000000021F C5 F1 EB C0 vpor xmm0,xmm1,xmm0
0000000000000223 C5 F8 50 C0 vmovmskps rax,xmm0
0000000000000227 85 C0 test eax,eax
0000000000000229 0F 95 C0 setne al
000000000000022C C3 ret

SIMD performance
C

yc
le

s

0

100
200
300
400

500

Array Size

0 20 40 60 80 10
0

12
0

Naive
Whole
SIMD

What about binary search?
C

yc
le

s

0

100
200
300
400

500

Array Size

0 20 40 60 80 10
0

12
0

Naive
SIMD
BinarySearch

Small Search Guidelines
● Naive code is reasonable for small counts

● Because OOO runs Excel faster!
● Prefer SIMD for predictable <100 elem searches

● Binary search competitive >100 32-bit elements
● Scrutinize older micro-optimization closely
● Make sure the compiler is playing for your team

● Auto-vectorization generates terrible code sometimes

Measuring latency in cycles
● Need a way to synchronize OOO machinery

● Retire all pending instructions, prevent scheduling
● CPUID fits the bill - has fixed cost

● Use RDTSC to read time stamp counter
● RDTSCP doesn't actually retire all pending

instructions, can't use it. (See AMD errata.)
● Assumes platform has cycle TSCs (check yours)

Measuring, code
● Use CPUID/RDTSC/CPUID sandwich
● Subtract fixed cost later during reporting
xor eax, eax
cpuid ; retire + prevent issues
rdtsc ; read TSC into edx:eax
shl rdx, 32
lea r15, [rax + rdx] ; combine to 64-bit quantity, save in r15

xor eax, eax
cpuid ; retire + prevent issues

Measuring latency
● Warm up I1 by calling the code first
● Run multiple tests to avoid interference

● Even consoles have interrupts, OS shenanigans
● Clear cache by using _mm_clflush() in a loop

OOO Intuition
● Jaguar OOO is a loop unroller

● Up to 64-or-so instructions
● Jaguar OOO is a prefetcher

● And even fetches loads speculatively down branches
you haven't taken yet!

● Jaguar OOO doesn't solve memory latency
● But overlapping L2 misses is a big deal

Anonymous programmers corrected
● "Memory access isn't a problem with OOO"

Anonymous programmers corrected
● "Memory access isn't a problem with OOO"

● It still is. Overlap your loads!

Anonymous programmers corrected
● "Memory access isn't a problem with OOO"

● It still is. Overlap your loads!
● "Branches aren't a problem with OOO"

Anonymous programmers corrected
● "Memory access isn't a problem with OOO"

● It still is. Overlap your loads!
● "Branches aren't a problem with OOO"

● They still are. Avoid trees & speculative cache
pollution.

Anonymous programmers corrected
● "Memory access isn't a problem with OOO"

● It still is. Overlap your loads!
● "Branches aren't a problem with OOO"

● They still are. Avoid trees & speculative cache
pollution.

● "SIMD isn't necessary on OOO"

Anonymous programmers corrected
● "Memory access isn't a problem with OOO"

● It still is. Overlap your loads!
● "Branches aren't a problem with OOO"

● They still are. Avoid trees & speculative cache
pollution.

● "SIMD isn't necessary on OOO"
● It's the only way to get the full cache bandwidth!

Takeaways for Jaguar Perf
● Unrolling, prefetching are of limited use

● Measure carefully, consider maintenance aspects
● Use arrays

● Really, really, really consider using an array
● Linked lists turns OOO into in-order disaster

● Use SIMD
● See my talk from last year for more meat

Resources
● Software Optimization Guide for AMD Family

16h Processors (AMD, pdf)
● http://www.agner.org/optimize/#manuals
● "JAGUAR" AMD’s Next Generation Low Power

x86 Core, Jeff Rupley, AMD Fellow

http://www.agner.org/optimize/#manuals

Thank you! - Q & A
email: afredriksson@insomniacgames.com
twitter: @deplinenoise

Special thanks to: 
 Mark Cerny 
 Fabian Giesen  
 Jonathan Adamczewski  
 Mike Acton & the rest of the Insomniac Core team

mailto:afredriksson@insomniacgames.com

Bonus: Hot D1, Cold L2
● Jaguar has an inclusive cache hierarchy

● All D1/I1 lines must also be in L2
● L2 hears about all D1 misses
● L2 hears nothing about D1 hits
● ...
● So what if you have a routine that does nothing

but HIT D1?

Bonus: Hot D1, Cold L2
● Net effect: White hot D1 data can be evicted

● L2 assoc = 16 lines, they WILL be reused
● Our data looks old in the LRU order and the L2 hasn't

heard about it for a while..
● End game: Inner loop has to L2 miss all the way to main

memory randomly to get back its really hot data
● In practice not a big deal, but can definitely show up

